
ESP32
Technical Reference Manual

Version 4.9

Espressif Systems

Copyright © 2023

www.espressif.com

About This Manual
The ESP32 Technical Reference Manual is addressed to application developers. The manual provides detailed

and complete information on how to use the ESP32 memory and peripherals.

For pin definition, electrical characteristics, and package information, please see ESP32 Datasheet.

Document Updates
Please always refer to the latest version at https://www.espressif.com/en/support/download/documents.

Revision History
For any changes to this document over time, please refer to the last page.

Documentation Change Notification
Espressif provides email notifications to keep customers updated on changes to technical documentation. Please

subscribe at www.espressif.com/en/subscribe.

Certification
Download certificates for Espressif products from www.espressif.com/en/certificates.

http://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/en/support/download/documents
http://espressif.com/en/subscribe
http://espressif.com/en/certificates

Contents

Contents

1 System and Memory 24

1.1 Introduction 24

1.2 Features 24

1.3 Functional Description 26

1.3.1 Address Mapping 26

1.3.2 Embedded Memory 26

1.3.2.1 Internal ROM 0 27

1.3.2.2 Internal ROM 1 27

1.3.2.3 Internal SRAM 0 27

1.3.2.4 Internal SRAM 1 28

1.3.2.5 Internal SRAM 2 28

1.3.2.6 DMA 29

1.3.2.7 RTC FAST Memory 29

1.3.2.8 RTC SLOW Memory 29

1.3.3 External Memory 29

1.3.4 Cache 30

1.3.5 Peripherals 31

1.3.5.1 Asymmetric PID Controller Peripheral 32

1.3.5.2 Non-Contiguous Peripheral Memory Ranges 32

1.3.5.3 Memory Speed 33

2 Interrupt Matrix (INTERRUPT) 34

2.1 Overview 34

2.2 Features 34

2.3 Functional Description 34

2.3.1 Peripheral Interrupt Source 34

2.3.2 CPU Interrupt 37

2.3.3 Allocate Peripheral Interrupt Sources to Peripheral Interrupt on CPU 37

2.3.4 CPU NMI Interrupt Mask 38

2.3.5 Query Current Interrupt Status of Peripheral Interrupt Source 38

2.4 Registers 38

3 Reset and Clock 39

3.1 System Reset 39

3.1.1 Introduction 39

3.1.2 Reset Source 39

3.2 System Clock 40

3.2.1 Introduction 40

3.2.2 Clock Source 41

3.2.3 CPU Clock 41

3.2.4 Peripheral Clock 42

3.2.4.1 APB_CLK 42

Espressif Systems 3
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Contents

3.2.4.2 REF_TICK 42

3.2.4.3 LEDC_SCLK Source 43

3.2.4.4 APLL_SCLK Source 43

3.2.4.5 PLL_F160M_CLK Source 43

3.2.4.6 Clock Source Considerations 43

3.2.5 Wi-Fi BT Clock 43

3.2.6 RTC Clock 44

3.2.7 Audio PLL 44

3.3 Register Summary 44

3.4 Registers 45

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX) 48

4.1 Overview 48

4.2 Peripheral Input via GPIO Matrix 49

4.2.1 Summary 49

4.2.2 Functional Description 49

4.2.3 Simple GPIO Input 50

4.3 Peripheral Output via GPIO Matrix 50

4.3.1 Summary 50

4.3.2 Functional Description 51

4.3.3 Simple GPIO Output 52

4.4 Direct I/O via IO_MUX 52

4.4.1 Summary 52

4.4.2 Functional Description 52

4.5 RTC IO_MUX for Low Power and Analog I/O 52

4.5.1 Summary 52

4.5.2 Functional Description 52

4.6 Light-sleep Mode Pin Functions 53

4.7 Pad Hold Feature 53

4.8 I/O Pad Power Supplies 53

4.8.1 VDD_SDIO Power Domain 55

4.9 Peripheral Signal List 55

4.10 IO_MUX Pad List 60

4.11 RTC_MUX Pin List 61

4.12 Register Summary 61

4.12.1 GPIO Matrix Register Summary 61

4.12.2 IO MUX Register Summary 63

4.12.3 RTC IO MUX Register Summary 64

4.13 Registers 65

4.13.1 GPIO Matrix Registers 65

4.13.2 IO MUX Registers 74

4.13.3 RTC IO MUX Registers 76

5 DPort Registers 90

5.1 Introduction 90

5.2 Features 90

Espressif Systems 4
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Contents

5.3 Functional Description 90

5.3.1 System and Memory Register 90

5.3.2 Reset and Clock Registers 90

5.3.3 Interrupt Matrix Register 90

5.3.4 DMA Registers 90

5.3.5 MPU/MMU Registers 90

5.3.6 APP_CPU Controller Registers 91

5.3.7 Peripheral Clock Gating and Reset 91

5.4 Register Summary 92

5.5 Registers 99

6 DMA Controller (DMA) 115

6.1 Overview 115

6.2 Features 115

6.3 Functional Description 115

6.3.1 DMA Engine Architecture 115

6.3.2 Linked List 116

6.4 UART DMA (UDMA) 116

6.5 SPI DMA Interface 118

6.6 I2S DMA Interface 119

7 SPI Controller (SPI) 120

7.1 Overview 120

7.2 SPI Features 121

7.3 GP-SPI 121

7.3.1 GP-SPI Four-line Full-duplex Communication 122

7.3.2 GP-SPI Four-line Half-duplex Communication 122

7.3.3 GP-SPI Three-line Half-duplex Communication 123

7.3.4 GP-SPI Data Buffer 123

7.4 GP-SPI Clock Control 124

7.4.1 GP-SPI Clock Polarity (CPOL) and Clock Phase (CPHA) 124

7.4.2 GP-SPI Timing 125

7.5 Parallel QSPI 126

7.5.1 Communication Format of Parallel QSPI 126

7.6 GP-SPI Interrupt Hardware 127

7.6.1 SPI Interrupts 127

7.6.2 DMA Interrupts 127

7.7 Register Summary 128

7.8 Registers 131

8 SDIO Slave Controller 154

8.1 Overview 154

8.2 Features 154

8.3 Functional Description 154

8.3.1 SDIO Slave Block Diagram 154

8.3.2 Sending and Receiving Data on SDIO Bus 155

Espressif Systems 5
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Contents

8.3.3 Register Access 155

8.3.4 DMA 155

8.3.5 Packet-Sending/-Receiving Procedure 156

8.3.5.1 Sending Packets to SDIO Host 157

8.3.5.2 Receiving Packets from SDIO Host 158

8.3.6 SDIO Bus Timing 159

8.3.7 Interrupt 160

8.3.7.1 Host Interrupt 160

8.3.7.2 Slave Interrupt 160

8.4 Register Summary 161

8.5 SLC Registers 163

8.6 SLC Host Registers 171

8.7 HINF Registers 185

9 SD/MMC Host Controller 186

9.1 Overview 186

9.2 Features 186

9.3 SD/MMC External Interface Signals 186

9.4 Functional Description 187

9.4.1 SD/MMC Host Controller Architecture 187

9.4.1.1 BIU 188

9.4.1.2 CIU 188

9.4.2 Command Path 188

9.4.3 Data Path 189

9.4.3.1 Data Transmit Operation 189

9.4.3.2 Data Receive Operation 190

9.5 Software Restrictions for Proper CIU Operation 190

9.6 RAM for Receiving and Sending Data 191

9.6.1 Transmit RAM Module 191

9.6.2 Receive RAM Module 191

9.7 Descriptor Chain 192

9.8 The Structure of a Linked List 192

9.9 Initialization 194

9.9.1 DMAC Initialization 194

9.9.2 DMAC Transmission Initialization 194

9.9.3 DMAC Reception Initialization 195

9.10 Clock Phase Selection 196

9.11 Interrupt 196

9.12 Register Summary 196

9.13 Registers 197

10 Ethernet Media Access Controller (MAC) 216

10.1 Overview 216

10.2 EMAC_CORE 218

10.2.1 Transmit Operation 218

10.2.1.1 Transmit Flow Control 219

Espressif Systems 6
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Contents

10.2.1.2 Retransmission During a Collision 219

10.2.2 Receive Operation 219

10.2.2.1 Reception Protocol 220

10.2.2.2 Receive Frame Controller 220

10.2.2.3 Receive Flow Control 220

10.2.2.4 Reception of Multiple Frames 221

10.2.2.5 Error Handling 221

10.2.2.6 Receive Status Word 221

10.3 MAC Interrupt Controller 221

10.4 MAC Address Filtering 222

10.4.1 Unicast Destination Address Filtering 222

10.4.2 Multicast Destination Address Filtering 222

10.4.3 Broadcast Address Filtering 222

10.4.4 Unicast Source Address Filtering 222

10.4.5 Inverse Filtering Operation 222

10.4.6 Good Transmitted Frames and Received Frames 224

10.5 EMAC_MTL (MAC Transaction Layer) 224

10.6 PHY Interface 224

10.6.1 MII (Media Independent Interface) 225

10.6.1.1 Interface Signals Between MII and PHY 225

10.6.1.2 MII Clock 226

10.6.2 RMII (Reduced Media-Independent Interface) 227

10.6.2.1 RMII Interface Signal Description 227

10.6.2.2 RMII Clock 227

10.6.3 Station Management Agent (SMA) Interface 228

10.6.4 RMII Timing 228

10.7 Ethernet DMA Features 229

10.8 Linked List Descriptors 229

10.8.1 Transmit Descriptors 229

10.8.2 Receive Descriptors 235

10.9 Register Summary 240

10.10 Registers 243

11 I2C Controller (I2C) 281

11.1 Overview 281

11.2 Features 281

11.3 Functional Description 281

11.3.1 Introduction 281

11.3.2 Architecture 282

11.3.3 I2C Bus Timing 283

11.3.4 I2C cmd Structure 284

11.3.5 I2C Master Writes to Slave 285

11.3.6 Master Reads from Slave 289

11.3.7 Interrupts 291

11.4 Register Summary 292

11.5 Registers 294

Espressif Systems 7
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Contents

12 I2S Controller (I2S) 305

12.1 Overview 305

12.2 Features 306

12.3 The Clock of I2S Module 307

12.4 I2S Mode 308

12.4.1 Supported Audio Standards 308

12.4.1.1 Philips Standard 308

12.4.1.2 MSB Alignment Standard 308

12.4.1.3 PCM Standard 309

12.4.2 Module Reset 309

12.4.3 FIFO Operation 309

12.4.4 Sending Data 310

12.4.5 Receiving Data 311

12.4.6 I2S Master/Slave Mode 313

12.4.7 I2S PDM 313

12.5 Camera-LCD Controller 315

12.5.1 LCD Master Transmitting Mode 315

12.5.2 Camera Slave Receiving Mode 316

12.5.3 ADC/DAC mode 317

12.6 I2S Interrupts 318

12.6.1 FIFO Interrupts 318

12.6.2 DMA Interrupts 318

12.7 Register Summary 318

12.8 Registers 321

13 UART Controller (UART) 339

13.1 Overview 339

13.2 UART Features 339

13.3 Functional Description 339

13.3.1 Introduction 339

13.3.2 UART Architecture 340

13.3.3 UART RAM 341

13.3.4 Baud Rate Detection 342

13.3.5 UART Data Frame 342

13.3.6 AT_CMD Character Structure 343

13.3.7 Flow Control 343

13.3.7.1 Hardware Flow Control 344

13.3.7.2 Software Flow Control 344

13.3.8 UART DMA 345

13.3.9 UART Interrupts 345

13.3.10 UHCI Interrupts 346

13.4 Register Summary 346

13.4.1 UART Register Summary 346

13.4.2 UHCI Register Summary 348

13.5 Registers 350

13.5.1 UART Registers 350

Espressif Systems 8
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Contents

13.5.2 UHCI Registers 350

14 LED PWM Controller (LEDC) 382

14.1 Introduction 382

14.2 Functional Description 382

14.2.1 Architecture 382

14.2.2 Timers 383

14.2.3 Channels 384

14.2.4 Interrupts 385

14.3 Register Summary 385

14.4 Registers 388

15 Remote Control Peripheral (RMT) 398

15.1 Introduction 398

15.2 Functional Description 398

15.2.1 RMT Architecture 398

15.2.2 RMT RAM 399

15.2.3 Clock 399

15.2.4 Transmitter 399

15.2.5 Receiver 400

15.2.6 Interrupts 400

15.3 Register Summary 400

15.4 Registers 401

16 Motor Control PWM (PWM) 407

16.1 Introduction 407

16.2 Features 407

16.3 Submodules 409

16.3.1 Overview 409

16.3.1.1 Prescaler Submodule 409

16.3.1.2 Timer Submodule 409

16.3.1.3 Operator Submodule 410

16.3.1.4 Fault Detection Submodule 412

16.3.1.5 Capture Submodule 412

16.3.2 PWM Timer Submodule 412

16.3.2.1 Configurations of the PWM Timer Submodule 412

16.3.2.2 PWM Timer’s Working Modes and Timing Event Generation 413

16.3.2.3 PWM Timer Shadow Register 417

16.3.2.4 PWM Timer Synchronization and Phase Locking 417

16.3.3 PWM Operator Submodule 417

16.3.3.1 PWM Generator Submodule 419

16.3.3.2 Dead Time Generator Submodule 429

16.3.3.3 PWM Carrier Submodule 434

16.3.3.4 Fault Handler Submodule 437

16.3.4 Capture Submodule 438

16.3.4.1 Introduction 438

Espressif Systems 9
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Contents

16.3.4.2 Capture Timer 439

16.3.4.3 Capture Channel 439

16.4 Register Summary 440

16.5 Registers 442

17 Pulse Count Controller (PCNT) 489

17.1 Overview 489

17.2 Functional Description 489

17.2.1 Architecture 489

17.2.2 Counter Channel Inputs 490

17.2.3 Watchpoints 490

17.2.4 Examples 491

17.2.5 Interrupts 491

17.3 Register Summary 492

17.4 Registers 494

18 Timer Group (TIMG) 500

18.1 Introduction 500

18.2 Functional Description 500

18.2.1 16-bit Prescaler 500

18.2.2 64-bit Time-base Counter 500

18.2.3 Alarm Generation 501

18.2.4 MWDT 501

18.2.5 Interrupts 501

18.3 Register Summary 501

18.4 Registers 503

19 Watchdog Timers (WDT) 511

19.1 Introduction 511

19.2 Features 511

19.3 Functional Description 511

19.3.1 Clock 511

19.3.1.1 Operating Procedure 511

19.3.1.2 Write Protection 512

19.3.1.3 Flash Boot Protection 512

19.3.1.4 Registers 512

20 eFuse Controller 513

20.1 Introduction 513

20.2 Features 513

20.3 Functional Description 513

20.3.1 Structure 513

20.3.1.1 System Parameter efuse_wr_disable 515

20.3.1.2 System Parameter efuse_rd_disable 515

20.3.1.3 System Parameter coding_scheme 515

20.3.1.4 BLK3_part_reserve 516

Espressif Systems 10
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Contents

20.3.2 Programming of System Parameters 517

20.3.3 Software Reading of System Parameters 519

20.3.4 The Use of System Parameters by Hardware Modules 521

20.3.5 Interrupts 521

20.4 Register Summary 521

20.5 Registers 524

21 Twowire Automotive Interface (TWAI) 535

21.1 Overview 535

21.2 Features 535

21.3 Functional Protocol 535

21.3.1 TWAI Properties 535

21.3.2 TWAI Messages 536

21.3.2.1 Data Frames and Remote Frames 537

21.3.2.2 Error and Overload Frames 539

21.3.2.3 Interframe Space 541

21.3.3 TWAI Errors 541

21.3.3.1 Error Types 541

21.3.3.2 Error States 542

21.3.3.3 Error Counters 542

21.3.4 TWAI Bit Timing 543

21.3.4.1 Nominal Bit 543

21.3.4.2 Hard Synchronization and Resynchronization 544

21.4 Architectural Overview 544

21.4.1 Registers Block 544

21.4.2 Bit Stream Processor 546

21.4.3 Error Management Logic 546

21.4.4 Bit Timing Logic 546

21.4.5 Acceptance Filter 546

21.4.6 Receive FIFO 547

21.5 Functional Description 547

21.5.1 Modes 547

21.5.1.1 Reset Mode 547

21.5.1.2 Operation Mode 547

21.5.2 Bit Timing 547

21.5.3 Interrupt Management 548

21.5.3.1 Receive Interrupt (RXI) 549

21.5.3.2 Transmit Interrupt (TXI) 549

21.5.3.3 Error Warning Interrupt (EWI) 549

21.5.3.4 Data Overrun Interrupt (DOI) 550

21.5.3.5 Error Passive Interrupt (TXI) 550

21.5.3.6 Arbitration Lost Interrupt (ALI) 550

21.5.3.7 Bus Error Interrupt (BEI) 550

21.5.4 Transmit and Receive Buffers 550

21.5.4.1 Overview of Buffers 550

21.5.4.2 Frame Information 551

Espressif Systems 11
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Contents

21.5.4.3 Frame Identifier 551

21.5.4.4 Frame Data 552

21.5.5 Receive FIFO and Data Overruns 552

21.5.6 Acceptance Filter 553

21.5.6.1 Single Filter Mode 553

21.5.6.2 Dual FIlter Mode 554

21.5.7 Error Management 555

21.5.7.1 Error Warning Limit 556

21.5.7.2 Error Passive 556

21.5.7.3 Bus-Off and Bus-Off Recovery 556

21.5.8 Error Code Capture 557

21.5.9 Arbitration Lost Capture 558

21.6 Register Summary 558

21.7 Registers 559

22 AES Accelerator (AES) 573

22.1 Introduction 573

22.2 Features 573

22.3 Functional Description 573

22.3.1 AES Algorithm Operations 573

22.3.2 Key, Plaintext and Ciphertext 573

22.3.3 Endianness 573

22.3.4 Encryption and Decryption Operations 576

22.3.5 Speed 576

22.4 Register Summary 576

22.5 Registers 577

23 SHA Accelerator (SHA) 579

23.1 Introduction 579

23.2 Features 579

23.3 Functional Description 579

23.3.1 Padding and Parsing the Message 579

23.3.2 Message Digest 579

23.3.3 Hash Operation 579

23.3.4 Speed 580

23.4 Register Summary 580

23.5 Registers 581

24 RSA Accelerator (RSA) 588

24.1 Introduction 588

24.2 Features 588

24.3 Functional Description 588

24.3.1 Initialization 588

24.3.2 Large Number Modular Exponentiation 588

24.3.3 Large Number Modular Multiplication 590

24.3.4 Large Number Multiplication 590

Espressif Systems 12
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Contents

24.4 Register Summary 591

24.5 Registers 592

25 Random Number Generator (RNG) 594

25.1 Introduction 594

25.2 Feature 594

25.3 Functional Description 594

25.4 Programming Procedure 595

25.5 Register Summary 595

25.6 Register 595

26 External Memory Encryption and Decryption (FLASH) 596

26.1 Overview 596

26.2 Features 596

26.3 Functional Description 596

26.3.1 Key Generator 597

26.3.2 Flash Encryption Block 597

26.3.3 Flash Decryption Block 598

26.4 Register Summary 598

26.5 Register 599

27 Memory Management and Protection Units (MMU, MPU)600

27.1 Introduction 600

27.2 Features 600

27.3 Functional Description 600

27.3.1 PID Controller 600

27.3.2 MPU/MMU 600

27.3.2.1 Embedded Memory 601

27.3.2.2 External Memory 607

27.3.2.3 Peripheral 613

28 Process ID Controller (PID) 615

28.1 Overview 615

28.2 Features 615

28.3 Functional Description 615

28.3.1 Interrupt Identification 615

28.3.2 Information Recording 616

28.3.3 Proactive Process Switching 617

28.4 Register Summary 619

28.5 Registers 620

29 OnChip Sensors and Analog Signal Processing 625

29.1 Introduction 625

29.2 Capacitive Touch Sensor 625

29.2.1 Introduction 625

29.2.2 Features 625

Espressif Systems 13
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Contents

29.2.3 Available GPIOs 626

29.2.4 Functional Description 626

29.2.5 Touch FSM 627

29.3 SAR ADC 628

29.3.1 Introduction 628

29.3.2 Features 629

29.3.3 Outline of Function 629

29.3.4 RTC SAR ADC Controllers 631

29.3.5 DIG SAR ADC Controllers 632

29.4 DAC 634

29.4.1 Introduction 634

29.4.2 Features 634

29.4.3 Structure 635

29.4.4 Cosine Waveform Generator 635

29.4.5 DMA support 636

29.5 Register Summary 637

29.5.1 Sensors 637

29.5.2 Advanced Peripheral Bus 637

29.5.3 RTC I/O 638

29.6 Registers 639

29.6.1 Sensors 639

29.6.2 Advanced Peripheral Bus 648

29.6.3 RTC I/O 652

30 ULP Coprocessor (ULP) 653

30.1 Introduction 653

30.2 Features 653

30.3 Functional Description 654

30.4 Instruction Set 654

30.4.1 ALU - Perform Arithmetic/Logic Operations 654

30.4.1.1 Operations Among Registers 655

30.4.1.2 Operations with Immediate Value 656

30.4.1.3 Operations with Stage Count Register 656

30.4.2 ST – Store Data in Memory 657

30.4.3 LD – Load Data from Memory 657

30.4.4 JUMP – Jump to an Absolute Address 658

30.4.5 JUMPR – Jump to a Relative Offset (Conditional upon R0) 658

30.4.6 JUMPS – Jump to a Relative Address (Conditional upon Stage Count Register) 659

30.4.7 HALT – End the Program 659

30.4.8 WAKE – Wake up the Chip 660

30.4.9 Sleep – Set the ULP Timer’s Wake-up Period 660

30.4.10 WAIT – Wait for a Number of Cycles 660

30.4.11 ADC – Take Measurement with ADC 661

30.4.12 I2C_RD/I2C_WR – Read/Write I²C 661

30.4.13 REG_RD – Read from Peripheral Register 662

30.4.14 REG_WR – Write to Peripheral Register 663

Espressif Systems 14
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Contents

30.5 ULP Program Execution 663

30.6 RTC_I2C Controller 665

30.6.1 Configuring RTC_I2C 665

30.6.2 Using RTC_I2C 666

30.6.2.1 I2C_RD - Read a Single Byte 666

30.6.2.2 I2C_WR - Write a Single Byte 666

30.6.2.3 Detecting Error Conditions 667

30.6.2.4 Connecting I²C Signals 667

30.7 Register Summary 667

30.7.1 SENS_ULP Address Space 667

30.7.2 RTC_I2C Address Space 668

30.8 Registers 669

30.8.1 SENS_ULP Address Space 669

30.8.2 RTC_I2C Address Space 671

31 LowPower Management (RTC_CNTL) 677

31.1 Introduction 677

31.2 Features 677

31.3 Functional Description 677

31.3.1 Overview 678

31.3.2 Digital Core Voltage Regulator 678

31.3.3 Low-Power Voltage Regulator 678

31.3.4 Flash Voltage Regulator 679

31.3.5 Brownout Detector 680

31.3.6 RTC Module 680

31.3.7 Low-Power Clocks 682

31.3.8 Power-Gating Implementation 683

31.3.9 Predefined Power Modes 684

31.3.10 Wakeup Source 686

31.3.11 Reject Sleep 687

31.3.12 RTC Timer 687

31.3.13 RTC Boot 687

31.4 Register Summary 688

31.5 Registers 690

Glossary 718

Abbreviations for Peripherals 718

Abbreviations for Registers 718

Revision History 719

Espressif Systems 15
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

List of Tables

List of Tables

1-1 Address Mapping 26

1-2 Embedded Memory Address Mapping 27

1-3 Module with DMA 29

1-4 External Memory Address Mapping 29

1-5 Cache memory mode 30

1-6 Peripheral Address Mapping 31

2-1 PRO_CPU, APP_CPU Interrupt Configuration 35

2-2 CPU Interrupts 37

3-1 PRO_CPU and APP_CPU Reset Reason Values 39

3-2 CPU_CLK Source 41

3-3 CPU_CLK Derivation 41

3-4 Peripheral Clock Usage 42

3-5 APB_CLK 42

3-6 REF_TICK 43

3-7 LEDC_SCLK Derivation 43

4-1 IO_MUX Light-sleep Pin Function Registers 53

4-2 GPIO Matrix Peripheral Signals 55

4-3 IO_MUX Pad Summary 60

4-4 RTC_MUX Pin Summary 61

7-1 Mapping Between SPI Bus Signals and Pin Function Signals 120

7-2 Command Definitions Supported by GP-SPI Slave in Half-duplex Mode 122

7-3 Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Master 124

7-4 Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Slave 124

9-1 SD/MMC Signal Description 187

9-2 DES0 192

9-3 DES1 193

9-4 DES2 194

9-5 DES3 194

10-1 Destination Address Filtering 223

10-2 Source Address Filtering 223

10-3 Timing Parameters - Receiving Data 228

10-4 Timing Parameters – Transmitting Data 229

10-5 Transmit Descriptor 0 (TDES0) 230

10-6 Transmit Descriptor 1 (TDES1) 234

10-7 Transmit Descriptor 2 (TDES2) 234

10-8 Transmit Descriptor 3 (TDES3) 234

10-9 Transmit Descriptor 6 (TDES6) 234

10-10 Transmit Descriptor 7 (TDES7) 235

10-11 Receive Descriptor 0 (RDES0) 235

10-12 Receive Descriptor 1 (RDES1) 238

10-13 Receive Descriptor 2 (RDES2) 238

10-14 Receive Descriptor 3 (RDES3) 238

10-15 Receive Descriptor 4 (RDES4) 239

Espressif Systems 16
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

List of Tables

10-16 Receive Descriptor 6 (RDES6) 240

10-17 Receive Descriptor 7 (RDES7) 240

11-1 SCL Frequency Configuration 283

12-1 I2S Signal Bus Description 306

12-2 Register Configuration 310

12-3 Send Channel Mode 310

12-4 Modes of Writing Received Data into FIFO and the Corresponding Register Configuration 312

12-5 The Register Configuration to Which the Four Modes Correspond 312

12-6 Upsampling Rate Configuration 314

12-7 Down-sampling Configuration 315

14-1 Commonly-used Frequencies and Resolutions 384

16-1 Configuration Parameters of the Operator Submodule 411

16-2 Timing Events Used in PWM Generator 419

16-3 Timing Events Priority When PWM Timer Increments 420

16-4 Timing Events Priority when PWM Timer Decrements 420

16-5 Dead Time Generator Switches Control Registers 430

16-6 Typical Dead Time Generator Operating Modes 431

20-1 System Parameters 513

20-2 BLOCK1/2/3 Encoding 516

20-3 Program Registers 517

20-4 Timing Configuration 519

20-5 Software Read Registers 520

21-1 Data Frames and Remote Frames in SFF and EFF 538

21-2 Error Frame 539

21-3 Overload Frame 540

21-4 Interframe Space 541

21-5 Segments of a Nominal Bit Time 543

21-6 Bit Information of TWAI_CLOCK_DIVIDER_REG; TWAI Address 0x18 548

21-7 Bit Information of TWAI_BUS_TIMING_1_REG; TWAI Address 0x1c 548

21-8 Buffer Layout for Standard Frame Format and Extended Frame Format 550

21-9 TX/RX Frame Information (SFF/EFF)�TWAI Address 0x40 551

21-10 TX/RX Identifier 1 (SFF); TWAI Address 0x44 552

21-11 TX/RX Identifier 2 (SFF); TWAI Address 0x48 552

21-12 TX/RX Identifier 1 (EFF); TWAI Address 0x44 552

21-13 TX/RX Identifier 2 (EFF); TWAI Address 0x48 552

21-14 TX/RX Identifier 3 (EFF); TWAI Address 0x4c 552

21-15 TX/RX Identifier 4 (EFF); TWAI Address 0x50 552

21-16 Bit Information of TWAI_ERR_CODE_CAP_REG; TWAI Address 0x30 557

21-17 Bit Information of Bits SEG.4 - SEG.0 557

21-18 Bit Information of TWAI_ARB LOST CAP_REG; TWAI Address 0x2c 558

22-1 Operation Mode 573

22-2 AES Text Endianness 574

22-3 AES-128 Key Endianness 575

22-4 AES-192 Key Endianness 575

22-5 AES-256 Key Endianness 575

27-1 MPU and MMU Structure for Internal Memory 601

Espressif Systems 17
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

List of Tables

27-2 MPU for RTC FAST Memory 602

27-3 MPU for RTC SLOW Memory 602

27-4 Page Mode of MMU for the Remaining 128 KB of Internal SRAM0 and SRAM2 603

27-5 Page Boundaries for SRAM0 MMU 604

27-6 Page Boundaries for SRAM2 MMU 604

27-7 DPORT_DMMU_TABLEn_REG & DPORT_IMMU_TABLEn_REG 605

27-8 MPU for DMA 606

27-9 Virtual Address for External Memory 608

27-10 MMU Entry Numbers for PRO_CPU 608

27-11 MMU Entry Numbers for APP_CPU 608

27-12 MMU Entry Numbers for PRO_CPU (Special Mode) 609

27-13 MMU Entry Numbers for APP_CPU (Special Mode) 609

27-14 Virtual Address Mode for External SRAM 610

27-15 Virtual Address for External SRAM (Normal Mode) 611

27-16 Virtual Address for External SRAM (Low-High Mode) 611

27-17 Virtual Address for External SRAM (Even-Odd Mode) 611

27-18 MMU Entry Numbers for External RAM 612

27-19 MPU for Peripheral 613

27-20 DPORT_AHBLITE_MPU_TABLE_X_REG 614

28-1 Interrupt Vector Entry Address 616

28-2 Configuration of PIDCTRL_LEVEL_REG 616

28-3 Configuration of PIDCTRL_FROM_n_REG 617

29-1 ESP32 Capacitive Sensing Touch Pads 626

29-2 Inputs of SAR ADC 631

29-3 ESP32 SAR ADC Controllers 631

29-4 Fields of the Pattern Table Register 633

29-5 Fields of Type I DMA Data Format 634

29-6 Fields of Type II DMA Data Format 634

30-1 ALU Operations Among Registers 655

30-2 ALU Operations with Immediate Value 656

30-3 ALU Operations with Stage Count Register 657

30-4 Input Signals Measured Using the ADC Instruction 661

31-1 RTC Power Domains 683

31-2 Wake-up Source 686

Espressif Systems 18
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

List of Figures

List of Figures

1-1 System Structure 25

1-2 System Address Mapping 25

1-3 Cache Block Diagram 30

2-1 Interrupt Matrix Structure 34

3-1 System Reset 39

3-2 System Clock 40

4-1 IO_MUX, RTC IO_MUX and GPIO Matrix Overview 48

4-2 Peripheral Input via IO_MUX, GPIO Matrix 49

4-3 Output via GPIO Matrix 51

4-4 ESP32 I/O Pad Power Sources (QFN 6*6, Top View) 54

4-5 ESP32 I/O Pad Power Sources (QFN 5*5, Top View) 54

6-1 DMA Engine Architecture 115

6-2 Linked List Structure 116

6-3 Data Transfer in UDMA Mode 117

6-4 SPI DMA 118

7-1 SPI Architecture 120

7-2 SPI Master and Slave Full-duplex/Half-duplex Communication 121

7-3 SPI Data Buffer 123

7-4 GP-SPI ������ 126

7-5 Parallel QSPI 126

7-6 Communication Format of Parallel QSPI 127

8-1 SDIO Slave Block Diagram 154

8-2 SDIO Bus Packet Transmission 155

8-3 CMD53 Content 155

8-4 SDIO Slave DMA Linked List Structure 156

8-5 SDIO Slave Linked List 156

8-6 Packet Sending Procedure (Initiated by Slave) 157

8-7 Packet Receiving Procedure (Initiated by Host) 158

8-8 Loading Receiving Buffer 159

8-9 Sampling Timing Diagram 159

8-10 Output Timing Diagram 160

9-1 SD/MMC Controller Topology 186

9-2 SD/MMC Controller External Interface Signals 187

9-3 SDIO Host Block Diagram 187

9-4 Command Path State Machine 189

9-5 Data Transmit State Machine 189

9-6 Data Receive State Machine 190

9-7 Descriptor Chain 192

9-8 The Structure of a Linked List 192

9-9 Clock Phase Selection 196

10-1 Ethernet MAC Functionality Overview 216

10-2 Ethernet Block Diagram 218

10-3 MII Interface 225

Espressif Systems 19
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

List of Figures

10-4 MII Clock 226

10-5 RMII Interface 227

10-6 RMII Clock 228

10-7 RMII Timing - Receiving Data 228

10-8 RMII Timing – Transmitting Data 229

10-9 Transmit Descriptor 229

10-10 Receive Descriptor 235

11-1 I2C Master Architecture 282

11-2 I2C Slave Architecture 282

11-3 I2C Sequence Chart 283

11-4 Structure of The I2C Command Register 284

11-5 I2C Master Writes to Slave with 7-bit Address 285

11-6 I2C Master Writes to Slave with 10-bit Address 286

11-7 I2C Master Writes to addrM in RAM of Slave with 7-bit Address 287

11-8 Master Writes to Slave with 7-bit Address in Three Segments 288

11-9 Master Reads from Slave with 7-bit Address 289

11-10 Master Reads from Slave with 10-bit Address 290

11-11 Master Reads N Bytes of Data from addrM in Slave with 7-bit Address 290

11-12 Master Reads from Slave with 7-bit Address in Three Segments 291

12-1 I2S System Block Diagram 305

12-2 I2S Clock 307

12-3 Philips Standard 308

12-4 MSB Alignment Standard 308

12-5 PCM Standard 309

12-6 Tx FIFO Data Mode 310

12-7 The First Stage of Receiving Data 311

12-8 Modes of Writing Received Data into FIFO 312

12-9 PDM Transmitting Module 313

12-10 PDM Sends Signal 314

12-11 PDM Receives Signal 314

12-12 PDM Receive Module 314

12-13 LCD Master Transmitting Mode 315

12-14 LCD Master Transmitting Data Frame, Form 1 316

12-15 LCD Master Transmitting Data Frame, Form 2 316

12-16 Camera Slave Receiving Mode 316

12-17 ADC Interface of I2S0 317

12-18 DAC Interface of I2S 317

12-19 Data Input by I2S DAC Interface 317

13-1 UART Basic Structure 340

13-2 UART Shared RAM 341

13-3 UART Data Frame Structure 342

13-4 AT_CMD Character Format 343

13-5 Hardware Flow Control 344

14-1 LED_PWM Architecture 382

14-2 LED_PWM High-speed Channel Diagram 382

14-3 LED_PWM Divider 383

Espressif Systems 20
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

List of Figures

14-4 LED PWM Output Signal Diagram 384

14-5 Output Signal Diagram of Fading Duty Cycle 385

15-1 RMT Architecture 398

15-2 Data Structure 399

16-1 MCPWM Module Overview 407

16-2 Prescaler Submodule 409

16-3 Timer Submodule 409

16-4 Operator Submodule 410

16-5 Fault Detection Submodule 412

16-6 Capture Submodule 412

16-7 Count-Up Mode Waveform 413

16-8 Count-Down Mode Waveforms 414

16-9 Count-Up-Down Mode Waveforms, Count-Down at Synchronization Event 414

16-10 Count-Up-Down Mode Waveforms, Count-Up at Synchronization Event 414

16-11 UTEP and UTEZ Generation in Count-Up Mode 415

16-12 DTEP and DTEZ Generation in Count-Down Mode 416

16-13 DTEP and UTEZ Generation in Count-Up-Down Mode 416

16-14 Submodules Inside the PWM Operator 418

16-15 Symmetrical Waveform in Count-Up-Down Mode 422

16-16 Count-Up, Single Edge Asymmetric Waveform, with Independent Modulation on PWMxA and

PWMxB — Active High 423

16-17 Count-Up, Pulse Placement Asymmetric Waveform with Independent Modulation on PWMxA 424

16-18 Count-Up-Down, Dual Edge Symmetric Waveform, with Independent Modulation on PWMxA and

PWMxB — Active High 425

16-19 Count-Up-Down, Dual Edge Symmetric Waveform, with Independent Modulation on PWMxA and

PWMxB — Complementary 426

16-20 Example of an NCI Software-Force Event on PWMxA 427

16-21 Example of a CNTU Software-Force Event on PWMxB 428

16-22 Options for Setting up the Dead Time Generator Submodule 430

16-23 Active High Complementary (AHC) Dead Time Waveforms 431

16-24 Active Low Complementary (ALC) Dead Time Waveforms 432

16-25 Active High (AH) Dead Time Waveforms 432

16-26 Active Low (AL) Dead Time Waveforms 433

16-27 Example of Waveforms Showing PWM Carrier Action 435

16-28 Example of the First Pulse and the Subsequent Sustaining Pulses of the PWM Carrier Submodule 436

16-29 Possible Duty Cycle Settings for Sustaining Pulses in the PWM Carrier Submodule 437

17-1 PULSE_CNT Architecture 489

17-2 PULSE_CNT Upcounting Diagram 491

17-3 PULSE_CNT Downcounting Diagram 491

21-1 The bit fields of Data Frames and Remote Frames 537

21-2 Various Fields of an Error Frame 539

21-3 The Bit Fields of an Overload Frame 540

21-4 The Fields within an Interframe Space 541

21-5 Layout of a Bit 545

21-6 TWAI Overview Diagram 545

21-7 Acceptance Filter 553

Espressif Systems 21
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

List of Figures

21-8 Single Filter Mode 554

21-9 Dual Filter Mode 555

21-10 Error State Transition 556

21-11 Positions of Arbitration Lost Bits 558

25-1 Noise Source 594

26-1 Flash Encryption/Decryption Module Architecture 596

27-1 MMU Access Example 603

28-1 Interrupt Nesting 618

29-1 Touch Sensor 625

29-2 Touch Sensor Structure 626

29-3 Touch Sensor Operating Flow 627

29-4 Touch FSM Structure 628

29-5 SAR ADC Depiction 629

29-6 SAR ADC Outline of Function 630

29-7 RTC SAR ADC Outline of Function 632

29-8 Diagram of DIG SAR ADC Controllers 633

29-9 Diagram of DAC Function 635

29-10 Cosine Waveform (CW) Generator 636

30-1 ULP Coprocessor Diagram 653

30-2 The ULP Coprocessor Instruction Format 654

30-3 Instruction Type — ALU for Operations Among Registers 655

30-4 Instruction Type — ALU for Operations with Immediate Value 656

30-5 Instruction Type — ALU for Operations with Stage Count Register 656

30-6 Instruction Type — ST 657

30-7 Instruction Type — LD 657

30-8 Instruction Type — JUMP 658

30-9 Instruction Type — JUMPR 658

30-10 Instruction Type — JUMP 659

30-11 Instruction Type — HALT 659

30-12 Instruction Type — WAKE 660

30-13 Instruction Type — SLEEP 660

30-14 Instruction Type — WAIT 660

30-15 Instruction Type — ADC 661

30-16 Instruction Type — I²C 661

30-17 Instruction Type — REG_RD 662

30-18 Instruction Type — REG_WR 663

30-19 Control of ULP Program Execution 664

30-20 Sample of a ULP Operation Sequence 665

30-21 I²C Read Operation 666

30-22 I²C Write Operation 667

31-1 ESP32 Power Control 677

31-2 Digital Core Voltage Regulator 678

31-3 Low-Power Voltage Regulator 679

31-4 Flash Voltage Regulator 680

31-5 Brownout Detector 680

31-6 RTC Structure 681

Espressif Systems 22
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

List of Figures

31-7 RTC Low-Power Clocks 682

31-8 Digital Low-Power Clocks 683

31-9 RTC States 683

31-10 Power Modes 685

31-11 ESP32 Boot Flow 688

Espressif Systems 23
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

1 System and Memory

1 System and Memory

1.1 Introduction
The ESP32 is a dual-core system with two Harvard Architecture Xtensa LX6 CPUs. All embedded memory, external

memory and peripherals are located on the data bus and/or the instruction bus of these CPUs.

With some minor exceptions (see below), the address mapping of two CPUs is symmetric, meaning that they

use the same addresses to access the same memory. Multiple peripherals in the system can access embedded

memory via DMA.

The two CPUs are named “PRO_CPU” and “APP_CPU” (for “protocol” and “application”), however, for most pur-

poses the two CPUs are interchangeable.

1.2 Features
• Address Space

– Symmetric address mapping

– 4 GB (32-bit) address space for both data bus and instruction bus

– 1296 KB embedded memory address space

– 19704 KB external memory address space

– 512 KB peripheral address space

– Some embedded and external memory regions can be accessed by either data bus or instruction bus

– 328 KB DMA address space

• Embedded Memory

– 448 KB Internal ROM

– 520 KB Internal SRAM

– 8 KB RTC FAST Memory

– 8 KB RTC SLOW Memory

• External Memory

Off-chip SPI memory can be mapped into the available address space as external memory. Parts of the

embedded memory can be used as transparent cache for this external memory.

– Supports up to 16 MB off-Chip SPI Flash.

– Supports up to 8 MB off-Chip SPI SRAM.

• Peripherals

– 41 peripherals

• DMA

– 13 modules are capable of DMA operation

The block diagram in Figure 1-1 illustrates the system structure, and the block diagram in Figure 1-2 illustrates the

address map structure.

Espressif Systems 24
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

1 System and Memory

Figure 11. System Structure

Figure 12. System Address Mapping

Espressif Systems 25
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

1 System and Memory

1.3 Functional Description
1.3.1 Address Mapping
Each of the two Harvard Architecture Xtensa LX6 CPUs has 4 GB (32-bit) address space. Address spaces are

symmetric between the two CPUs.

Addresses below 0x4000_0000 are serviced using the data bus. Addresses in the range 0x4000_0000 ~ 0x4FFF_FFFF

are serviced using the instruction bus. Finally, addresses over and including 0x5000_0000 are shared by the data

and instruction bus.

The data bus and instruction bus are both little-endian: for example, byte addresses 0x0, 0x1, 0x2, 0x3 access

the least significant, second least significant, second most significant, and the most significant bytes of the 32-bit

word stored at the 0x0 address, respectively. The CPU can access data bus addresses via aligned or non-aligned

byte, half-word and word read-and-write operations. The CPU can read and write data through the instruction

bus, but only in a word aligned manner; non-word-aligned access will cause a CPU exception.

Each CPU can directly access embedded memory through both the data bus and the instruction bus, external

memory which is mapped into the address space (via transparent caching & MMU), and peripherals. Table 1-1

illustrates address ranges that can be accessed by each CPU’s data bus and instruction bus.

Some embedded memories and some external memories can be accessed via the data bus or the instruction bus.

In these cases, the same memory is available to either of the CPUs at two address ranges.

Table 11. Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target

0x0000_0000 0x3F3F_FFFF Reserved

Data 0x3F40_0000 0x3F7F_FFFF 4 MB External Memory

Data 0x3F80_0000 0x3FBF_FFFF 4 MB External Memory

0x3FC0_0000 0x3FEF_FFFF 3 MB Reserved

Data 0x3FF0_0000 0x3FF7_FFFF 512 KB Peripheral

Data 0x3FF8_0000 0x3FFF_FFFF 512 KB Embedded Memory

Instruction 0x4000_0000 0x400C_1FFF 776 KB Embedded Memory

Instruction 0x400C_2000 0x40BF_FFFF 11512 KB External Memory

0x40C0_0000 0x4FFF_FFFF 244 MB Reserved

Data / Instruction 0x5000_0000 0x5000_1FFF 8 KB Embedded Memory

0x5000_2000 0xFFFF_FFFF Reserved

1.3.2 Embedded Memory
The Embedded Memory consists of four segments: internal ROM (448 KB), internal SRAM (520 KB), RTC FAST

memory (8 KB) and RTC SLOW memory (8 KB).

The 448 KB internal ROM is divided into two parts: Internal ROM 0 (384 KB) and Internal ROM 1 (64 KB). The 520

KB internal SRAM is divided into three parts: Internal SRAM 0 (192 KB), Internal SRAM 1 (128 KB), and Internal

SRAM 2 (200 KB). RTC FAST Memory and RTC SLOW Memory are both implemented as SRAM.

Table 1-2 lists all embedded memories and their address ranges on the data and instruction buses.

Espressif Systems 26
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

1 System and Memory

Table 12. Embedded Memory Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target Comment

Data 0x3FF8_0000 0x3FF8_1FFF 8 KB RTC FAST Memory PRO_CPU Only

0x3FF8_2000 0x3FF8_FFFF 56 KB Reserved -

Data 0x3FF9_0000 0x3FF9_FFFF 64 KB Internal ROM 1 -

0x3FFA_0000 0x3FFA_DFFF 56 KB Reserved -

Data 0x3FFA_E000 0x3FFD_FFFF 200 KB Internal SRAM 2 DMA

Data 0x3FFE_0000 0x3FFF_FFFF 128 KB Internal SRAM 1 DMA

Boundary Address
Bus Type

Low Address High Address
Size Target Comment

Instruction 0x4000_0000 0x4000_7FFF 32 KB Internal ROM 0 Remap

Instruction 0x4000_8000 0x4005_FFFF 352 KB Internal ROM 0 -

0x4006_0000 0x4006_FFFF 64 KB Reserved -

Instruction 0x4007_0000 0x4007_FFFF 64 KB Internal SRAM 0 Cache

Instruction 0x4008_0000 0x4009_FFFF 128 KB Internal SRAM 0 -

Instruction 0x400A_0000 0x400A_FFFF 64 KB Internal SRAM 1 -

Instruction 0x400B_0000 0x400B_7FFF 32 KB Internal SRAM 1 Remap

Instruction 0x400B_8000 0x400B_FFFF 32 KB Internal SRAM 1 -

Instruction 0x400C_0000 0x400C_1FFF 8 KB RTC FAST Memory PRO_CPU Only

Boundary Address
Bus Type

Low Address High Address
Size Target Comment

Data Instruc-

tion
0x5000_0000 0x5000_1FFF 8 KB RTC SLOW Memory -

1.3.2.1 Internal ROM 0

The capacity of Internal ROM 0 is 384 KB. It is accessible by both CPUs through the address range 0x4000_0000

~ 0x4005_FFFF, which is on the instruction bus.

The address range of the first 32 KB of the ROM 0 (0x4000_0000 ~ 0x4000_7FFF) can be remapped in order to

access a part of Internal SRAM 1 that normally resides in a memory range of 0x400B_0000 ~ 0x400B_7FFF. While

remapping, the 32 KB SRAM cannot be accessed by an address range of 0x400B_0000 ~ 0x400B_7FFF any more,

but it can still be accessible through the data bus (0x3FFE_8000 ~ 0x3FFE_FFFF). This can be done on a per-CPU

basis: setting bit 0 of register DPORT_PRO_BOOT_REMAP_CTRL_REG or DPORT_APP_BOOT_REMAP_CTRL_REG

will remap SRAM for the PRO_CPU and APP_CPU, respectively.

1.3.2.2 Internal ROM 1

The capacity of Internal ROM 1 is 64 KB. It can be read by either CPU at an address range 0x3FF9_0000 ~
0x3FF9_FFFF of the data bus.

1.3.2.3 Internal SRAM 0

The capacity of Internal SRAM 0 is 192 KB. Hardware can be configured to use the first 64 KB to cache external

memory access. When not used as cache, the first 64 KB can be read and written by either CPU at addresses

Espressif Systems 27
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

1 System and Memory

0x4007_0000 ~ 0x4007_FFFF of the instruction bus. The remaining 128 KB can always be read and written by

either CPU at addresses 0x4008_0000 ~ 0x4009_FFFF of instruction bus.

1.3.2.4 Internal SRAM 1

The capacity of Internal SRAM 1 is 128 KB. Either CPU can read and write this memory at addresses 0x3FFE_0000

~ 0x3FFF_FFFF of the data bus, and also at addresses 0x400A_0000 ~ 0x400B_FFFF of the instruction bus.

The address range accessed via the instruction bus is in reverse order (word-wise) compared to access via the

data bus. That is to say, address

0x3FFE_0000 and 0x400B_FFFC access the same word

0x3FFE_0004 and 0x400B_FFF8 access the same word

0x3FFE_0008 and 0x400B_FFF4 access the same word

……

0x3FFF_FFF4 and 0x400A_0008 access the same word

0x3FFF_FFF8 and 0x400A_0004 access the same word

0x3FFF_FFFC and 0x400A_0000 access the same word

The data bus and instruction bus of the CPU are still both little-endian, so the byte order of individual words is not

reversed between address spaces. For example, address

0x3FFE_0000 accesses the least significant byte in the word accessed by 0x400B_FFFC.

0x3FFE_0001 accesses the second least significant byte in the word accessed by 0x400B_FFFC.

0x3FFE_0002 accesses the second most significant byte in the word accessed by 0x400B_FFFC.

0x3FFE_0003 accesses the most significant byte in the word accessed by 0x400B_FFFC.

0x3FFE_0004 accesses the least significant byte in the word accessed by 0x400B_FFF8.

0x3FFE_0005 accesses the second least significant byte in the word accessed by 0x400B_FFF8.

0x3FFE_0006 accesses the second most significant byte in the word accessed by 0x400B_FFF8.

0x3FFE_0007 accesses the most significant byte in the word accessed by 0x400B_FFF8.

……

0x3FFF_FFF8 accesses the least significant byte in the word accessed by 0x400A_0004.

0x3FFF_FFF9 accesses the second least significant byte in the word accessed by 0x400A_0004.

0x3FFF_FFFA accesses the second most significant byte in the word accessed by 0x400A_0004.

0x3FFF_FFFB accesses the most significant byte in the word accessed by 0x400A_0004.

0x3FFF_FFFC accesses the least significant byte in the word accessed by 0x400A_0000.

0x3FFF_FFFD accesses the second most significant byte in the word accessed by 0x400A_0000.

0x3FFF_FFFE accesses the second most significant byte in the word accessed by 0x400A_0000.

0x3FFF_FFFF accesses the most significant byte in the word accessed by 0x400A_0000.

Part of this memory can be remapped onto the ROM 0 address space. See Internal Rom 0 for more informa-

tion.

1.3.2.5 Internal SRAM 2

The capacity of Internal SRAM 2 is 200 KB. It can be read and written by either CPU at addresses 0x3FFA_E000

~ 0x3FFD_FFFF on the data bus.

Espressif Systems 28
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

1 System and Memory

1.3.2.6 DMA

DMA uses the same addressing as the CPU data bus to read and write Internal SRAM 1 and Internal SRAM 2.

This means DMA uses an address range of 0x3FFE_0000 ~ 0x3FFF_FFFF to read and write Internal SRAM 1 and

an address range of 0x3FFA_E000 ~ 0x3FFD_FFFF to read and write Internal SRAM 2.

In the ESP32, 13 peripherals are equipped with DMA. Table 1-3 lists these peripherals.

Table 13. Module with DMA

UART0 UART1 UART2

SPI1 SPI2 SPI3

I2S0 I2S1

SDIO Slave SDMMC

EMAC

BT WIFI

1.3.2.7 RTC FAST Memory

RTC FAST Memory is 8 KB of SRAM. It can be read and written by PRO_CPU only at an address range of

0x3FF8_0000 ~ 0x3FF8_1FFF on the data bus or at an address range of 0x400C_0000 ~ 0x400C_1FFF on the in-

struction bus. Unlike most other memory regions, RTC FAST memory cannot be accessed by the APP_CPU.

The two address ranges of PRO_CPU access RTC FAST Memory in the same order, so, for example, addresses

0x3FF8_0000 and 0x400C_0000 access the same word. On the APP_CPU, these address ranges do not

provide access to RTC FAST Memory or any other memory location.

1.3.2.8 RTC SLOW Memory

RTC SLOW Memory is 8 KB of SRAM which can be read and written by either CPU at an address range of

0x5000_0000 ~ 0x5000_1FFF. This address range is shared by both the data bus and the instruction bus.

1.3.3 External Memory
The ESP32 can access external SPI flash and SPI SRAM as external memory. Table 1-4 provides a list of external

memories that can be accessed by either CPU at a range of addresses on the data and instruction buses. When

a CPU accesses external memory through the Cache and MMU, the cache will map the CPU’s address to an

external physical memory address (in the external memory’s address space), according to the MMU settings. Due

to this address mapping, the ESP32 can address up to 16 MB External Flash and 8 MB External SRAM.

Table 14. External Memory Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target Comment

Data 0x3F40_0000 0x3F7F_FFFF 4 MB External Flash Read

Data 0x3F80_0000 0x3FBF_FFFF 4 MB External SRAM Read and Write

Boundary Address
Bus Type

Low Address High Address
Size Target Comment

Instruction 0x400C_2000 0x40BF_FFFF 11512 KB External Flash Read

Espressif Systems 29
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

1 System and Memory

1.3.4 Cache
As shown in Figure 1-3, each of the two CPUs in ESP32 has 32 KB of cache for accessing external storage.

PRO CPU uses bit PRO_CACHE_ENABLE in register DPORT_PRO_CACHE_CTRL_REG to enable the Cache,

while APP CPU uses bit APP_CACHE_ENABLE in register DPORT_APP_CACHE_CTRL_REG to enable the same

function.

Figure 13. Cache Block Diagram

ESP32 uses a two-way set-associative cache. When the Cache function is to be used either by PRO CPU or APP

CPU, bit CACHE_MUX_MODE[1:0] in register DPORT_CACHE_MUX_MODE_REG can be set to select POOL0 or

POOL1 in the Internal SRAM0 as the cache memory. When both PRO CPU and APP CPU use the Cache function,

POOL0 and POOL1 in the Internal SRAM0 will be used simultaneously as the cache memory, while they can also

be used by the instruction bus. This is depicted in table 1-5 below.

Table 15. Cache memory mode

CACHE_MUX_MODE POOL0 POOL1

0 PRO CPU APP CPU

1 PRO CPU/APP CPU -

2 - PRO CPU/APP CPU

3 APP CPU PRO CPU

As described in table 1-5, when bit CACHE_MUX_MODE is set to 1 or 2, PRO CPU and APP CPU cannot enable

the Cache function at the same time. When the Cache function is enabled, POOL0 or POOL1 can only be used

as the cache memory, and cannot be used by the instruction bus as well.

ESP32 Cache supports the Flush function. It is worth noting that when the Flush function is used, the data written

in the cache will be disposed rather than being rewritten into the External SRAM. To enable the Flush function, first

clear bit x_CACHE_FLUSH_ENA in register DPORT_x_CACHE_CTRL_REG, then set this bit to 1. Afterwards, the

system hardware will set bit x_CACHE_FLUSH_DONE to 1, where x can be ”PRO” or ”APP”, indicating that the

cache flush operation has been completed.

Espressif Systems 30
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

1 System and Memory

For more information about the address mapping of ESP32 Cache, please refer to Embedded Memory and External

Memory.

1.3.5 Peripherals
The ESP32 has 41 peripherals. Table 1-6 specifically describes the peripherals and their respective address ranges.

Nearly all peripheral modules can be accessed by either CPU at the same address with just a single exception;

this being the PID Controller.

Table 16. Peripheral Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size Target Comment

Data 0x3FF0_0000 0x3FF0_0FFF 4 KB DPort Register

Data 0x3FF0_1000 0x3FF0_1FFF 4 KB AES Accelerator

Data 0x3FF0_2000 0x3FF0_2FFF 4 KB RSA Accelerator

Data 0x3FF0_3000 0x3FF0_3FFF 4 KB SHA Accelerator

Data 0x3FF0_4000 0x3FF0_4FFF 4 KB Secure Boot

0x3FF0_5000 0x3FF0_FFFF 44 KB Reserved

Data 0x3FF1_0000 0x3FF1_3FFF 16 KB Cache MMU Table

0x3FF1_4000 0x3FF1_EFFF 44 KB Reserved

Data 0x3FF1_F000 0x3FF1_FFFF 4 KB PID Controller Per-CPU peripheral

0x3FF2_0000 0x3FF3_FFFF 128 KB Reserved

Data 0x3FF4_0000 0x3FF4_0FFF 4 KB UART0

0x3FF4_1000 0x3FF4_1FFF 4 KB Reserved

Data 0x3FF4_2000 0x3FF4_2FFF 4 KB SPI1

Data 0x3FF4_3000 0x3FF4_3FFF 4 KB SPI0

Data 0x3FF4_4000 0x3FF4_4FFF 4 KB GPIO

0x3FF4_5000 0x3FF4_7FFF 12 KB Reserved

Data 0x3FF4_8000 0x3FF4_8FFF 4 KB RTC

Data 0x3FF4_9000 0x3FF4_9FFF 4 KB IO MUX

0x3FF4_A000 0x3FF4_AFFF 4 KB Reserved

Data 0x3FF4_B000 0x3FF4_BFFF 4 KB SDIO Slave One of three parts

Data 0x3FF4_C000 0x3FF4_CFFF 4 KB UDMA1

0x3FF4_D000 0x3FF4_EFFF 8 KB Reserved

Data 0x3FF4_F000 0x3FF4_FFFF 4 KB I2S0

Data 0x3FF5_0000 0x3FF5_0FFF 4 KB UART1

0x3FF5_1000 0x3FF5_2FFF 8 KB Reserved

Data 0x3FF5_3000 0x3FF5_3FFF 4 KB I2C0

Data 0x3FF5_4000 0x3FF5_4FFF 4 KB UDMA0

Data 0x3FF5_5000 0x3FF5_5FFF 4 KB SDIO Slave One of three parts

Data 0x3FF5_6000 0x3FF5_6FFF 4 KB RMT

Data 0x3FF5_7000 0x3FF5_7FFF 4 KB PCNT

Data 0x3FF5_8000 0x3FF5_8FFF 4 KB SDIO Slave One of three parts

Data 0x3FF5_9000 0x3FF5_9FFF 4 KB LED PWM

Data 0x3FF5_A000 0x3FF5_AFFF 4 KB eFuse Controller

Data 0x3FF5_B000 0x3FF5_BFFF 4 KB Flash Encryption

Espressif Systems 31
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

1 System and Memory

Boundary Address
Bus Type

Low Address High Address
Size Target Comment

0x3FF5_C000 0x3FF5_DFFF 8 KB Reserved

Data 0x3FF5_E000 0x3FF5_EFFF 4 KB MCPWM0

Data 0x3FF5_F000 0x3FF5_FFFF 4 KB TIMG0

Data 0x3FF6_0000 0x3FF6_0FFF 4 KB TIMG1

0x3FF6_1000 0x3FF6_3FFF 12 KB Reserved

Data 0x3FF6_4000 0x3FF6_4FFF 4 KB SPI2

Data 0x3FF6_5000 0x3FF6_5FFF 4 KB SPI3

Data 0x3FF6_6000 0x3FF6_6FFF 4 KB SYSCON

Data 0x3FF6_7000 0x3FF6_7FFF 4 KB I2C1

Data 0x3FF6_8000 0x3FF6_8FFF 4 KB SDMMC

Data 0x3FF6_9000 0x3FF6_AFFF 8 KB EMAC

Data 0x3FF6_B000 0x3FF6_BFFF 4KB TWAI

Data 0x3FF6_C000 0x3FF6_CFFF 4 KB MCPWM1

Data 0x3FF6_D000 0x3FF6_DFFF 4 KB I2S1

Data 0x3FF6_E000 0x3FF6_EFFF 4 KB UART2

Data 0x3FF6_F000 0x3FF6_FFFF 4 KB Reserved

Data 0x3FF7_0000 0x3FF7_0FFF 4 KB Reserved

0x3FF7_1000 0x3FF7_4FFF 16 KB Reserved

Data 0x3FF7_5000 0x3FF7_5FFF 4 KB RNG

0x3FF7_6000 0x3FF7_FFFF 40 KB Reserved

Notice:

• Peripherals accessed by the CPU via 0x3FF40000 ~ 0x3FF7FFFF address space (DPORT address) can also

be accessed via 0x60000000 ~ 0x6003FFFF (AHB address). (0x3FF40000 + n) address and (0x60000000

+ n) address access the same content, where n = 0 ~ 0x3FFFF.

• The CPU can access peripherals via DPORT address more efficiently than via AHB address. However,

DPORT address is characterized by speculative reads, which means it cannot guarantee that each read is

valid. In addition, DPORT address will upset the order of r/w operations on the bus to improve performance,

which may cause programs that have strict requirements on the r/w order to crash. On the other hand, using

AHB address to read FIFO registers will cause unpredictable errors. To address above issues please strictly

follow the instructions documented in ESP32 ECO and Workarounds for Bugs, specifically sections 3.3, 3.10,

3.16, and 3.17.

1.3.5.1 Asymmetric PID Controller Peripheral

There are two PID Controllers in the system. They serve the PRO_CPU and the APP_CPU, respectively. The

PRO_CPU and the APP_CPU can only access their own PID Controller and not that of their counterpart.

Each CPU uses the same memory range 0x3FF1_F000 ~ 3FF1_FFFF to access its own PID Controller.

1.3.5.2 NonContiguous Peripheral Memory Ranges

The SDIO Slave peripheral consists of three parts and the two CPUs use non-contiguous addresses to ac-

cess these. The three parts are accessed at the address ranges 0x3FF4_B000 ~ 3FF4_BFFF, 0x3FF5_5000 ~

Espressif Systems 32
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/sites/default/files/documentation/eco_and_workarounds_for_bugs_in_esp32_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

1 System and Memory

3FF5_5FFF and 0x3FF5_8000 ~ 3FF5_8FFF of each CPU’s data bus. Similarly to other peripherals, access to this

peripheral is identical for both CPUs.

1.3.5.3 Memory Speed

The ROM as well as the SRAM are both clocked from CPU_CLK and can be accessed by the CPU in a single cycle.

The RTC FAST memory is clocked from the APB_CLOCK and the RTC SLOW memory from the FAST_CLOCK,

so access to these memories may be slower. DMA uses the APB_CLK to access memory.

Internally, the SRAM is organized in 32K-sized banks. Each CPU and DMA channel can simultaneously access

the SRAM at full speed, provided they access addresses in different memory banks.

Espressif Systems 33
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

2 Interrupt Matrix (INTERRUPT)

2 Interrupt Matrix (INTERRUPT)

2.1 Overview
The Interrupt Matrix embedded in the ESP32 independently allocates peripheral interrupt sources to the two CPUs’

peripheral interrupts. This configuration is made to be highly flexible in order to meet many different needs.

2.2 Features
• Accepts 71 peripheral interrupt sources as input.

• Generates 26 peripheral interrupt sources per CPU as output (52 total).

• CPU NMI Interrupt Mask.

• Queries current interrupt status of peripheral interrupt sources.

The structure of the Interrupt Matrix is shown in Figure 2-1.

Figure 21. Interrupt Matrix Structure

2.3 Functional Description
2.3.1 Peripheral Interrupt Source
ESP32 has 71 peripheral interrupt sources in total. All peripheral interrupt sources are listed in table 2-1. 67 of 71

ESP32 peripheral interrupt sources can be allocated to either CPU.

The four remaining peripheral interrupt sources are CPU-specific, two per CPU. GPIO_INTERRUPT_PRO and

GPIO_INTERRUPT_PRO_NMI can only be allocated to PRO_CPU. GPIO_INTERRUPT_APP and GPIO_INTERRUPT

_APP_NMI can only be allocated to APP_CPU. As a result, PRO_CPU and APP_CPU each have 69 peripheral in-

terrupt sources.

Espressif Systems 34
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

2
InterruptM

atrix
(IN

TE
R

R
U

P
T)

Table 21. PRO_CPU, APP_CPU Interrupt Configuration

PRO_CPU APP_CPU

Peripheral Interrupt Source

Status Register Status Register
Peripheral Interrupt

Configuration Register
Bit Name

No. Name No.
Name Bit

Peripheral Interrupt

Configuration Register

DPORT_PRO_MAC_INTR_MAP_REG 0

DPORT_PRO_INTR_STATUS_REG_0_REG

0 MAC_INTR 0

DPORT_APP_INTR_STATUS_REG_0_REG

0 DPORT_APP_MAC_INTR_MAP_REG

DPORT_PRO_MAC_NMI_MAP_REG 1 1 MAC_NMI 1 1 DPORT_APP_MAC_NMI_MAP_REG

DPORT_PRO_BB_INT_MAP_REG 2 2 BB_INT 2 2 DPORT_APP_BB_INT_MAP_REG

DPORT_PRO_BT_MAC_INT_MAP_REG 3 3 BT_MAC_INT 3 3 DPORT_APP_BT_MAC_INT_MAP_REG

DPORT_PRO_BT_BB_INT_MAP_REG 4 4 BT_BB_INT 4 4 DPORT_APP_BT_BB_INT_MAP_REG

DPORT_PRO_BT_BB_NMI_MAP_REG 5 5 BT_BB_NMI 5 5 DPORT_APP_BT_BB_NMI_MAP_REG

DPORT_PRO_RWBT_IRQ_MAP_REG 6 6 RWBT_IRQ 6 6 DPORT_APP_RWBT_IRQ_MAP_REG

DPORT_PRO_RWBLE_IRQ_MAP_REG 7 7 RWBLE_IRQ 7 7 DPORT_APP_RWBLE_IRQ_MAP_REG

DPORT_PRO_RWBT_NMI_MAP_REG 8 8 RWBT_NMI 8 8 DPORT_APP_RWBT_NMI_MAP_REG

DPORT_PRO_RWBLE_NMI_MAP_REG 9 9 RWBLE_NMI 9 9 DPORT_APP_RWBLE_NMI_MAP_REG

DPORT_PRO_SLC0_INTR_MAP_REG 10 10 SLC0_INTR 10 10 DPORT_APP_SLC0_INTR_MAP_REG

DPORT_PRO_SLC1_INTR_MAP_REG 11 11 SLC1_INTR 11 11 DPORT_APP_SLC1_INTR_MAP_REG

DPORT_PRO_UHCI0_INTR_MAP_REG 12 12 UHCI0_INTR 12 12 DPORT_APP_UHCI0_INTR_MAP_REG

DPORT_PRO_UHCI1_INTR_MAP_REG 13 13 UHCI1_INTR 13 13 DPORT_APP_UHCI1_INTR_MAP_REG

DPORT_PRO_TG_T0_LEVEL_INT_MAP_REG 14 14 TG_T0_LEVEL_INT 14 14 DPORT_APP_TG_T0_LEVEL_INT_MAP_REG

DPORT_PRO_TG_T1_LEVEL_INT_MAP_REG 15 15 TG_T1_LEVEL_INT 15 15 DPORT_APP_TG_T1_LEVEL_INT_MAP_REG

DPORT_PRO_TG_WDT_LEVEL_INT_MAP_REG 16 16 TG_WDT_LEVEL_INT 16 16 DPORT_APP_TG_WDT_LEVEL_INT_MAP_REG

DPORT_PRO_TG_LACT_LEVEL_INT_MAP_REG 17 17 TG_LACT_LEVEL_INT 17 17 DPORT_APP_TG_LACT_LEVEL_INT_MAP_REG

DPORT_PRO_TG1_T0_LEVEL_INT_MAP_REG 18 18 TG1_T0_LEVEL_INT 18 18 DPORT_APP_TG1_T0_LEVEL_INT_MAP_REG

DPORT_PRO_TG1_T1_LEVEL_INT_MAP_REG 19 19 TG1_T1_LEVEL_INT 19 19 DPORT_APP_TG1_T1_LEVEL_INT_MAP_REG

DPORT_PRO_TG1_WDT_LEVEL_INT_MAP_REG 20 20 TG1_WDT_LEVEL_INT 20 20 DPORT_APP_TG1_WDT_LEVEL_INT_MAP_REG

DPORT_PRO_TG1_LACT_LEVEL_INT_MAP_REG 21 21 TG1_LACT_LEVEL_INT 21 21 DPORT_APP_TG1_LACT_LEVEL_INT_MAP_REG

DPORT_PRO_GPIO_INTERRUPT_MAP_REG 22 22 GPIO_INTERRUPT_PRO GPIO_INTERRUPT_APP 22 22 DPORT_APP_GPIO_INTERRUPT_MAP_REG

DPORT_PRO_GPIO_INTERRUPT_NMI_MAP_REG 23 23 GPIO_INTERRUPT_PRO_NMI GPIO_INTERRUPT_APP_NMI 23 23 DPORT_APP_GPIO_INTERRUPT_NMI_MAP_REG

DPORT_PRO_CPU_INTR_FROM_CPU_0_MAP_REG 24 24 CPU_INTR_FROM_CPU_0 24 24 DPORT_APP_CPU_INTR_FROM_CPU_0_MAP_REG

DPORT_PRO_CPU_INTR_FROM_CPU_1_MAP_REG 25 25 CPU_INTR_FROM_CPU_1 25 25 DPORT_APP_CPU_INTR_FROM_CPU_1_MAP_REG

DPORT_PRO_CPU_INTR_FROM_CPU_2_MAP_REG 26 26 CPU_INTR_FROM_CPU_2 26 26 DPORT_APP_CPU_INTR_FROM_CPU_2_MAP_REG

DPORT_PRO_CPU_INTR_FROM_CPU_3_MAP_REG 27 27 CPU_INTR_FROM_CPU_3 27 27 DPORT_APP_CPU_INTR_FROM_CPU_3_MAP_REG

DPORT_PRO_SPI_INTR_0_MAP_REG 28 28 SPI_INTR_0 28 28 DPORT_APP_SPI_INTR_0_MAP_REG

DPORT_PRO_SPI_INTR_1_MAP_REG 29 29 SPI_INTR_1 29 29 DPORT_APP_SPI_INTR_1_MAP_REG

DPORT_PRO_SPI_INTR_2_MAP_REG 30 30 SPI_INTR_2 30 30 DPORT_APP_SPI_INTR_2_MAP_REG

DPORT_PRO_SPI_INTR_3_MAP_REG 31 31 SPI_INTR_3 31 31 DPORT_APP_SPI_INTR_3_MAP_REG

DPORT_PRO_I2S0_INT_MAP_REG 0

DPORT_PRO_INTR_STATUS_REG_1_REG

32 I2S0_INT 32

DPORT_APP_INTR_STATUS_REG_1_REG

0 DPORT_APP_I2S0_INT_MAP_REG

DPORT_PRO_I2S1_INT_MAP_REG 1 33 I2S1_INT 33 1 DPORT_APP_I2S1_INT_MAP_REG

DPORT_PRO_UART_INTR_MAP_REG 2 34 UART_INTR 34 2 DPORT_APP_UART_INTR_MAP_REG

DPORT_PRO_UART1_INTR_MAP_REG 3 35 UART1_INTR 35 3 DPORT_APP_UART1_INTR_MAP_REG

DPORT_PRO_UART2_INTR_MAP_REG 4 36 UART2_INTR 36 4 DPORT_APP_UART2_INTR_MAP_REG

DPORT_PRO_SDIO_HOST_INTERRUPT_MAP_REG 5 37 SDIO_HOST_INTERRUPT 37 5 DPORT_APP_SDIO_HOST_INTERRUPT_MAP_REG

DPORT_PRO_EMAC_INT_MAP_REG 6 38 EMAC_INT 38 6 DPORT_APP_EMAC_INT_MAP_REG

DPORT_PRO_PWM0_INTR_MAP_REG 7 39 PWM0_INTR 39 7 DPORT_APP_PWM0_INTR_MAP_REG

DPORT_PRO_PWM1_INTR_MAP_REG 8 40 PWM1_INTR 40 8 DPORT_APP_PWM1_INTR_MAP_REG

Reserved 9 41 Reserved 41 9 Reserved

Reserved 10 42 Reserved 42 10 Reserved

DPORT_PRO_LEDC_INT_MAP_REG 11 43 LEDC_INT 43 11 DPORT_APP_LEDC_INT_MAP_REG

DPORT_PRO_EFUSE_INT_MAP_REG 12 44 EFUSE_INT 44 12 DPORT_APP_EFUSE_INT_MAP_REG

DPORT_PRO_TWAI_INT_MAP_REG 13 45 TWAI_INT 45 13 DPORT_APP_TWAI_INT_MAP_REG

DPORT_PRO_RTC_CORE_INTR_MAP_REG 14 46 RTC_CORE_INTR 46 14 DPORT_APP_RTC_CORE_INTR_MAP_REG

DPORT_PRO_RMT_INTR_MAP_REG 15 47 RMT_INTR 47 15 DPORT_APP_RMT_INTR_MAP_REG

DPORT_PRO_PCNT_INTR_MAP_REG 16 48 PCNT_INTR 48 16 DPORT_APP_PCNT_INTR_MAP_REG

DPORT_PRO_I2C_EXT0_INTR_MAP_REG 17 49 I2C_EXT0_INTR 49 17 DPORT_APP_I2C_EXT0_INTR_MAP_REG

DPORT_PRO_I2C_EXT1_INTR_MAP_REG 18 50 I2C_EXT1_INTR 50 18 DPORT_APP_I2C_EXT1_INTR_MAP_REG

DPORT_PRO_RSA_INTR_MAP_REG 19 51 RSA_INTR 51 19 DPORT_APP_RSA_INTR_MAP_REG

DPORT_PRO_SPI1_DMA_INT_MAP_REG 20 52 SPI1_DMA_INT 52 20 DPORT_APP_SPI1_DMA_INT_MAP_REG

E
spressifS

ystem
s

35
S

ubm
itD

ocum
entation

Feedback
E

S
P

32
TR

M
(Version

4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

2
InterruptM

atrix
(IN

TE
R

R
U

P
T)

PRO_CPU APP_CPU

Peripheral Interrupt Source

Status Register Status Register
Peripheral Interrupt

Configuration Register
Bit Name

No. Name No.
Name Bit

Peripheral Interrupt

Configuration Register

DPORT_PRO_SPI2_DMA_INT_MAP_REG 21

DPORT_PRO_INTR_STATUS_REG_1_REG

53 SPI2_DMA_INT 53

DPORT_APP_INTR_STATUS_REG_1_REG

21 DPORT_APP_SPI2_DMA_INT_MAP_REG

DPORT_PRO_SPI3_DMA_INT_MAP_REG 22 54 SPI3_DMA_INT 54 22 DPORT_APP_SPI3_DMA_INT_MAP_REG

DPORT_PRO_WDG_INT_MAP_REG 23 55 WDG_INT 55 23 DPORT_APP_WDG_INT_MAP_REG

DPORT_PRO_TIMER_INT1_MAP_REG 24 56 TIMER_INT1 56 24 DPORT_APP_TIMER_INT1_MAP_REG

DPORT_PRO_TIMER_INT2_MAP_REG 25 57 TIMER_INT2 57 25 DPORT_APP_TIMER_INT2_MAP_REG

DPORT_PRO_TG_T0_EDGE_INT_MAP_REG 26 58 TG_T0_EDGE_INT 58 26 DPORT_APP_TG_T0_EDGE_INT_MAP_REG

DPORT_PRO_TG_T1_EDGE_INT_MAP_REG 27 59 TG_T1_EDGE_INT 59 27 DPORT_APP_TG_T1_EDGE_INT_MAP_REG

DPORT_PRO_TG_WDT_EDGE_INT_MAP_REG 28 60 TG_WDT_EDGE_INT 60 28 DPORT_APP_TG_WDT_EDGE_INT_MAP_REG

DPORT_PRO_TG_LACT_EDGE_INT_MAP_REG 29 61 TG_LACT_EDGE_INT 61 29 DPORT_APP_TG_LACT_EDGE_INT_MAP_REG

DPORT_PRO_TG1_T0_EDGE_INT_MAP_REG 30 62 TG1_T0_EDGE_INT 62 30 DPORT_APP_TG1_T0_EDGE_INT_MAP_REG

DPORT_PRO_TG1_T1_EDGE_INT_MAP_REG 31 63 TG1_T1_EDGE_INT 63 31 DPORT_APP_TG1_T1_EDGE_INT_MAP_REG

DPORT_PRO_TG1_WDT_EDGE_INT_MAP_REG 0

DPORT_PRO_INTR_STATUS_REG_2_REG

64 TG1_WDT_EDGE_INT 64

DPORT_APP_INTR_STATUS_REG_2_REG

0 DPORT_APP_TG1_WDT_EDGE_INT_MAP_REG

DPORT_PRO_TG1_LACT_EDGE_INT_MAP_REG 1 65 TG1_LACT_EDGE_INT 65 1 DPORT_APP_TG1_LACT_EDGE_INT_MAP_REG

DPORT_PRO_MMU_IA_INT_MAP_REG 2 66 MMU_IA_INT 66 2 DPORT_APP_MMU_IA_INT_MAP_REG

DPORT_PRO_MPU_IA_INT_MAP_REG 3 67 MPU_IA_INT 67 3 DPORT_APP_MPU_IA_INT_MAP_REG

DPORT_PRO_CACHE_IA_INT_MAP_REG 4 68 CACHE_IA_INT 68 4 DPORT_APP_CACHE_IA_INT_MAP_REG

E
spressifS

ystem
s

36
S

ubm
itD

ocum
entation

Feedback
E

S
P

32
TR

M
(Version

4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

2 Interrupt Matrix (INTERRUPT)

2.3.2 CPU Interrupt
Both of the two CPUs (PRO and APP) have 32 interrupts each, of which 26 are peripheral interrupts. All interrupts

in a CPU are listed in Table 2-2.

Table 22. CPU Interrupts

No. Category Type Priority Level

0 Peripheral Level-Triggered 1

1 Peripheral Level-Triggered 1

2 Peripheral Level-Triggered 1

3 Peripheral Level-Triggered 1

4 Peripheral Level-Triggered 1

5 Peripheral Level-Triggered 1

6 Internal Timer.0 1

7 Internal Software 1

8 Peripheral Level-Triggered 1

9 Peripheral Level-Triggered 1

10 Peripheral Edge-Triggered 1

11 Internal Profiling 3

12 Peripheral Level-Triggered 1

13 Peripheral Level-Triggered 1

14 Peripheral NMI NMI

15 Internal Timer.1 3

16 Internal Timer.2 5

17 Peripheral Level-Triggered 1

18 Peripheral Level-Triggered 1

19 Peripheral Level-Triggered 2

20 Peripheral Level-Triggered 2

21 Peripheral Level-Triggered 2

22 Peripheral Edge-Triggered 3

23 Peripheral Level-Triggered 3

24 Peripheral Level-Triggered 4

25 Peripheral Level-Triggered 4

26 Peripheral Level-Triggered 5

27 Peripheral Level-Triggered 3

28 Peripheral Edge-Triggered 4

29 Internal Software 3

30 Peripheral Edge-Triggered 4

31 Peripheral Level-Triggered 5

2.3.3 Allocate Peripheral Interrupt Sources to Peripheral Interrupt on CPU
In this section:

• Source_X stands for any particular peripheral interrupt source.

• PRO_X_MAP_REG (or APP_X_MAP_REG) stands for any particular peripheral interrupt configuration register

Espressif Systems 37
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

2 Interrupt Matrix (INTERRUPT)

of the PRO_CPU (or APP_CPU). The peripheral interrupt configuration register corresponds to the peripheral

interrupt source Source_X. In Table 2-1 the registers listed under “PRO_CPU (APP_CPU) - Peripheral Interrupt

Configuration Register” correspond to the peripheral interrupt sources listed in “Peripheral Interrupt Source

- Name”.

• Interrupt_P stands for CPU peripheral interrupt, numbered as Num_P. Num_P can take the ranges 0 ~ 5, 8

~ 10, 12 ~ 14, 17 ~ 28, 30 ~ 31.

• Interrupt_I stands for the CPU internal interrupt numbered as Num_I. Num_I can take values 6, 7, 11, 15,

16, 29.

Using this terminology, the possible operations of the Interrupt Matrix controller can be described as follows:

• Allocate peripheral interrupt source Source_X to CPU (PRO_CPU or APP_CPU)

Set PRO_X_MAP_REG�or APP_X_MAP_REG�to Num_P. Num_P can be any CPU peripheral interrupt num-

ber. CPU interrupts can be shared between multiple peripherals (see below).

• Disable peripheral interrupt source Source_X for CPU (PRO_CPU or APP_CPU)

Set PRO_X_MAP_REG�or APP_X _MAP_REG�for peripheral interrupt source to any Num_I. The specific

choice of internal interrupt number does not change behaviour, as none of the interrupt numbered as Num_I

is connected to either CPU.

• Allocate multiple peripheral sources Source_Xn ORed to PRO_CPU (APP_CPU) peripheral interrupt

Set multiple PRO_Xn_MAP_REG (APP_Xn_MAP_REG) to the same Num_P. Any of these peripheral interrupts

will trigger CPU Interrupt_P.

2.3.4 CPU NMI Interrupt Mask
The Interrupt Matrix temporarily masks all peripheral interrupt sources allocated to PRO_CPU’s (or APP_CPU’s)

NMI interrupt, if it receives the signal PRO_CPU NMI Interrupt Mask (or APP_CPU NMI Interrupt Mask) from the

peripheral PID Controller, respectively.

2.3.5 Query Current Interrupt Status of Peripheral Interrupt Source
The current interrupt status of a peripheral interrupt source can be read via the bit value in PRO_INTR_STATUS_REG_n

(APP_INTR_STATUS_REG_n), as shown in the mapping in Table 2-1.

2.4 Registers
The interrupt matrix registers are part of the DPORT registers and are described in Section 5.4 in Chapter 5 DPort

Registers.

Espressif Systems 38
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

3 Reset and Clock

3 Reset and Clock

3.1 System Reset
3.1.1 Introduction
The ESP32 has three reset levels: CPU reset, Core reset, and System reset. None of these reset levels clear the

RAM. Figure 3-1 shows the subsystems included in each reset level.

Figure 31. System Reset

• CPU reset: Only resets the registers of one or both of the CPU cores.

• Core reset: Resets all the digital registers, including CPU cores, external GPIO and digital GPIO. The RTC is

not reset.

• System reset: Resets all the registers on the chip, including those of the RTC.

3.1.2 Reset Source
While most of the time the APP_CPU and PRO_CPU will be reset simultaneously, some reset sources are able to

reset only one of the two cores. The reset reason for each core can be looked up individually: the PRO_CPU reset

reason will be stored in RTC_CNTL_RESET_CAUSE_PROCPU, the reset reason for the APP_CPU in

RTC_CNTL_RESET_CAUSE_APPCPU. Table 3-1 shows the possible reset reason values that can be read from

these registers.

Table 31. PRO_CPU and APP_CPU Reset Reason Values

PRO APP Source Reset Type Note

0x01 0x01 Chip Power On Reset System Reset -

0x10 0x10 RWDT System Reset System Reset See WDT Chapter.

0x0F 0x0F Brown Out Reset System Reset See Power Management Chapter.

0x03 0x03 Software System Reset Core Reset Configure RTC_CNTL_SW_SYS_RST register.

0x05 0x05 Deep Sleep Reset Core Reset See Power Management Chapter.

0x07 0x07 MWDT0 Global Reset Core Reset See WDT Chapter.

Espressif Systems 39
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

3 Reset and Clock

PRO APP APP Source Reset Type Note

0x08 0x08 MWDT1 Global Reset Core Reset See WDT Chapter.

0x09 0x09 RWDT Core Reset Core Reset See WDT Chapter.

0x0B - MWDT0 CPU Reset CPU Reset See WDT Chapter.

0x0C - Software CPU Reset CPU Reset Configure RTC_CNTL_SW_APPCPU_RST register.

- 0x0B MWDT1 CPU Reset CPU Reset See WDT Chapter.

- 0x0C Software CPU Reset CPU Reset Configure RTC_CNTL_SW_APPCPU_RST register.

0x0D 0x0D RWDT CPU Reset CPU Reset See WDT Chapter.

- 0xE PRO CPU Reset CPU Reset

Indicates that the PRO CPU has independently

reset the APP CPU by configuring the

DPORT_APPCPU_RESETTING register.

3.2 System Clock
3.2.1 Introduction
The ESP32 integrates multiple clock sources for the CPU cores, the peripherals and the RTC. These clocks can

be configured to meet different requirements. Figure 3-2 shows the system clock structure.

Figure 32. System Clock

Espressif Systems 40
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

3 Reset and Clock

3.2.2 Clock Source
The ESP32 can use an external crystal oscillator, an internal PLL or an oscillating circuit as a clock source. Specif-

ically, the clock sources available are:

• High Speed Clocks

– PLL_CLK is an internal PLL clock with a frequency of 320 MHz or 480 MHz.

– XTL_CLK is a clock signal generated using an external crystal with a frequency range of 2 ~ 40 MHz.

• Low Power Clocks

– XTL32K_CLK is a clock generated using an external crystal with a frequency of 32 KHz.

– RC_FAST_CLK is an internal clock with a default frequency of 8 MHz. This frequency is adjustable.

– RC_FAST_DIV_CLK is divided from RC_FAST_CLK. Its frequency is (RC_FAST_CLK / 256). With the

default RC_FAST_CLK frequency of 8 MHz, this clock runs at 31.250 KHz.

– RC_SLOW_CLK is an internal low power clock with a default frequency of 150 KHz. This frequency is

adjustable.

• Audio Clock

– APLL_CLK is an internal Audio PLL clock with a frequency range of 16 ~ 128 MHz.

3.2.3 CPU Clock
As Figure 3-2 shows, CPU_CLK is the master clock for both CPU cores. CPU_CLK clock can be as high as 240

MHz when the CPU is in high performance mode. Alternatively, the CPU can run at lower frequencies to reduce

power consumption.

The CPU_CLK clock source is determined by the RTC_CNTL_SOC_CLK_SEL register. PLL_CLK, APLL_CLK,

RC_FAST_CLK, and XTL_CLK can be set as the CPU_CLK source; see Table 3-2 and 3-3.

Table 32. CPU_CLK Source

RTC_CNTL_SOC_CLK_SEL Value Clock Source

0 XTL_CLK

1 PLL_CLK

2 RC_FAST_CLK

3 APLL_CLK

Table 33. CPU_CLK Derivation

Clock Source *SEL_0 *SEL_1 CPU Clock Frequency

XTL_CLK 0 - CPU_CLK = XTL_CLK / (APB_CTRL_PRE_DIV_CNT+1)

PLL_CLK (320 MHz) 1 0
CPU_CLK = PLL_CLK / 4

CPU_CLK frequency is 80 MHz

PLL_CLK (320 MHz) 1 1
CPU_CLK = PLL_CLK / 2

CPU_CLK frequency is 160 MHz

PLL_CLK (480 MHz) 1 2
CPU_CLK = PLL_CLK / 2

CPU_CLK frequency is 240 MHz

RC_FAST_CLK 2 - CPU_CLK = RC_FAST_CLK / (APB_CTRL_PRE_DIV_CNT+1)

APLL_CLK 3 0 CPU_CLK = APLL_CLK / 4

Espressif Systems 41
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

3 Reset and Clock

APLL_CLK 3 1 CPU_CLK = APLL_CLK / 2

*SEL_0: The vaule of register RTC_CNTL_SOC_CLK_SEL

*SEL_1: The vaule of register CPU_CPUPERIOD_SEL

3.2.4 Peripheral Clock
Peripheral clocks include APB_CLK, REF_TICK, LEDC_SCLK, APLL_CLK, and PLL_F160M_CLK.

Table 3-4 shows which clocks can be used by which peripherals.

Table 34. Peripheral Clock Usage

Peripherals APB_CLK REF_TICK LEDC_SCLK APLL_CLK PLL_F160M_CLK

EMAC Y N N Y N

TIMG Y N N N N

I2S Y N N Y Y

UART Y Y N N N

RMT Y Y N N N

LED PWM Y Y Y N N

PWM Y N N N Y

I2C Y N N N N

SPI Y N N N N

PCNT Y N N N N

eFuse Controller Y N N N N

SDIO Slave Y N N N N

SDMMC Y N N N N

3.2.4.1 APB_CLK

The APB_CLK frequency is determined by CPU_CLK source, as detailed in Table 3-5.

Table 35. APB_CLK

CPU_CLK Source APB_CLK Frequency

PLL_CLK 80 MHz

APLL_CLK CPU_CLK / 2

XTL_CLK CPU_CLK

RC_FAST_CLK CPU_CLK

3.2.4.2 REF_TICK

REF_TICK is derived from APB_CLK. The APB_CLK frequency is determined by CPU_CLK source. The REF_TICK

frequency should be fixed. When CPU_CLK source changes, users need to make sure the REF_TICK frequency

remains unchanged by setting a correct divider value.

Clock divider registers are shown in Table 3-6.

Espressif Systems 42
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

3 Reset and Clock

Table 36. REF_TICK

CPU_CLK Source APB_CLK Frequency REF_TICK Frequency

PLL_CLK 80 MHz APB_CLK / (APB_CTRL_PLL_TICK_NUM+1)

APLL_CLK CPU_CLK / 2 APB_CLK / (APB_CTRL_APLL_TICK_NUM+1)

XTL_CLK CPU_CLK APB_CLK / (APB_CTRL_XTAL_TICK_NUM+1)

FOSC_CLK CPU_CLK APB_CLK / (APB_CTRL_CK8M_TICK_NUM+1)

For example, when CPU_CLK source is PLL_CLK and users need to keep the REF_TICK frequency at 1 MHz,

then they should set APB_CTRL_PLL_TICK_NUM to 79 (0x4F) so that the REF_TICK frequency = 80 MHz / (79+1)

= 1 MHz.

3.2.4.3 LEDC_SCLK Source

The LEDC_SCLK clock source is selected by the LEDC_APB_CLK_SEL register, as shown in Table 3-7.

Table 37. LEDC_SCLK Derivation

LEDC_APB_CLK_SEL Value LEDC_SCLK Source

0 RC_FAST_CLK

1 APB_CLK

3.2.4.4 APLL_SCLK Source

The APLL_CLK is sourced from PLL_CLK, with its output frequency configured using the APLL configuration

registers.

3.2.4.5 PLL_F160M_CLK Source

PLL_F160M_CLK is divided from PLL_CLK by automatically adjusting the clock division and its frequency is always

160 MHz.

3.2.4.6 Clock Source Considerations

Most peripherals will operate using the APB_CLK frequency as a reference. When this frequency changes, the

peripherals will need to update their clock configuration to operate at the same frequency after the change. Pe-

ripherals accessing REF_TICK can continue operating normally when switching clock sources, without changing

clock source. Please see Table 3-4 for details.

The LED PWM module can use RC_FAST_CLK as a clock source when APB_CLK is disabled. In other words,

when the system is in low-power consumption mode (see Power Management Chapter), normal peripherals will

be halted (APB_CLK is turned off), but the LED PWM can work normally via RC_FAST_CLK.

3.2.5 WiFi BT Clock
Wi-Fi and BT can only operate if APB_CLK uses PLL_CLK as its clock source. Suspending PLL_CLK requires

Wi-Fi and BT to both have entered low-power consumption mode first.

For LOW_POWER_CLK, one of RC_SLOW_CLK, RTC_SLOW_CLK, RC_FAST_CLK or XTL_CLK can be selected

as the low-power consumption mode clock source for Wi-Fi and BT.

Espressif Systems 43
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

3 Reset and Clock

3.2.6 RTC Clock
The clock sources of RTC_SLOW_CLK and RTC_FAST_CLK are low-frequency clocks. The RTC module can

operate when most other clocks are stopped.

RTC_SLOW_CLK is used to clock the Power Management module. It can be sourced from RC_SLOW_CLK,

XTL32K_CLK or RC_FAST_DIV_CLK.

RTC_FAST_CLK is used to clock the On-chip Sensor module. It can be sourced from a divided XTL_CLK or from

RC_FAST_CLK.

3.2.7 Audio PLL
The operation of audio and other time-critical data-transfer applications requires highly-configurable, low-jitter, and

accurate clock sources. The clock sources derived from system clocks that serve digital peripherals may carry

jitter and, therefore, they do not support a high-precision clock frequency setting.

Providing an integrated precision clock source can minimize system cost. To this end, ESP32 integrates an audio

PLL. The Audio PLL formula is as follows:

fout =
fxtal(sdm2 + sdm1

28 + sdm0
216 + 4)

2(odiv + 2)

The parameters of this formula are defined below:

• fxtal: the frequency of the crystal oscillator, usually 40 MHz;

• sdm0: the value is 0 ~ 255;

• sdm1: the value is 0 ~ 255;

• sdm2: the value is 0 ~ 63;

• odiv: the value is 0 ~ 31;

The operating frequency range of the numerator is 350 MHz ~ 500 MHz:

350MHz < fxtal(sdm2 +
sdm1

28 +
sdm0
216 + 4) < 500MHz

Please note that sdm1 and sdm0 are not available on revision0 of ESP32. Please consult the silicon revision in

ECO and Workarounds for Bugs in ESP32 for further details.

Audio PLL can be manually enabled or disabled via registers RTC_CNTL_PLLA_FORCE_PU and RTC_CNTL_PLLA

_FORCE_PD, respectively. Disabling it takes priority over enabling it. When RTC_CNTL_PLLA_FORCE_PU and

RTC_CNTL_PLLA_FORCE_PD are 0, PLL will follow the state of the system, i.e., when the system enters sleep

mode, PLL will be disabled automatically; when the system wakes up, PLL will be enabled automatically.

3.3 Register Summary
The addresses in this section are relative to the SYSCON base address provided in Table 1-6 Peripheral Address

Mapping in Chapter 1 System and Memory.

Name Description Address Access

Configuration register

APB_CTRL_SYSCLK_CONF_REG Configures system clock frequency 0x0000 R/W

APB_CTRL_XTAL_TICK_CONF_REG Configures the divider value of REF_TICK 0x0004 R/W

Espressif Systems 44
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

http://espressif.com/sites/default/files/documentation/eco_and_workarounds_for_bugs_in_esp32_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

3 Reset and Clock

Name Description Address Access

APB_CTRL_PLL_TICK_CONF_REG Configures the divider value of REF_TICK 0x0008 R/W

APB_CTRL_CK8M_TICK_CONF_REG Configures the divider value of REF_TICK 0x000C R/W

APB_CTRL_APLL_TICK_CONF_REG Configures the divider value of REF_TICK 0x003C R/W

Chip revision register

APB_CTRL_DATE_REG Chip revision register 0x007C R/W

3.4 Registers
The addresses in this section are relative to the SYSCON base address provided in Table 1-6 Peripheral Address

Mapping in Chapter 1 System and Memory.

Register 3.1. APB_CTRL_SYSCLK_CONF_REG (0x0000)

(re
se

rve
d)

0 0

31 10

APB_C
TR

L_
PRE_D

IV_C
NT

0x0

9 0

Reset

APB_CTRL_PRE_DIV_CNT Configures the divider value of CPU_CLK when the source of CPU_CLK

is XTL_CLK or RC_FAST_CLK. The value range is 0x0 ~ 0x3FF. CPU_CLK = XTL_CLK (or

RC_FAST_CLK) / (the value of this field +1). (R/W)

Register 3.2. APB_CTRL_XTAL_TICK_CONF_REG (0x0004)

(re
se

rve
d)

0 0

31 8

APB_C
TR

L_
XT

AL_
TIC

K_N
UM

39

7 0

Reset

APB_CTRL_XTAL_TICK_NUM Configures the divider value of REF_TICK when the source of

APB_CLK is XTL_CLK. The value range is 0x0 ~ 0xFF. REF_TICK = APB_CLK /(the value of this

field + 1). (R/W)

Espressif Systems 45
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

3 Reset and Clock

Register 3.3. APB_CTRL_PLL_TICK_CONF_REG (0x0008)

(re
se

rve
d)

0 0

31 8

APB_C
TR

L_
PLL

_T
IC

K_N
UM

79

7 0

Reset

APB_CTRL_PLL_TICK_NUM Configures the divider value of REF_TICK when the source of

APB_CLK is PLL_CLK. The value range is 0x0 ~ 0xFF. REF_TICK = APB_CLK /(the value of this

field + 1). (R/W)

Register 3.4. APB_CTRL_CK8M_TICK_CONF_REG (0x000C)

(re
se

rve
d)

0 0

31 8

APB_C
TR

L_
CK8M

_T
IC

K_N
UM

11

7 0

Reset

APB_CTRL_CK8M_TICK_NUM Configures the divider value of REF_TICK when the source of

APB_CLK is FOSC_CLK. The value range is 0x0 ~ 0xFF. REF_TICK = APB_CLK /(the value of

this field + 1). (R/W)

Register 3.5. APB_CTRL_APLL_TICK_CONF_REG (0x003C)

(re
se

rve
d)

0 0

31 8

APB_C
TR

L_
APLL

_T
IC

K_N
UM

99

7 0

Reset

APB_CTRL_APLL_TICK_NUM Configures the divider value of REF_TICK when the source of

APB_CLK is APLL_CLK. The value range is 0x0 ~ 0xFF. REF_TICK = APB_CLK /(the value of

this field + 1). (R/W)

Espressif Systems 46
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

3 Reset and Clock

Register 3.6. APB_CTRL_DATE_REG (0x007C)

APB_C
TR

L_
DAT

E

0x16042000

31 0

Reset

APB_CTRL_DATE Chip revision register. For more information see ESP32 Series SoC Errata. (R/W)

Espressif Systems 47
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/sites/default/files/documentation/esp32_errata_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

4.1 Overview
The ESP32 chip features 34 physical GPIO pads. Each pad can be used as a general-purpose I/O, or be connected

to an internal peripheral signal. The IO_MUX, RTC IO_MUX and the GPIO matrix are responsible for routing signals

from the peripherals to GPIO pads. Together these systems provide highly configurable I/O.

Note that the I/O GPIO pads are 019, 2123, 2527, 3239, while the output GPIOs are 019, 2123, 2527,

3233. GPIO pads 3439 are inputonly.

This chapter describes the signal selection and connection between the digital pads (FUN_SEL, IE, OE, WPU,

WDU, etc.), 162 peripheral input and 176 output signals (control signals: SIG_IN_SEL, SIG_OUT_SEL, IE, OE,

etc.), fast peripheral input/output signals (control signals: IE, OE, etc.), and RTC IO_MUX.

Figure 41. IO_MUX, RTC IO_MUX and GPIO Matrix Overview

1. The IO_MUX contains one register per GPIO pad. Each pad can be configured to perform a ”GPIO” function

(when connected to the GPIO Matrix) or a direct function (bypassing the GPIO Matrix). Some high-speed

digital functions (Ethernet, SDIO, SPI, JTAG, UART) can bypass the GPIO Matrix for better high-frequency

digital performance. In this case, the IO_MUX is used to connect these pads directly to the peripheral.)

See Section 4.10 for a list of IO_MUX functions for each I/O pad.

2. The GPIO Matrix is a full-switching matrix between the peripheral input/output signals and the pads.

• For input to the chip: Each of the 162 internal peripheral inputs can select any GPIO pad as the input

source.

• For output from the chip: The output signal of each of the 34 GPIO pads can be from one of the 176

peripheral output signals.

See Section 4.9 for a list of GPIO Matrix peripheral signals.

Espressif Systems 48
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

3. RTC IO_MUX is used to connect GPIO pads to their low-power and analog functions. Only a subset of GPIO

pads have these optional ”RTC” functions.

See Section 4.11 for a list of RTC IO_MUX functions.

4.2 Peripheral Input via GPIO Matrix
4.2.1 Summary
To receive a peripheral input signal via the GPIO Matrix, the GPIO Matrix is configured to source the peripheral

signal’s input index (0-18, 23-36, 39-58, 61-90, 95-124, 140-155, 164-181, 190-195, 198-206) from one of the

34 GPIOs (0-19, 21-23, 25-27, 32-39).

The input signal is read from the GPIO pad through the IO_MUX. The IO_MUX must be configured to set the chosen

pad to ”GPIO” function. This causes the GPIO pad input signal to be routed into the GPIO Matrix, which in turn

routes it to the selected peripheral input.

4.2.2 Functional Description
Figure 4-2 shows the logic for input selection via GPIO Matrix.

Figure 42. Peripheral Input via IO_MUX, GPIO Matrix

To read GPIO pad X into peripheral signal Y, follow the steps below:

1. Configure the GPIO_FUNCy_IN_SEL_CFG register corresponding to peripheral signal Y in the GPIO Matrix:

• Set GPIO_SIGy_IN_SEL to enable peripheral signal input via GPIO matrix.

• Set the GPIO_FUNCy_IN_SEL field in this register, corresponding to the GPIO pad X to read from.

2. Configure the GPIO_FUNCx_OUT_SEL_CFG register and clear the GPIO_ENABLE_DATA[x] field correspond-

ing to GPIO pad X in the GPIO Matrix:

• Set the GPIO_FUNCx_OEN_SEL bit in the GPIO_FUNCx_OUT_SEL_CFG register to force the pin’s

output state to be determined always by the GPIO_ENABLE_DATA[x] field.

• The GPIO_ENABLE_DATA[x] field is a bit in either GPIO_ENABLE_REG (GPIOs 0-31) or GPIO_ENABLE1_REG

(GPIOs 32-39). Clear this bit to disable the output driver for the GPIO pad.

Espressif Systems 49
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

3. Configure the IO_MUX to select the GPIO Matrix. Set the IO_MUX_x_REG register corresponding to GPIO

pad X as follows:

• Set the function field (MCU_SEL) to the IO_MUX function corresponding to GPIO X (this is Function

2—numeric value 2—for all pins).

• Enable the input by setting the FUN_IE bit.

• Set or clear the FUN_WPU and FUN_WPD bits, as desired, to enable/disable internal pull-up/pull-down

resistors.

Notes:

• One input pad can be connected to multiple input_signals.

• The input signal can be inverted with GPIO_FUNCy_IN_INV_SEL.

• It is possible to have a peripheral read a constantly low or constantly high input value without connecting

this input to a pad. This can be done by selecting a special GPIO_FUNCy_IN_SEL input, instead of a GPIO

number:

– When GPIO_FUNCy_IN_SEL is 0x30, input_signal_x is always 0.

– When GPIO_FUNCy_IN_SEL is 0x38, input_signal_x is always 1.

For example, to connect RMT peripheral channel 0 input signal (RMT_SIG_IN0_IDX, signal index 83) to GPIO 15,

please follow the steps below. Note that GPIO 15 is also named the MTDO pin:

1. Set the GPIO_FUNC83_IN_SEL_CFG register field GPIO_FUNC83_IN_SEL value to 15.

2. As this is an input-only signal, set GPIO_FUNC15_OEN_SEL bit in GPIO_FUNC15_OUT_SEL_CFG_REG.

3. Clear bit 15 of GPIO_ENABLE_REG (field GPIO_ENABLE_DATA[15]).

4. Set the IO_MUX_GPIO15 register MCU_SEL field to 2 (GPIO function) and also set the FUN_IE bit (input

mode).

4.2.3 Simple GPIO Input
The GPIO_IN_REG/GPIO_IN1_REG register holds the input values of each GPIO pad.

The input value of any GPIO pin can be read at any time without configuring the GPIO Matrix for a particular

peripheral signal. However, it is necessary to enable the input in the IO_MUX by setting the FUN_IE bit in the

IO_MUX_x_REG register corresponding to pad X, as mentioned in Section 4.2.2.

4.3 Peripheral Output via GPIO Matrix
4.3.1 Summary
To output a signal from a peripheral via the GPIO Matrix, the GPIO Matrix is configured to route the peripheral output

signal (0-18, 23-37, 61-121, 140-125, 224-228) to one of the 28 GPIOs (0-19, 21-23, 25-27, 32-33).

The output signal is routed from the peripheral into the GPIO Matrix. It is then routed into the IO_MUX, which is

configured to set the chosen pad to ”GPIO” function. This causes the output GPIO signal to be connected to the

pad.

Note:

The peripheral output signals 224 to 228 can be configured to be routed in from one GPIO and output directly from another

GPIO.

Espressif Systems 50
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

4.3.2 Functional Description
One of the 176 output signals can be selected to go through the GPIO matrix into the IO_MUX and then to a pad.

Figure 4-3 illustrates the configuration.

GPIO_FUNCx_OUT_SEL

signal0_out
signal1_out
signal2_out
signal3_out

signal228_out

GPIO_OUT_DATA bit x

0
1
2
3

228

256 (0x100)256sdfsdfasdfgas

GPIOx_out

In GPIO matrix In IO MUX

0 (FUNC)
1 (FUNC)
2 (GPIO) I/O Pad xGPIO X out

MCU_SEL

FUN_OE = 1

Figure 43. Output via GPIO Matrix

To output peripheral signal Y to particular GPIO pad X, follow these steps:

1. Configure the GPIO_FUNCx_OUT_SEL_CFG register and GPIO_ENABLE_DATA[x] field corresponding to

GPIO X in the GPIO Matrix:

• Set the GPIO_FUNCx_OUT_SEL field in GPIO_FUNCx_OUT_SEL_CFG to the numeric index (Y) of de-

sired peripheral output signal Y.

• If the signal should always be enabled as an output, set the GPIO_FUNCx_OEN_SEL bit in the GPIO_FUN

Cx_OUT_SEL_CFG register and the GPIO_ENABLE_DATA[x] field in the GPIO_ENABLE_REG register

corresponding to GPIO pad X. To have the output enable signal decided by internal logic, clear the

GPIO_FUNCx_OEN_SEL bit instead.

• The GPIO_ENABLE_DATA[x] field is a bit in either GPIO_ENABLE_REG (GPIOs 0-31) or GPIO_ENABLE1

_REG (GPIOs 32-39). Clear this bit to disable the output driver for the GPIO pad.

2. For an open drain output, set the GPIO_PINx_PAD_DRIVER bit in the GPIO_PINx register corresponding to

GPIO pad X. For push/pull mode (default), clear this bit.

3. Configure the IO_MUX to select the GPIO Matrix. Set the IO_MUX_x_REG register corresponding to GPIO

pad X as follows:

• Set the function field (MCU_SEL) to the IO_MUX function corresponding to GPIO X (this is Function

2—numeric value 2—for all pins).

• Set the FUN_DRV field to the desired value for output strength (0-3). The higher the drive strength, the

more current can be sourced/sunk from the pin.

• If using open drain mode, set/clear the FUN_WPU and FUN_WPD bits to enable/disable the internal

pull-up/down resistors.

Espressif Systems 51
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Notes:

• The output signal from a single peripheral can be sent to multiple pads simultaneously.

• Only the 28 GPIOs can be used as outputs.

• The output signal can be inverted by setting the GPIO_FUNCx_OUT_INV_SEL bit.

4.3.3 Simple GPIO Output
The GPIO Matrix can also be used for simple GPIO output – setting a bit in the GPIO_OUT_DATA register will write

to the corresponding GPIO pad.

To configure a pad as simple GPIO output, the GPIO Matrix GPIO_FUNCx_OUT_SEL register is configured with a

special peripheral index value (0x100).

4.4 Direct I/O via IO_MUX
4.4.1 Summary
Some high speed digital functions (Ethernet, SDIO, SPI, JTAG, UART) can bypass the GPIO Matrix for better

high-frequency digital performance. In this case, the IO_MUX is used to connect these pads directly to the periph-

eral.

Selecting this option is less flexible than using the GPIO Matrix, as the IO_MUX register for each GPIO pad can

only select from a limited number of functions. However, better high-frequency digital performance will be main-

tained.

4.4.2 Functional Description
Two registers must be configured in order to bypass the GPIO Matrix for peripheral I/O:

1. IO_MUX for the GPIO pad must be set to the required pad function. (Please refer to section 4.10 for a list of

pad functions.)

2. For inputs, the SIG_IN_SEL register must be cleared to route the input directly to the peripheral.

4.5 RTC IO_MUX for Low Power and Analog I/O
4.5.1 Summary
18 GPIO pads have low power capabilities (RTC domain) and analog functions which are handled by the RTC

subsystem of ESP32. The IO_MUX and GPIO Matrix are not used for these functions; rather, the RTC_MUX is

used to redirect the I/O to the RTC subsystem.

When configured as RTC GPIOs, the output pads can still retain the output level value when the chip is in Deep-

sleep mode, and the input pads can wake up the chip from Deep-sleep.

Section 4.11 has a list of RTC_MUX pins and their functions.

4.5.2 Functional Description
Each pad with analog and RTC functions is controlled by the RTC_IO_TOUCH_PADx_TO_GPIO bit in the RTC_GPIO

_PINx register. By default this bit is set to 1, routing all I/O via the IO_MUX subsystem as described in earlier sub-

sections.

If the RTC_IO_TOUCH_PADx_TO_GPIO bit is cleared, then I/O to and from that pad is routed to the RTC subsys-

tem. In this mode, the RTC_GPIO_PINx register is used for digital I/O and the analog features of the pad are also

Espressif Systems 52
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

available. See Section 4.11 for a list of RTC pin functions.

See 4.11 for a table mapping GPIO pads to their RTC equivalent pins and analog functions. Note that the

RTC_IO_PINx registers use the RTC GPIO pin numbering, not the GPIO pad numbering.

4.6 Lightsleep Mode Pin Functions
Pins can have different functions when the ESP32 is in Light-sleep mode. If the SLP_SEL bit in the IO_MUX register

for a GPIO pad is set to 1, a different set of registers is used to control the pad when the ESP32 is in Light-sleep

mode:

Table 41. IO_MUX Lightsleep Pin Function Registers

Normal Execution Light-sleep Mode
IO_MUX Function

OR SLP_SEL = 0 AND SLP_SEL = 1

Output Drive Strength FUN_DRV MCU_DRV

Pull-up Resistor FUN_WPU MCU_WPU

Pull-down Resistor FUN_WPD MCU_WPD

Output Enable (From GPIO Matrix _OEN field) MCU_OE

If SLP_SEL is set to 0, the pin functions remain the same in both normal execution and Light-sleep mode.

4.7 Pad Hold Feature
Each IO pad (including the RTC pads) has an individual hold function controlled by a RTC register. When the pad
is set to hold, the state is latched at that moment and will not change no matter how the internal signals change
or how the IO_MUX configuration or GPIO configuration is modified. Users can use the hold function for the
pads to retain the pad state through a core reset and system reset triggered by watchdog time-out or Deep-sleep
events.

Note:

• For digital pads, to maintain the pad’s input/output status in Deep-sleep mode, you can set

REG_DG_PAD_FORCE_UNHOLD to 0 before powering down.

For RTC pads, the input and output values are controlled by the corresponding bits of register

RTC_CNTL_HOLD_FORCE_REG, and you can set it to 1 to hold the value or set it to 0 to unhold the value.

• For digital pads, to disable the hold function after the chip is woken up, you can set REG_DG_PAD_FORCE_UNHOLD

to 1. To maintain the hold function of the pad, you can change the corresponding bit in the register by setting

RTC_CNTL_HOLD_FORCE_REG to 1.

4.8 I/O Pad Power Supplies
Figure 4-4 and 4-5 show the IO pad power supplies.

Espressif Systems 53
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

32K_XP 12

VDET_2 11

10

9

8

7

6

5

4

3

2

1

VDET_1

CHIP_PU

SENSOR_VN

SENSOR_CAPN

SENSOR_CAPP

SENSOR_VP

VDD3P3

VDD3P3

LNA_IN

VDDA

25

26

27

28

29

30

31

32

33

34

35

36

GPIO16

VDD_SDIO

GPIO5

VD
D3

P3
_C

PU
37

G
PI

O
19

3839404142434445464748

G
PI

O
22

U0
RX

D

U0
TX

D

G
PI

O
21

XT
AL

_N

XT
AL

_P

VD
DA

CA
P2

CA
P1

G
PI

O
2

24

M
TD

O

2322212019181716151413

M
TC

K

VD
D3

P3
_R

TC

M
TD

I

M
TM

S

G
PI

O
27

G
PI

O
26

G
PI

O
25

32
K_

XN

SD_DATA_2

SD_DATA_3

SD_CMD

SD_CLK

SD_DATA_0

SD_DATA_1

G
PI

O
4

G
PI

O
0

GPIO23

GPIO18

VD
DA

GPIO17

ESP32
49 GND

Analog pads

Pads powered by VDD3P3_CPU

Pads powered by VDD_SDIO

Pads powered by VDD3P3_RTC

Figure 44. ESP32 I/O Pad Power Sources (QFN 6*6, Top View)

10

9

8

7

6

5

4

3

2

1

VDET_1

CHIP_PU

SENSOR_VN

SENSOR_CAPN

SENSOR_CAPP

SENSOR_VP

VDD3P3

VDD3P3

LNA_IN

VDDA

25

26

27

28

29

30

31

32

33

34

GPIO16

VDD_SDIO

GPIO5

VDD3P3_CPU

GPIO19

39404142434445464748

G
PI

O
22

U0
RX

D

U0
TX

D

G
PI

O
21

XT
AL

_N

XT
AL

_P

VD
DA

CA
P2

CA
P1

G
PI

O
2

24

M
TD

O

232221201918171615

M
TC

K

VD
D3

P3
_R

TC

M
TD

I

M
TM

S

G
PI

O
27

G
PI

O
26

GPIO25

32K_XN

SD_DATA_2

SD_DATA_3

SD_CMD

SD_CLK

SD_DATA_0

SD_DATA_1

G
PI

O
4

G
PI

O
0

VD
DA

GPIO1732K_XP

VDET_2

GPIO18

GPIO23

11

12

13

14

35

36

37

38

ESP32
49 GND

Analog pads

Pads powered by VDD3P3_CPU

Pads powered by VDD_SDIO

Pads powered by VDD3P3_RTC

Figure 45. ESP32 I/O Pad Power Sources (QFN 5*5, Top View)

• Pads marked blue are RTC pads that have their individual analog function and can also act as normal digital

Espressif Systems 54
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

IO pads. For details, please see Section 4.11.

• Pads marked yellow and green have digital functions only.

• Pads marked green can be powered externally or internally via VDD_SDIO (see below).

4.8.1 VDD_SDIO Power Domain
VDD_SDIO can source or sink current, allowing this power domain to be powered externally or internally. To power

VDD_SDIO externally, apply the same power supply of VDD3P3_RTC to the VDD_SDIO pad.

Without an external power supply, the internal regulator will supply VDD_SDIO. The VDD_SDIO voltage can be

configured to be either 1.8V or the same as VDD3P3_RTC, depending on the state of the MTDI pad at reset –

a high level configures 1.8V and a low level configures the voltage to be the same as VDD3P3_RTC. Setting the

efuse bit determines the default voltage of the VDD_SDIO. In addition, software can change the voltage of the

VDD_SDIO by configuring register bits.

4.9 Peripheral Signal List
Table 4-2 contains a list of Peripheral Input/Output signals used by the GPIO Matrix:

Table 42. GPIO Matrix Peripheral Signals

Signal Input Signal Output Signal Direct I/O in IO_MUX

0 SPICLK_in SPICLK_out YES

1 SPIQ_in SPIQ_out YES

2 SPID_in SPID_out YES

3 SPIHD_in SPIHD_out YES

4 SPIWP_in SPIWP_out YES

5 SPICS0_in SPICS0_out YES

6 SPICS1_in SPICS1_out -

7 SPICS2_in SPICS2_out -

8 HSPICLK_in HSPICLK_out YES

9 HSPIQ_in HSPIQ_out YES

10 HSPID_in HSPID_out YES

11 HSPICS0_in HSPICS0_out YES

12 HSPIHD_in HSPIHD_out YES

13 HSPIWP_in HSPIWP_out YES

14 U0RXD_in U0TXD_out YES

15 U0CTS_in U0RTS_out YES

16 U0DSR_in U0DTR_out -

17 U1RXD_in U1TXD_out YES

18 U1CTS_in U1RTS_out YES

23 I2S0O_BCK_in I2S0O_BCK_out -

24 I2S1O_BCK_in I2S1O_BCK_out -

25 I2S0O_WS_in I2S0O_WS_out -

26 I2S1O_WS_in I2S1O_WS_out -

27 I2S0I_BCK_in I2S0I_BCK_out -

28 I2S0I_WS_in I2S0I_WS_out -

Espressif Systems 55
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Signal Input Signal Output Signal Direct I/O in IO_MUX

29 I2CEXT0_SCL_in I2CEXT0_SCL_out -

30 I2CEXT0_SDA_in I2CEXT0_SDA_out -

31 pwm0_sync0_in sdio_tohost_int_out -

32 pwm0_sync1_in pwm0_out0a -

33 pwm0_sync2_in pwm0_out0b -

34 pwm0_f0_in pwm0_out1a -

35 pwm0_f1_in pwm0_out1b -

36 pwm0_f2_in pwm0_out2a -

37 - pwm0_out2b -

39 pcnt_sig_ch0_in0 - -

40 pcnt_sig_ch1_in0 - -

41 pcnt_ctrl_ch0_in0 - -

42 pcnt_ctrl_ch1_in0 - -

43 pcnt_sig_ch0_in1 - -

44 pcnt_sig_ch1_in1 - -

45 pcnt_ctrl_ch0_in1 - -

46 pcnt_ctrl_ch1_in1 - -

47 pcnt_sig_ch0_in2 - -

48 pcnt_sig_ch1_in2 - -

49 pcnt_ctrl_ch0_in2 - -

50 pcnt_ctrl_ch1_in2 - -

51 pcnt_sig_ch0_in3 - -

52 pcnt_sig_ch1_in3 - -

53 pcnt_ctrl_ch0_in3 - -

54 pcnt_ctrl_ch1_in3 - -

55 pcnt_sig_ch0_in4 - -

56 pcnt_sig_ch1_in4 - -

57 pcnt_ctrl_ch0_in4 - -

58 pcnt_ctrl_ch1_in4 - -

61 HSPICS1_in HSPICS1_out -

62 HSPICS2_in HSPICS2_out -

63 VSPICLK_in VSPICLK_out_mux YES

64 VSPIQ_in VSPIQ_out YES

65 VSPID_in VSPID_out YES

66 VSPIHD_in VSPIHD_out YES

67 VSPIWP_in VSPIWP_out YES

68 VSPICS0_in VSPICS0_out YES

69 VSPICS1_in VSPICS1_out -

70 VSPICS2_in VSPICS2_out -

71 pcnt_sig_ch0_in5 ledc_hs_sig_out0 -

72 pcnt_sig_ch1_in5 ledc_hs_sig_out1 -

73 pcnt_ctrl_ch0_in5 ledc_hs_sig_out2 -

74 pcnt_ctrl_ch1_in5 ledc_hs_sig_out3 -

Espressif Systems 56
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Signal Input Signal Output Signal Direct I/O in IO_MUX

75 pcnt_sig_ch0_in6 ledc_hs_sig_out4 -

76 pcnt_sig_ch1_in6 ledc_hs_sig_out5 -

77 pcnt_ctrl_ch0_in6 ledc_hs_sig_out6 -

78 pcnt_ctrl_ch1_in6 ledc_hs_sig_out7 -

79 pcnt_sig_ch0_in7 ledc_ls_sig_out0 -

80 pcnt_sig_ch1_in7 ledc_ls_sig_out1 -

81 pcnt_ctrl_ch0_in7 ledc_ls_sig_out2 -

82 pcnt_ctrl_ch1_in7 ledc_ls_sig_out3 -

83 rmt_sig_in0 ledc_ls_sig_out4 -

84 rmt_sig_in1 ledc_ls_sig_out5 -

85 rmt_sig_in2 ledc_ls_sig_out6 -

86 rmt_sig_in3 ledc_ls_sig_out7 -

87 rmt_sig_in4 rmt_sig_out0 -

88 rmt_sig_in5 rmt_sig_out1 -

89 rmt_sig_in6 rmt_sig_out2 -

90 rmt_sig_in7 rmt_sig_out3 -

91 - rmt_sig_out4 -

92 - rmt_sig_out5 -

93 - rmt_sig_out6 -

94 twai_rx rmt_sig_out7 -

95 I2CEXT1_SCL_in I2CEXT1_SCL_out -

96 I2CEXT1_SDA_in I2CEXT1_SDA_out -

97 host_card_detect_n_1 host_ccmd_od_pullup_en_n -

98 host_card_detect_n_2 host_rst_n_1 -

99 host_card_write_prt_1 host_rst_n_2 -

100 host_card_write_prt_2 gpio_sd0_out -

101 host_card_int_n_1 gpio_sd1_out -

102 host_card_int_n_2 gpio_sd2_out -

103 pwm1_sync0_in gpio_sd3_out -

104 pwm1_sync1_in gpio_sd4_out -

105 pwm1_sync2_in gpio_sd5_out -

106 pwm1_f0_in gpio_sd6_out -

107 pwm1_f1_in gpio_sd7_out -

108 pwm1_f2_in pwm1_out0a -

109 pwm0_cap0_in pwm1_out0b -

110 pwm0_cap1_in pwm1_out1a -

111 pwm0_cap2_in pwm1_out1b -

112 pwm1_cap0_in pwm1_out2a -

113 pwm1_cap1_in pwm1_out2b -

114 pwm1_cap2_in - -

115 - - -

116 - - -

117 - - -

Espressif Systems 57
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Signal Input Signal Output Signal Direct I/O in IO_MUX

118 - - -

119 - - -

120 - - -

121 - - -

122 - - -

123 - twai_tx -

124 - twai_bus_off_on -

125 - twai_clkout -

140 I2S0I_DATA_in0 I2S0O_DATA_out0 -

141 I2S0I_DATA_in1 I2S0O_DATA_out1 -

142 I2S0I_DATA_in2 I2S0O_DATA_out2 -

143 I2S0I_DATA_in3 I2S0O_DATA_out3 -

144 I2S0I_DATA_in4 I2S0O_DATA_out4 -

145 I2S0I_DATA_in5 I2S0O_DATA_out5 -

146 I2S0I_DATA_in6 I2S0O_DATA_out6 -

147 I2S0I_DATA_in7 I2S0O_DATA_out7 -

148 I2S0I_DATA_in8 I2S0O_DATA_out8 -

149 I2S0I_DATA_in9 I2S0O_DATA_out9 -

150 I2S0I_DATA_in10 I2S0O_DATA_out10 -

151 I2S0I_DATA_in11 I2S0O_DATA_out11 -

152 I2S0I_DATA_in12 I2S0O_DATA_out12 -

153 I2S0I_DATA_in13 I2S0O_DATA_out13 -

154 I2S0I_DATA_in14 I2S0O_DATA_out14 -

155 I2S0I_DATA_in15 I2S0O_DATA_out15 -

156 - I2S0O_DATA_out16 -

157 - I2S0O_DATA_out17 -

158 - I2S0O_DATA_out18 -

159 - I2S0O_DATA_out19 -

160 - I2S0O_DATA_out20 -

161 - I2S0O_DATA_out21 -

162 - I2S0O_DATA_out22 -

163 - I2S0O_DATA_out23 -

164 I2S1I_BCK_in I2S1I_BCK_out -

165 I2S1I_WS_in I2S1I_WS_out -

166 I2S1I_DATA_in0 I2S1O_DATA_out0 -

167 I2S1I_DATA_in1 I2S1O_DATA_out1 -

168 I2S1I_DATA_in2 I2S1O_DATA_out2 -

169 I2S1I_DATA_in3 I2S1O_DATA_out3 -

170 I2S1I_DATA_in4 I2S1O_DATA_out4 -

171 I2S1I_DATA_in5 I2S1O_DATA_out5 -

172 I2S1I_DATA_in6 I2S1O_DATA_out6 -

173 I2S1I_DATA_in7 I2S1O_DATA_out7 -

174 I2S1I_DATA_in8 I2S1O_DATA_out8 -

Espressif Systems 58
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Signal Input Signal Output Signal Direct I/O in IO_MUX

175 I2S1I_DATA_in9 I2S1O_DATA_out9 -

176 I2S1I_DATA_in10 I2S1O_DATA_out10 -

177 I2S1I_DATA_in11 I2S1O_DATA_out11 -

178 I2S1I_DATA_in12 I2S1O_DATA_out12 -

179 I2S1I_DATA_in13 I2S1O_DATA_out13 -

180 I2S1I_DATA_in14 I2S1O_DATA_out14 -

181 I2S1I_DATA_in15 I2S1O_DATA_out15 -

182 - I2S1O_DATA_out16 -

183 - I2S1O_DATA_out17 -

184 - I2S1O_DATA_out18 -

185 - I2S1O_DATA_out19 -

186 - I2S1O_DATA_out20 -

187 - I2S1O_DATA_out21 -

188 - I2S1O_DATA_out22 -

189 - I2S1O_DATA_out23 -

190 I2S0I_H_SYNC - -

191 I2S0I_V_SYNC - -

192 I2S0I_H_ENABLE - -

193 I2S1I_H_SYNC - -

194 I2S1I_V_SYNC - -

195 I2S1I_H_ENABLE - -

196 - - -

197 - - -

198 U2RXD_in U2TXD_out YES

199 U2CTS_in U2RTS_out YES

200 emac_mdc_i emac_mdc_o -

201 emac_mdi_i emac_mdo_o -

202 emac_crs_i emac_crs_o -

203 emac_col_i emac_col_o -

204 pcmfsync_in bt_audio0_irq -

205 pcmclk_in bt_audio1_irq -

206 pcmdin bt_audio2_irq -

207 - ble_audio0_irq -

208 - ble_audio1_irq -

209 - ble_audio2_irq -

210 - pcmfsync_out -

211 - pcmclk_out -

212 - pcmdout -

213 - ble_audio_sync0_p -

214 - ble_audio_sync1_p -

215 - ble_audio_sync2_p -

224 - sig_in_func224 -

225 - sig_in_func225 -

Espressif Systems 59
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Signal Input Signal Output Signal Direct I/O in IO_MUX

226 - sig_in_func226 -

227 - sig_in_func227 -

228 - sig_in_func228 -

Direct I/O in IO_MUX ”YES” means that this signal is also available directly via IO_MUX. To apply the GPIO Matrix

to these signals, their corresponding SIG_IN_SEL register must be cleared.

4.10 IO_MUX Pad List
Table 4-3 shows the IO_MUX functions for each I/O pad:

Table 43. IO_MUX Pad Summary

GPIO Pad Name Function 0 Function 1 Function 2 Function 3 Function 4 Function 5 Reset Notes

0 GPIO0 GPIO0 CLK_OUT1 GPIO0 - - EMAC_TX_CLK 3 R

1 U0TXD U0TXD CLK_OUT3 GPIO1 - - EMAC_RXD2 3 -

2 GPIO2 GPIO2 HSPIWP GPIO2 HS2_DATA0 SD_DATA0 - 2 R

3 U0RXD U0RXD CLK_OUT2 GPIO3 - - - 3 -

4 GPIO4 GPIO4 HSPIHD GPIO4 HS2_DATA1 SD_DATA1 EMAC_TX_ER 2 R

5 GPIO5 GPIO5 VSPICS0 GPIO5 HS1_DATA6 - EMAC_RX_CLK 3 -

6 SD_CLK SD_CLK SPICLK GPIO6 HS1_CLK U1CTS - 3 -

7 SD_DATA_0 SD_DATA0 SPIQ GPIO7 HS1_DATA0 U2RTS - 3 -

8 SD_DATA_1 SD_DATA1 SPID GPIO8 HS1_DATA1 U2CTS - 3 -

9 SD_DATA_2 SD_DATA2 SPIHD GPIO9 HS1_DATA2 U1RXD - 3 -

10 SD_DATA_3 SD_DATA3 SPIWP GPIO10 HS1_DATA3 U1TXD - 3 -

11 SD_CMD SD_CMD SPICS0 GPIO11 HS1_CMD U1RTS - 3 -

12 MTDI MTDI HSPIQ GPIO12 HS2_DATA2 SD_DATA2 EMAC_TXD3 2 R

13 MTCK MTCK HSPID GPIO13 HS2_DATA3 SD_DATA3 EMAC_RX_ER 2 R

14 MTMS MTMS HSPICLK GPIO14 HS2_CLK SD_CLK EMAC_TXD2 3 R

15 MTDO MTDO HSPICS0 GPIO15 HS2_CMD SD_CMD EMAC_RXD3 3 R

16 GPIO16 GPIO16 - GPIO16 HS1_DATA4 U2RXD EMAC_CLK_OUT 1 -

17 GPIO17 GPIO17 - GPIO17 HS1_DATA5 U2TXD EMAC_CLK_180 1 -

18 GPIO18 GPIO18 VSPICLK GPIO18 HS1_DATA7 - - 1 -

19 GPIO19 GPIO19 VSPIQ GPIO19 U0CTS - EMAC_TXD0 1 -

21 GPIO21 GPIO21 VSPIHD GPIO21 - - EMAC_TX_EN 1 -

22 GPIO22 GPIO22 VSPIWP GPIO22 U0RTS - EMAC_TXD1 1 -

23 GPIO23 GPIO23 VSPID GPIO23 HS1_STROBE - - 1 -

25 GPIO25 GPIO25 - GPIO25 - - EMAC_RXD0 0 R

26 GPIO26 GPIO26 - GPIO26 - - EMAC_RXD1 0 R

27 GPIO27 GPIO27 - GPIO27 - - EMAC_RX_DV 0 R

32 32K_XP GPIO32 - GPIO32 - - - 0 R

33 32K_XN GPIO33 - GPIO33 - - - 0 R

34 VDET_1 GPIO34 - GPIO34 - - - 0 R, I

35 VDET_2 GPIO35 - GPIO35 - - - 0 R, I

36 SENSOR_VP GPIO36 - GPIO36 - - - 0 R, I

37 SENSOR_CAPP GPIO37 - GPIO37 - - - 0 R, I

38 SENSOR_CAPN GPIO38 - GPIO38 - - - 0 R, I

39 SENSOR_VN GPIO39 - GPIO39 - - - 0 R, I

Reset Configurations

”Reset” column shows each pad’s default configurations after reset:

• 0 - IE=0 (input disabled).

Espressif Systems 60
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

• 1 - IE=1 (input enabled).

• 2 - IE=1, WPD=1 (input enabled, pull-down resistor).

• 3 - IE=1, WPU=1 (input enabled, pull-up resistor).

Notes

• R - Pad has RTC/analog functions via RTC_MUX.

• I - Pad can only be configured as input GPIO. These input-only pads do not feature an output driver or

internal pull-up/pull-down circuitry.

Please refer to the ESP32 Pin Lists in ESP32 Datasheet for more details.

4.11 RTC_MUX Pin List
Table 4-4 shows the RTC pins and how they correspond to GPIO pads:

Table 44. RTC_MUX Pin Summary

Analog Function RTC Function

RTC GPIO Num GPIO Num Pad Name
0 1 2

Function 0

(FUN_SEL = 0)

Function 1

(FUN_SEL = 3)

0 36 SENSOR_VP ADC_H ADC1_CH0 - RTC_GPIO0 -

1 37 SENSOR_CAPP ADC_H ADC1_CH1 - RTC_GPIO1 -

2 38 SENSOR_CAPN ADC_H ADC1_CH2 - RTC_GPIO2 -

3 39 SENSOR_VN ADC_H ADC1_CH3 - RTC_GPIO3 -

4 34 VDET_1 - ADC1_CH6 - RTC_GPIO4 -

5 35 VDET_2 - ADC1_CH7 - RTC_GPIO5 -

6 25 GPIO25 DAC_1 ADC2_CH8 - RTC_GPIO6 -

7 26 GPIO26 DAC_2 ADC2_CH9 - RTC_GPIO7 -

8 33 32K_XN XTAL_32K_N ADC1_CH5 TOUCH8 RTC_GPIO8 -

9 32 32K_XP XTAL_32K_P ADC1_CH4 TOUCH9 RTC_GPIO9 -

10 4 GPIO4 - ADC2_CH0 TOUCH0 RTC_GPIO10 I2C_SCL∗

11 0 GPIO0 - ADC2_CH1 TOUCH1 RTC_GPIO11 I2C_SDA∗

12 2 GPIO2 - ADC2_CH2 TOUCH2 RTC_GPIO12 I2C_SCL∗

13 15 MTDO - ADC2_CH3 TOUCH3 RTC_GPIO13 I2C_SDA∗

14 13 MTCK - ADC2_CH4 TOUCH4 RTC_GPIO14 -

15 12 MTDI - ADC2_CH5 TOUCH5 RTC_GPIO15 -

16 14 MTMS - ADC2_CH6 TOUCH6 RTC_GPIO16 -

17 27 GPIO27 - ADC2_CH7 TOUCH7 RTC_GPIO17 -

Note:

For more information on the configuration of sar_i2c_xx, see Section RTC I2C Controller in Chapter 30 ULP Coprocessor

(ULP).

4.12 Register Summary
4.12.1 GPIO Matrix Register Summary

Espressif Systems 61
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

http://espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Name Description Address Access

GPIO_OUT_REG GPIO 0-31 output register 0x3FF44004 R/W

GPIO_OUT_W1TS_REG GPIO 0-31 output register_W1TS 0x3FF44008 WO

GPIO_OUT_W1TC_REG GPIO 0-31 output register_W1TC 0x3FF4400C WO

GPIO_OUT1_REG GPIO 32-39 output register 0x3FF44010 R/W

GPIO_OUT1_W1TS_REG GPIO 32-39 output bit set register 0x3FF44014 WO

GPIO_OUT1_W1TC_REG GPIO 32-39 output bit clear register 0x3FF44018 WO

GPIO_ENABLE_REG GPIO 0-31 output enable register 0x3FF44020 R/W

GPIO_ENABLE_W1TS_REG GPIO 0-31 output enable register_W1TS 0x3FF44024 WO

GPIO_ENABLE_W1TC_REG GPIO 0-31 output enable register_W1TC 0x3FF44028 WO

GPIO_ENABLE1_REG GPIO 32-39 output enable register 0x3FF4402C R/W

GPIO_ENABLE1_W1TS_REG GPIO 32-39 output enable bit set register 0x3FF44030 WO

GPIO_ENABLE1_W1TC_REG GPIO 32-39 output enable bit clear register 0x3FF44034 WO

GPIO_STRAP_REG Bootstrap pin value register 0x3FF44038 RO

GPIO_IN_REG GPIO 0-31 input register 0x3FF4403C RO

GPIO_IN1_REG GPIO 32-39 input register 0x3FF44040 RO

GPIO_STATUS_REG GPIO 0-31 interrupt status register 0x3FF44044 R/W

GPIO_STATUS_W1TS_REG GPIO 0-31 interrupt status register_W1TS 0x3FF44048 WO

GPIO_STATUS_W1TC_REG GPIO 0-31 interrupt status register_W1TC 0x3FF4404C WO

GPIO_STATUS1_REG GPIO 32-39 interrupt status register1 0x3FF44050 R/W

GPIO_STATUS1_W1TS_REG GPIO 32-39 interrupt status bit set register 0x3FF44054 WO

GPIO_STATUS1_W1TC_REG GPIO 32-39 interrupt status bit clear register 0x3FF44058 WO

GPIO_ACPU_INT_REG GPIO 0-31 APP_CPU interrupt status 0x3FF44060 RO

GPIO_ACPU_NMI_INT_REG
GPIO 0-31 APP_CPU non-maskable interrupt

status
0x3FF44064 RO

GPIO_PCPU_INT_REG GPIO 0-31 PRO_CPU interrupt status 0x3FF44068 RO

GPIO_PCPU_NMI_INT_REG
GPIO 0-31 PRO_CPU non-maskable interrupt

status
0x3FF4406C RO

GPIO_ACPU_INT1_REG GPIO 32-39 APP_CPU interrupt status 0x3FF44074 RO

GPIO_ACPU_NMI_INT1_REG
GPIO 32-39 APP_CPU non-maskable interrupt

status
0x3FF44078 RO

GPIO_PCPU_INT1_REG GPIO 32-39 PRO_CPU interrupt status 0x3FF4407C RO

GPIO_PCPU_NMI_INT1_REG
GPIO 32-39 PRO_CPU non-maskable interrupt

status
0x3FF44080 RO

GPIO_PIN0_REG Configuration for GPIO pin 0 0x3FF44088 R/W

GPIO_PIN1_REG Configuration for GPIO pin 1 0x3FF4408C R/W

GPIO_PIN2_REG Configuration for GPIO pin 2 0x3FF44090 R/W

... ...

GPIO_PIN38_REG Configuration for GPIO pin 38 0x3FF44120 R/W

GPIO_PIN39_REG Configuration for GPIO pin 39 0x3FF44124 R/W

GPIO_FUNC0_IN_SEL_CFG_REG Peripheral function 0 input selection register 0x3FF44130 R/W

GPIO_FUNC1_IN_SEL_CFG_REG Peripheral function 1 input selection register 0x3FF44134 R/W

... ...

GPIO_FUNC254_IN_SEL_CFG_REG Peripheral function 254 input selection register 0x3FF44528 R/W

Espressif Systems 62
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Name Description Address Access

GPIO_FUNC255_IN_SEL_CFG_REG Peripheral function 255 input selection register 0x3FF4452C R/W

GPIO_FUNC0_OUT_SEL_CFG_REG Peripheral output selection for GPIO 0 0x3FF44530 R/W

GPIO_FUNC1_OUT_SEL_CFG_REG Peripheral output selection for GPIO 1 0x3FF44534 R/W

... ...

GPIO_FUNC38_OUT_SEL_CFG_REG Peripheral output selection for GPIO 38 0x3FF445C8 R/W

GPIO_FUNC39_OUT_SEL_CFG_REG Peripheral output selection for GPIO 39 0x3FF445CC R/W

4.12.2 IO MUX Register Summary

Name Description Address Access

IO_MUX_PIN_CTRL Clock output configuration register 0x3FF49000 R/W

IO_MUX_GPIO36_REG Configuration register for pad GPIO36 0x3FF49004 R/W

IO_MUX_GPIO37_REG Configuration register for pad GPIO37 0x3FF49008 R/W

IO_MUX_GPIO38_REG Configuration register for pad GPIO38 0x3FF4900C R/W

IO_MUX_GPIO39_REG Configuration register for pad GPIO39 0x3FF49010 R/W

IO_MUX_GPIO34_REG Configuration register for pad GPIO34 0x3FF49014 R/W

IO_MUX_GPIO35_REG Configuration register for pad GPIO35 0x3FF49018 R/W

IO_MUX_GPIO32_REG Configuration register for pad GPIO32 0x3FF4901C R/W

IO_MUX_GPIO33_REG Configuration register for pad GPIO33 0x3FF49020 R/W

IO_MUX_GPIO25_REG Configuration register for pad GPIO25 0x3FF49024 R/W

IO_MUX_GPIO26_REG Configuration register for pad GPIO26 0x3FF49028 R/W

IO_MUX_GPIO27_REG Configuration register for pad GPIO27 0x3FF4902C R/W

IO_MUX_MTMS_REG Configuration register for pad MTMS 0x3FF49030 R/W

IO_MUX_MTDI_REG Configuration register for pad MTDI 0x3FF49034 R/W

IO_MUX_MTCK_REG Configuration register for pad MTCK 0x3FF49038 R/W

IO_MUX_MTDO_REG Configuration register for pad MTDO 0x3FF4903C R/W

IO_MUX_GPIO2_REG Configuration register for pad GPIO2 0x3FF49040 R/W

IO_MUX_GPIO0_REG Configuration register for pad GPIO0 0x3FF49044 R/W

IO_MUX_GPIO4_REG Configuration register for pad GPIO4 0x3FF49048 R/W

IO_MUX_GPIO16_REG Configuration register for pad GPIO16 0x3FF4904C R/W

IO_MUX_GPIO17_REG Configuration register for pad GPIO17 0x3FF49050 R/W

IO_MUX_SD_DATA2_REG Configuration register for pad SD_DATA2 0x3FF49054 R/W

IO_MUX_SD_DATA3_REG Configuration register for pad SD_DATA3 0x3FF49058 R/W

IO_MUX_SD_CMD_REG Configuration register for pad SD_CMD 0x3FF4905C R/W

IO_MUX_SD_CLK_REG Configuration register for pad SD_CLK 0x3FF49060 R/W

IO_MUX_SD_DATA0_REG Configuration register for pad SD_DATA0 0x3FF49064 R/W

IO_MUX_SD_DATA1_REG Configuration register for pad SD_DATA1 0x3FF49068 R/W

IO_MUX_GPIO5_REG Configuration register for pad GPIO5 0x3FF4906C R/W

IO_MUX_GPIO18_REG Configuration register for pad GPIO18 0x3FF49070 R/W

IO_MUX_GPIO19_REG Configuration register for pad GPIO19 0x3FF49074 R/W

IO_MUX_GPIO20_REG Configuration register for pad GPIO20 0x3FF49078 R/W

IO_MUX_GPIO21_REG Configuration register for pad GPIO21 0x3FF4907C R/W

IO_MUX_GPIO22_REG Configuration register for pad GPIO22 0x3FF49080 R/W

IO_MUX_U0RXD_REG Configuration register for pad U0RXD 0x3FF49084 R/W

Espressif Systems 63
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Name Description Address Access

IO_MUX_U0TXD_REG Configuration register for pad U0TXD 0x3FF49088 R/W

IO_MUX_GPIO23_REG Configuration register for pad GPIO23 0x3FF4908C R/W

IO_MUX_GPIO24_REG Configuration register for pad GPIO24 0x3FF49090 R/W

4.12.3 RTC IO MUX Register Summary

Name Description Address Access

GPIO configuration / data registers

RTCIO_RTC_GPIO_OUT_REG RTC GPIO output register 0x3FF48400 R/W

RTCIO_RTC_GPIO_OUT_W1TS_REG RTC GPIO output bit set register 0x3FF48404 WO

RTCIO_RTC_GPIO_OUT_W1TC_REG RTC GPIO output bit clear register 0x3FF48408 WO

RTCIO_RTC_GPIO_ENABLE_REG RTC GPIO output enable register 0x3FF4840C R/W

RTCIO_RTC_GPIO_ENABLE_W1TS_REG RTC GPIO output enable bit set register 0x3FF48410 WO

RTCIO_RTC_GPIO_ENABLE_W1TC_REG RTC GPIO output enable bit clear register 0x3FF48414 WO

RTCIO_RTC_GPIO_STATUS_REG RTC GPIO interrupt status register 0x3FF48418 WO

RTCIO_RTC_GPIO_STATUS_W1TS_REG RTC GPIO interrupt status bit set register 0x3FF4841C WO

RTCIO_RTC_GPIO_STATUS_W1TC_REG RTC GPIO interrupt status bit clear register 0x3FF48420 WO

RTCIO_RTC_GPIO_IN_REG RTC GPIO input register 0x3FF48424 RO

RTCIO_RTC_GPIO_PIN0_REG RTC configuration for pin 0 0x3FF48428 R/W

RTCIO_RTC_GPIO_PIN1_REG RTC configuration for pin 1 0x3FF4842C R/W

RTCIO_RTC_GPIO_PIN2_REG RTC configuration for pin 2 0x3FF48430 R/W

RTCIO_RTC_GPIO_PIN3_REG RTC configuration for pin 3 0x3FF48434 R/W

RTCIO_RTC_GPIO_PIN4_REG RTC configuration for pin 4 0x3FF48438 R/W

RTCIO_RTC_GPIO_PIN5_REG RTC configuration for pin 5 0x3FF4843C R/W

RTCIO_RTC_GPIO_PIN6_REG RTC configuration for pin 6 0x3FF48440 R/W

RTCIO_RTC_GPIO_PIN7_REG RTC configuration for pin 7 0x3FF48444 R/W

RTCIO_RTC_GPIO_PIN8_REG RTC configuration for pin 8 0x3FF48448 R/W

RTCIO_RTC_GPIO_PIN9_REG RTC configuration for pin 9 0x3FF4844C R/W

RTCIO_RTC_GPIO_PIN10_REG RTC configuration for pin 10 0x3FF48450 R/W

RTCIO_RTC_GPIO_PIN11_REG RTC configuration for pin 11 0x3FF48454 R/W

RTCIO_RTC_GPIO_PIN12_REG RTC configuration for pin 12 0x3FF48458 R/W

RTCIO_RTC_GPIO_PIN13_REG RTC configuration for pin 13 0x3FF4845C R/W

RTCIO_RTC_GPIO_PIN14_REG RTC configuration for pin 14 0x3FF48460 R/W

RTCIO_RTC_GPIO_PIN15_REG RTC configuration for pin 15 0x3FF48464 R/W

RTCIO_RTC_GPIO_PIN16_REG RTC configuration for pin 16 0x3FF48468 R/W

RTCIO_RTC_GPIO_PIN17_REG RTC configuration for pin 17 0x3FF4846C R/W

RTCIO_DIG_PAD_HOLD_REG RTC GPIO hold register 0x3FF48474 R/W

GPIO RTC function configuration registers

RTCIO_SENSOR_PADS_REG Sensor pads configuration register 0x3FF4847C R/W

RTCIO_ADC_PAD_REG ADC configuration register 0x3FF48480 R/W

RTCIO_PAD_DAC1_REG DAC1 configuration register 0x3FF48484 R/W

RTCIO_PAD_DAC2_REG DAC2 configuration register 0x3FF48488 R/W

RTCIO_XTAL_32K_PAD_REG 32KHz crystal pads configuration register 0x3FF4848C R/W

RTCIO_TOUCH_CFG_REG Touch sensor configuration register 0x3FF48490 R/W

Espressif Systems 64
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Name Description Address Access

RTCIO_TOUCH_PAD0_REG Touch pad configuration register 0x3FF48494 R/W

... ...

RTCIO_TOUCH_PAD9_REG Touch pad configuration register 0x3FF484B8 R/W

RTCIO_EXT_WAKEUP0_REG External wake up configuration register 0x3FF484BC R/W

RTCIO_XTL_EXT_CTR_REG Crystal power down enable GPIO source 0x3FF484C0 R/W

RTCIO_SAR_I2C_IO_REG RTC I2C pad selection 0x3FF484C4 R/W

4.13 Registers
4.13.1 GPIO Matrix Registers
The addresses in parenthesis besides register names are the register addresses relative to the GPIO base ad-

dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 4.12.1 GPIO Matrix Register Summary.

Register 4.1. GPIO_OUT_REG (0x0004)

x x

31 0

Reset

GPIO_OUT_REG GPIO0-31 output value. (R/W)

Register 4.2. GPIO_OUT_W1TS_REG (0x0008)

x x

31 0

Reset

GPIO_OUT_W1TS_REG GPIO0-31 output set register. For every bit that is 1 in the value written here,

the corresponding bit in GPIO_OUT_REG will be set. (WO)

Register 4.3. GPIO_OUT_W1TC_REG (0x000c)

x x

31 0

Reset

GPIO_OUT_W1TC_REG GPIO0-31 output clear register. For every bit that is 1 in the value written

here, the corresponding bit in GPIO_OUT_REG will be cleared. (WO)

Espressif Systems 65
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.4. GPIO_OUT1_REG (0x0010)

(re
se

rve
d)

0 0

31 8

GPIO
_O

UT_
DAT

A

x x x x x x x x

7 0

Reset

GPIO_OUT_DATA GPIO32-39 output value. (R/W)

Register 4.5. GPIO_OUT1_W1TS_REG (0x0014)

(re
se

rve
d)

0 0

31 8

GPIO
_O

UT_
DAT

A

x x x x x x x x

7 0

Reset

GPIO_OUT_DATA GPIO32-39 output value set register. For every bit that is 1 in the value written

here, the corresponding bit in GPIO_OUT1_DATA will be set. (WO)

Register 4.6. GPIO_OUT1_W1TC_REG (0x0018)

(re
se

rve
d)

0 0

31 8

GPIO
_O

UT_
DAT

A

x x x x x x x x

7 0

Reset

GPIO_OUT_DATA GPIO32-39 output value clear register. For every bit that is 1 in the value written

here, the corresponding bit in GPIO_OUT1_DATA will be cleared. (WO)

Register 4.7. GPIO_ENABLE_REG (0x0020)

x x

31 0

Reset

GPIO_ENABLE_REG GPIO0-31 output enable. (R/W)

Espressif Systems 66
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.8. GPIO_ENABLE_W1TS_REG (0x0024)

x x

31 0

Reset

GPIO_ENABLE_W1TS_REG GPIO0-31 output enable set register. For every bit that is 1 in the value

written here, the corresponding bit in GPIO_ENABLE will be set. (WO)

Register 4.9. GPIO_ENABLE_W1TC_REG (0x0028)

x x

31 0

Reset

GPIO_ENABLE_W1TC_REG GPIO0-31 output enable clear register. For every bit that is 1 in the

value written here, the corresponding bit in GPIO_ENABLE will be cleared. (WO)

Register 4.10. GPIO_ENABLE1_REG (0x002c)

(re
se

rve
d)

0 0

31 8

GPIO
_E

NABLE
_D

AT
A

x x x x x x x x

7 0

Reset

GPIO_ENABLE_DATA GPIO32-39 output enable. (R/W)

Register 4.11. GPIO_ENABLE1_W1TS_REG (0x0030)

(re
se

rve
d)

0 0

31 8

GPIO
_E

NABLE
_D

AT
A

x x x x x x x x

7 0

Reset

GPIO_ENABLE_DATA GPIO32-39 output enable set register. For every bit that is 1 in the value written

here, the corresponding bit in GPIO_ENABLE1 will be set. (WO)

Espressif Systems 67
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.12. GPIO_ENABLE1_W1TC_REG (0x0034)

(re
se

rve
d)

0 0

31 8

GPIO
_E

NABLE
_D

AT
A

x x x x x x x x

7 0

Reset

GPIO_ENABLE_DATA GPIO32-39 output enable clear register. For every bit that is 1 in the value

written here, the corresponding bit in GPIO_ENABLE1 will be cleared. (WO)

Register 4.13. GPIO_STRAP_REG (0x0038)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

GPIO
_S

TR
APPIN

G

x x x x x x x x x x x x x x x x

15 0

Reset

GPIO_STRAPPING GPIO strapping results: Bit5-bit0 of boot_sel_chip[5:0] correspond to MTDI,

GPIO0, GPIO2, GPIO4, MTDO, GPIO5, respectively.

Register 4.14. GPIO_IN_REG (0x003c)

x x

31 0

Reset

GPIO_IN_REG GPIO0-31 input value. Each bit represents a pad input value, 1 for high level and 0

for low level. (RO)

Register 4.15. GPIO_IN1_REG (0x0040)

(re
se

rve
d)

0 0

31 8

GPIO
_IN

_D
AT

A_N
EXT

x x x x x x x x

7 0

Reset

GPIO_IN_DATA_NEXT GPIO32-39 input value. Each bit represents a pad input value. (RO)

Espressif Systems 68
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.16. GPIO_STATUS_REG (0x0044)

x x

31 0

Reset

GPIO_STATUS_REG GPIO0-31 interrupt status register. Each bit can be either of the two interrupt

sources for the two CPUs. The enable bits in GPIO_STATUS_INTERRUPT, corresponding to the

0-4 bits in GPIO_PINn_REG should be set to 1. (R/W)

Register 4.17. GPIO_STATUS_W1TS_REG (0x0048)

x x

31 0

Reset

GPIO_STATUS_W1TS_REG GPIO0-31 interrupt status set register. For every bit that is 1 in the value

written here, the corresponding bit in GPIO_STATUS_INTERRUPT will be set. (WO)

Register 4.18. GPIO_STATUS_W1TC_REG (0x004c)

x x

31 0

Reset

GPIO_STATUS_W1TC_REG GPIO0-31 interrupt status clear register. For every bit that is 1 in the

value written here, the corresponding bit in GPIO_STATUS_INTERRUPT will be cleared. (WO)

Register 4.19. GPIO_STATUS1_REG (0x0050)

(re
se

rve
d)

0 0

31 8

GPIO
_S

TA
TU

S_IN
TE

RRUPT

x x x x x x x x

7 0

Reset

GPIO_STATUS_INTERRUPT GPIO32-39 interrupt status. (R/W)

Espressif Systems 69
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.20. GPIO_STATUS1_W1TS_REG (0x0054)

(re
se

rve
d)

0 0

31 8

GPIO
_S

TA
TU

S_IN
TE

RRUPT

x x x x x x x x

7 0

Reset

GPIO_STATUS_INTERRUPT GPIO32-39 interrupt status set register. For every bit that is 1 in the

value written here, the corresponding bit in GPIO_STATUS_INTERRUPT1 will be set. (WO)

Register 4.21. GPIO_STATUS1_W1TC_REG (0x0058)

(re
se

rve
d)

0 0

31 8

GPIO
_S

TA
TU

S_IN
TE

RRUPT

x x x x x x x x

7 0

Reset

GPIO_STATUS_INTERRUPT GPIO32-39 interrupt status clear register. For every bit that is 1 in the

value written here, the corresponding bit in GPIO_STATUS_INTERRUPT1 will be cleared. (WO)

Register 4.22. GPIO_ACPU_INT_REG (0x0060)

x x

31 0

Reset

GPIO_ACPU_INT_REG GPIO0-31 APP CPU interrupt status. (RO)

Register 4.23. GPIO_ACPU_NMI_INT_REG (0x0064)

x x

31 0

Reset

GPIO_ACPU_NMI_INT_REG GPIO0-31 APP CPU non-maskable interrupt status. (RO)

Espressif Systems 70
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.24. GPIO_PCPU_INT_REG (0x0068)

x x

31 0

Reset

GPIO_PCPU_INT_REG GPIO0-31 PRO CPU interrupt status. (RO)

Register 4.25. GPIO_PCPU_NMI_INT_REG (0x006c)

x x

31 0

Reset

GPIO_PCPU_NMI_INT_REG GPIO0-31 PRO CPU non-maskable interrupt status. (RO)

Register 4.26. GPIO_ACPU_INT1_REG (0x0074)

(re
se

rve
d)

0 0

31 8

GPIO
_A

PPCPU_IN
T

x x x x x x x x

7 0

Reset

GPIO_APPCPU_INT GPIO32-39 APP CPU interrupt status. (RO)

Register 4.27. GPIO_ACPU_NMI_INT1_REG (0x0078)

(re
se

rve
d)

0 0

31 8

GPIO
_A

PPCPU_N
M

I_I
NT

x x x x x x x x

7 0

Reset

GPIO_APPCPU_NMI_INT GPIO32-39 APP CPU non-maskable interrupt status. (RO)

Espressif Systems 71
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.28. GPIO_PCPU_INT1_REG (0x007c)

(re
se

rve
d)

0 0

31 8

GPIO
_P

ROCPU_IN
T

x x x x x x x x

7 0

Reset

GPIO_PROCPU_INT GPIO32-39 PRO CPU interrupt status. (RO)

Register 4.29. GPIO_PCPU_NMI_INT1_REG (0x0080)

(re
se

rve
d)

0 0

31 8

GPIO
_P

ROCPU_N
M

I_I
NT

x x x x x x x x

7 0

Reset

GPIO_PROCPU_NMI_INT GPIO32-39 PRO CPU non-maskable interrupt status. (RO)

Espressif Systems 72
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.30. GPIO_PINn_REG (n: 039) (0x88+0x4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

GPIO
_P

IN
n_

IN
T_

ENA

x x x x x

17 13

(re
se

rve
d)

0 0

12 11

GPIO
_P

IN
n_

W
AKEUP_E

NABLE

x

10

GPIO
_P

IN
n_

IN
T_

TY
PE

x x x

9 7

(re
se

rve
d)

0 0 0 0

6 3

GPIO
_P

IN
n_

PA
D_D

RIVER

x

2

(re
se

rve
d)

0 0

1 0

Reset

GPIO_PINn_INT_ENA Interrupt enable bits for pin n: (R/W)

bit0: APP CPU interrupt enable;

bit1: APP CPU non-maskable interrupt enable;

bit2: PRO CPU interrupt enable;

bit3: PRO CPU non-maskable interrupt enable.

GPIO_PINn_WAKEUP_ENABLE GPIO wake-up enable will only wake up the CPU from Light-sleep.

(R/W)

GPIO_PINn_INT_TYPE Interrupt type selection: (R/W)

0: GPIO interrupt disable;

1: rising edge trigger;

2: falling edge trigger;

3: any edge trigger;

4: low level trigger;

5: high level trigger.

GPIO_PINn_PAD_DRIVER 0: normal output; 1: open drain output. (R/W)

Register 4.31. GPIO_FUNCy_IN_SEL_CFG_REG (y: 0255) (0x130+0x4*y)

(re
se

rve
d)

0 0

31 8

GPIO
_S

IG
y_

IN
_S

EL

x

7

GPIO
_F

UNCy
_IN

_IN
V_S

EL

x

6

GPIO
_F

UNCy
_IN

_S
EL

x x x x x x

5 0

Reset

GPIO_SIGy_IN_SEL Bypass the GPIO Matrix. 1: route through GPIO Matrix, 0: connect signal di-

rectly to peripheral configured in the IO_MUX. (R/W)

GPIO_FUNCy_IN_INV_SEL Invert the input value. 1: invert; 0: do not invert. (R/W)

GPIO_FUNCy_IN_SEL Selection control for peripheral input y. A value of 0-39 selects which of the

40 GPIO Matrix input pins this signal is connected to, or 0x38 for a constantly high input or 0x30

for a constantly low input. (R/W)

Espressif Systems 73
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.32. GPIO_FUNCn_OUT_SEL_CFG_REG (n: 019, 2123, 2527, 3233) (0x530+0x4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

GPIO
_F

UNCn
_O

EN_IN
V_S

EL

x

11

GPIO
_F

UNCn
_O

EN_S
EL

x

10

GPIO
_F

UNCn
_O

UT_
IN

V_S
EL

x

9

GPIO
_F

UNCn
_O

UT_
SEL

x x x x x x x x x

8 0

Reset

GPIO_FUNCn_OEN_INV_SEL 1: Invert the output enable signal; 0: do not invert the output enable

signal. (R/W)

GPIO_FUNCn_OEN_SEL 1: Force the output enable signal to be sourced from bit n of

GPIO_ENABLE_REG; 0: use output enable signal from peripheral. (R/W)

GPIO_FUNCn_OUT_INV_SEL 1: Invert the output value; 0: do not invert the output value. (R/W)

GPIO_FUNCn_OUT_SEL Selection control for GPIO output n. A value of s (0<=s<256)

connects peripheral output s to GPIO output n. A value of 256 selects bit n of

GPIO_OUT_REG/GPIO_OUT1_REG and GPIO_ENABLE_REG/GPIO_ENABLE1_REG as the out-

put value and output enable. (R/W)

4.13.2 IO MUX Registers
The addresses in parenthesis besides register names are the register addresses relative to the IO MUX base

addresses provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute

register addresses are listed in Section 4.12.2 IO MUX Register Summary.

Espressif Systems 74
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.33. IO_MUX_PIN_CTRL (0x00)

(re
se

rve
d)

0x0

31 12

PIN
_C

TR
L_

CLK
3

0x0

11 8

PIN
_C

TR
L_

CLK
2

0x0

7 4

PIN
_C

TR
L_

CLK
1

0x0

3 0

Reset

If you want to output clock for I2S0 (I2S0_CLK) to:

CLK_OUT1, then set PIN_CTRL[3:0] = 0x0;

CLK_OUT2, then set PIN_CTRL[3:0] = 0x0 and PIN_CTRL[7:4] = 0x0;

CLK_OUT3, then set PIN_CTRL[3:0] = 0x0 and PIN_CTRL[11:8] = 0x0.

If you want to output clock for I2S1 (I2S1_CLK) to:

CLK_OUT1, then set PIN_CTRL[3:0] = 0xF;

CLK_OUT2, then set PIN_CTRL[3:0] = 0xF and PIN_CTRL[7:4] = 0x0;

CLK_OUT3, then set PIN_CTRL[3:0] = 0xF and PIN_CTRL[11:8] = 0x0.

If you want to output clock for APLL to

CLK_OUT1, then set PIN_CTRL[3:0] = 0x6;

CLK_OUT2, then set PIN_CTRL[3:0] = 0x6 and PIN_CTRL[7:4] = 0x6;

CLK_OUT3, then set PIN_CTRL[3:0] = 0x6 and PIN_CTRL[11:8] = 0x6. (R/W)

Note:

• Only the above mentioned combinations of clock source (i.e. I2S0/1_CLK, APLL clock) and clock output pins (i.e.

CLK_OUT1 ~ 3) are possible.

• The CLK_OUT1 ~ 3 can be found in the IO_MUX Pad Summary.

Espressif Systems 75
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.34. IO_MUX_x_REG (x: GPIO0GPIO39) (0x10+4*x)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 15

M
CU_S

EL

0x0

14 12

FU
N_D

RV

0x2

11 10

FU
N_IE

0

9

FU
N_W

PU

0

8

FU
N_W

PD

0

7

M
CU_D

RV

0x0

6 5

M
CU_IE

0

4

M
CU_W

PU

0

3

M
CU_W

PD

0

2

SLP
_S

EL

0

1

M
CU_O

E

0

0

Reset

MCU_SEL Select the IO_MUX function for this signal. 0 selects Function 0, 1 selects Function 1, etc.

(R/W)

FUN_DRV Select the drive strength of the pad. A higher value corresponds with a higher strength.

For GPIO34-39, FUN_DRV is always 0. For detailed drive strength, please see note 8 in Table

”Notes on ESP32 Pin Lists”, in ESP32 Datasheet. (R/W)

FUN_IE Input enable of the pad. 1: input enabled; 0: input disabled. (R/W)

FUN_WPU Pull-up enable of the pad. 1: internal pull-up enabled; 0: internal pull-up disabled. GPIO

pins 34-39 are input-only. These pins do not feature an output driver or internal pull- up/pull-down

circuitry, therefore, their FUN_WPU is always 0. (R/W)

FUN_WPD Pull-down enable of the pad. 1: internal pull-down enabled, 0: internal pull-down dis-

abled. GPIO pins 34-39 are input-only. These pins do not feature an output driver or internal pull-

up/pull-down circuitry, therefore, their FUN_WPD is always 0. (R/W)

MCU_DRV Select the drive strength of the pad during sleep mode. A higher value corresponds with

a higher strength. (R/W)

MCU_IE Input enable of the pad during sleep mode. 1: input enabled; 0: input disabled. (R/W)

MCU_WPU Pull-up enable of the pad during sleep mode. 1: internal pull-up enabled; 0: internal

pull-up disabled. (R/W)

MCU_WPD Pull-down enable of the pad during sleep mode. 1: internal pull-down enabled; 0: internal

pull-down disabled. (R/W)

SLP_SEL Sleep mode selection of this pad. Set to 1 to put the pad in sleep mode. (R/W)

MCU_OE Output enable of the pad in sleep mode. 1: enable output; 0: disable output. (R/W)

4.13.3 RTC IO MUX Registers
The addresses in parenthesis besides register names are the register addresses relative to (the RTC base address

+ 0x0400). The RTC base address is provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and

Memory. The absolute register addresses are listed in Section 4.12.3 RTC IO MUX Register Summary.

Espressif Systems 76
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.35. RTCIO_RTC_GPIO_OUT_REG (0x0000)

RTC
IO

_R
TC

_G
PIO

_O
UT_

DAT
A

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

RTCIO_RTC_GPIO_OUT_DATA GPIO0-17 output register. Bit14 is GPIO[0], bit15 is GPIO[1], etc.

(R/W)

Register 4.36. RTCIO_RTC_GPIO_OUT_W1TS_REG (0x0004)

RTC
IO

_R
TC

_G
PIO

_O
UT_

DAT
A_W

1T
S

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

RTCIO_RTC_GPIO_OUT_DATA_W1TS GPIO0-17 output set register. For every bit that is 1 in the

value written here, the corresponding bit in RTCIO_RTC_GPIO_OUT will be set. (WO)

Register 4.37. RTCIO_RTC_GPIO_OUT_W1TC_REG (0x0008)

RTC
IO

_R
TC

_G
PIO

_O
UT_

DAT
A_W

1T
C

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

RTCIO_RTC_GPIO_OUT_DATA_W1TC GPIO0-17 output clear register. For every bit that is 1 in the

value written here, the corresponding bit in RTCIO_RTC_GPIO_OUT will be cleared. (WO)

Espressif Systems 77
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.38. RTCIO_RTC_GPIO_ENABLE_REG (0x000C)

RTC
IO

_R
TC

_G
PIO

_E
NABLE

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

RTCIO_RTC_GPIO_ENABLE GPIO0-17 output enable. Bit14 is GPIO[0], bit15 is GPIO[1], etc. 1

means this GPIO pad is output. (R/W)

Register 4.39. RTCIO_RTC_GPIO_ENABLE_W1TS_REG (0x0010)

RTC
IO

_R
TC

_G
PIO

_E
NABLE

_W
1T

S

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

RTCIO_RTC_GPIO_ENABLE_W1TS GPIO0-17 output enable set register. For every bit that is 1 in

the value written here, the corresponding bit in RTCIO_RTC_GPIO_ENABLE will be set. (WO)

Register 4.40. RTCIO_RTC_GPIO_ENABLE_W1TC_REG (0x0014)

RTC
IO

_R
TC

_G
PIO

_E
NABLE

_W
1T

C

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

RTCIO_RTC_GPIO_ENABLE_W1TC GPIO0-17 output enable clear register. For every bit that is 1 in

the value written here, the corresponding bit in RTCIO_RTC_GPIO_ENABLE will be cleared. (WO)

Espressif Systems 78
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.41. RTCIO_RTC_GPIO_STATUS_REG (0x0018)

RTC
IO

_R
TC

_G
PIO

_S
TA

TU
S_IN

T

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

RTCIO_RTC_GPIO_STATUS_INT GPIO0-17 interrupt status. Bit14 is GPIO[0], bit15 is GPIO[1],

etc. This register should be used together with RTCIO_RTC_GPIO_PINn_INT_TYPE in RT-

CIO_RTC_GPIO_PINn_REG. 1: corresponding interrupt; 0: no interrupt. (R/W)

Register 4.42. RTCIO_RTC_GPIO_STATUS_W1TS_REG (0x001C)

RTC
IO

_R
TC

_G
PIO

_S
TA

TU
S_IN

T_
W

1T
S

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

RTCIO_RTC_GPIO_STATUS_INT_W1TS GPIO0-17 interrupt set register. For every bit that is 1 in

the value written here, the corresponding bit in RTCIO_RTC_GPIO_STATUS_INT will be set. (WO)

Register 4.43. RTCIO_RTC_GPIO_STATUS_W1TC_REG (0x0020)

RTC
IO

_R
TC

_G
PIO

_S
TA

TU
S_IN

T_
W

1T
C

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

RTCIO_RTC_GPIO_STATUS_INT_W1TC GPIO0-17 interrupt clear register. For every bit that is 1 in

the value written here, the corresponding bit in RTCIO_RTC_GPIO_STATUS_INT will be cleared.

(WO)

Espressif Systems 79
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.44. RTCIO_RTC_GPIO_IN_REG (0x0024)

RTC
IO

_R
TC

_G
PIO

_IN
_N

EXT

x x x x x x x x x x x x x x x x x x

31 14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

RTCIO_RTC_GPIO_IN_NEXT GPIO0-17 input value. Bit14 is GPIO[0], bit15 is GPIO[1], etc. Each

bit represents a pad input value, 1 for high level, and 0 for low level. (RO)

Register 4.45. RTCIO_RTC_GPIO_PINn_REG (n: 017) (28+4*n)

(re
se

rve
d)

0 0

31 11

RTC
IO

_R
TC

_G
PIO

_P
IN
n_

W
AKEUP_E

NABLE

x

10

RTC
IO

_R
TC

_G
PIO

_P
IN
n_

IN
T_

TY
PE

x x x

9 7

(re
se

rve
d)

0 0 0 0

6 3

RTC
IO

_R
TC

_G
PIO

_P
IN
n_

PA
D_D

RIVER

x

2

(re
se

rve
d)

0 0

1 0

Reset

RTCIO_RTC_GPIO_PINn_WAKEUP_ENABLE GPIO wake-up enable. This will only wake up the

ESP32 from Light-sleep. (R/W)

RTCIO_RTC_GPIO_PINn_INT_TYPE GPIO interrupt type selection. (R/W)

0: GPIO interrupt disable;

1: rising edge trigger;

2: falling edge trigger;

3: any edge trigger;

4: low level trigger;

5: high level trigger.

RTCIO_RTC_GPIO_PINn_PAD_DRIVER Pad driver selection. 0: normal output; 1: open drain.

(R/W)

Espressif Systems 80
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.46. RTCIO_DIG_PAD_HOLD_REG (0x0074)

0

31 0

Reset

RTCIO_DIG_PAD_HOLD_REG Selects the digital pads which should be put on hold. While 0 allows

normal operation, 1 puts the pad on hold. (R/W)

Name Description

Bit[0] Set to 1 to enable the Hold function of pad U0RTD

Bit[1] Set to 1 to enable the Hold function of pad U0TXD

Bit[2] Set to 1 to enable the Hold function of pad

SD_CLK

Bit[3] Set to 1 to enable the Hold function of pad

SD_DATA0

Bit[4] Set to 1 to enable the Hold function of pad

SD_DATA1

Bit[5] Set to 1 to enable the Hold function of pad

SD_DATA2

Bit[6] Set to 1 to enable the Hold function of pad

SD_DATA3

Bit[7] Set to 1 to enable the Hold function of pad

SD_CMD

Bit[8] Set to 1 to enable the Hold function of pad GPIO5

Bit[9] Set to 1 to enable the Hold function of pad GPIO16

Bit[10] Set to 1 to enable the Hold function of pad GPIO17

Bit[11] Set to 1 to enable the Hold function of pad GPIO18

Bit[12] Set to 1 to enable the Hold function of pad GPIO19

Bit[13] Set to 1 to enable the Hold function of pad GPIO20

Bit[14] Set to 1 to enable the Hold function of pad GPIO21

Bit[15] Set to 1 to enable the Hold function of pad GPIO22

Bit[16] Set to 1 to enable the Hold function of pad GPIO23

Espressif Systems 81
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.47. RTCIO_SENSOR_PADS_REG (0x007C)

RTC
IO

_S
ENSOR_S

ENSE1_
HOLD

0

31

RTC
IO

_S
ENSOR_S

ENSE2_
HOLD

0

30

RTC
IO

_S
ENSOR_S

ENSE3_
HOLD

0

29

RTC
IO

_S
ENSOR_S

ENSE4_
HOLD

0

28

RTC
IO

_S
ENSOR_S

ENSE1_
M

UX_
SEL

0

27

RTC
IO

_S
ENSOR_S

ENSE2_
M

UX_
SEL

0

26

RTC
IO

_S
ENSOR_S

ENSE3_
M

UX_
SEL

0

25

RTC
IO

_S
ENSOR_S

ENSE4_
M

UX_
SEL

0

24

RTC
IO

_S
ENSOR_S

ENSE1_
FU

N_S
EL

0

23 22

RTC
IO

_S
ENSOR_S

ENSE1_
SLP

_S
EL

0

21

RTC
IO

_S
ENSOR_S

ENSE1_
SLP

_IE

0

20

RTC
IO

_S
ENSOR_S

ENSE1_
FU

N_IE

0

19

RTC
IO

_S
ENSOR_S

ENSE2_
FU

N_S
EL

0

18 17

RTC
IO

_S
ENSOR_S

ENSE2_
SLP

_S
EL

0

16

RTC
IO

_S
ENSOR_S

ENSE2_
SLP

_IE

0

15

RTC
IO

_S
ENSOR_S

ENSE2_
FU

N_IE

0

14

RTC
IO

_S
ENSOR_S

ENSE3_
FU

N_S
EL

0

13 12

RTC
IO

_S
ENSOR_S

ENSE3_
SLP

_S
EL

0

11

RTC
IO

_S
ENSOR_S

ENSE3_
SLP

_IE

0

10

RTC
IO

_S
ENSOR_S

ENSE3_
FU

N_IE

0

9

RTC
IO

_S
ENSOR_S

ENSE4_
FU

N_S
EL

0

8 7

RTC
IO

_S
ENSOR_S

ENSE4_
SLP

_S
EL

0

6

RTC
IO

_S
ENSOR_S

ENSE4_
SLP

_IE

0

5

RTC
IO

_S
ENSOR_S

ENSE4_
FU

N_IE

0

4

(re
se

rve
d)

0 0 0 0

3 0

Reset

RTCIO_SENSOR_SENSEn_HOLD Set to 1 to hold the output value on sensen; 0 is for normal op-

eration. (R/W)

RTCIO_SENSOR_SENSEn_MUX_SEL 1: route sensen to the RTC block; 0: route sensen to the

digital IO_MUX. (R/W)

RTCIO_SENSOR_SENSEn_FUN_SEL Select the RTC IO_MUX function for this pad. 0: select Func-

tion 0. (R/W)

RTCIO_SENSOR_SENSEn_SLP_SEL Selection of sleep mode for the pad: set to 1 to put the pad

in sleep mode. (R/W)

RTCIO_SENSOR_SENSEn_SLP_IE Input enable of the pad in sleep mode. 1: enabled; 0: disabled.

(R/W)

RTCIO_SENSOR_SENSEn_FUN_IE Input enable of the pad. 1: enabled; 0: disabled. (R/W)

Espressif Systems 82
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.48. RTCIO_ADC_PAD_REG (0x0080)

RTC
IO

_A
DC_A

DC1_
HOLD

0

31

RTC
IO

_A
DC_A

DC2_
HOLD

0

30

RTC
IO

_A
DC_A

DC1_
M

UX_
SEL

0

29

RTC
IO

_A
DC_A

DC2_
M

UX_
SEL

0

28

RTC
IO

_A
DC_A

DC1_
FU

N_S
EL

0

27 26

RTC
IO

_A
DC_A

DC1_
SLP

_S
EL

0

25

RTC
IO

_A
DC_A

DC1_
SLP

_IE

0

24

RTC
IO

_A
DC_A

DC1_
FU

N_IE

0

23

RTC
IO

_A
DC_A

DC2_
FU

N_S
EL

0

22 21

RTC
IO

_A
DC_A

DC2_
SLP

_S
EL

0

20

RTC
IO

_A
DC_A

DC2_
SLP

_IE

0

19

RTC
IO

_A
DC_A

DC2_
FU

N_IE

0

18

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0

Reset

RTCIO_ADC_ADCn_HOLD Set to 1 to hold the output value on the pad; 0 is for normal operation.

(R/W)

RTCIO_ADC_ADCn_MUX_SEL 0: route pad to the digital IO_MUX; (R/W)

1: route pad to the RTC block.

RTCIO_ADC_ADCn_FUN_SEL Select the RTC function for this pad. 0: select Function 0; 3: select

Function 1. (R/W)

RTCIO_ADC_ADCn_SLP_SEL Signal selection of pad’s sleep mode. Set this bit to 1 to put the pad

to sleep. (R/W)

RTCIO_ADC_ADCn_SLP_IE Input enable of the pad in sleep mode. 1 enabled; 0 disabled. (R/W)

RTCIO_ADC_ADCn_FUN_IE Input enable of the pad. 1 enabled; 0 disabled. (R/W)

Espressif Systems 83
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.49. RTCIO_PAD_DAC1_REG (0x0084)

RTC
IO

_P
AD_P

DAC1_
DRV

2

31 30

RTC
IO

_P
AD_P

DAC1_
HOLD

0

29

RTC
IO

_P
AD_P

DAC1_
RDE

0

28

RTC
IO

_P
AD_P

DAC1_
RUE

0

27

RTC
IO

_P
AD_P

DAC1_
DAC

0

26 19

RTC
IO

_P
AD_P

DAC1_
XP

D_D
AC

0

18

RTC
IO

_P
AD_P

DAC1_
M

UX_
SEL

0

17

RTC
IO

_P
AD_P

DAC1_
FU

N_S
EL

0

16 15

RTC
IO

_P
AD_P

DAC1_
SLP

_S
EL

0

14

RTC
IO

_P
AD_P

DAC1_
SLP

_IE

0

13

RTC
IO

_P
AD_P

DAC1_
SLP

_O
E

0

12

RTC
IO

_P
AD_P

DAC1_
FU

N_IE

0

11

RTC
IO

_P
AD_P

DAC1_
DAC_X

PD_F
ORCE

0

10

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

9 0

Reset

RTCIO_PAD_PDAC1_DRV Select the drive strength of the pad. (R/W)

RTCIO_PAD_PDAC1_HOLD Set to 1 to hold the output value on the pad; set to 0 for normal oper-

ation. (R/W)

RTCIO_PAD_PDAC1_RDE 1: Pull-down on pad enabled; 0: Pull-down disabled. (R/W)

RTCIO_PAD_PDAC1_RUE 1: Pull-up on pad enabled; 0: Pull-up disabled. (R/W)

RTCIO_PAD_PDAC1_DAC PAD DAC1 output value. (R/W)

RTCIO_PAD_PDAC1_XPD_DAC Power on DAC1. Usually, PDAC1 needs to be tristated if we power

on the DAC, i.e. IE=0, OE=0, RDE=0, RUE=0. (R/W)

RTCIO_PAD_PDAC1_MUX_SEL 0: route pad to the digital IO_MUX; (R/W)

1: route to the RTC block.

RTCIO_PAD_PDAC1_FUN_SEL the functional selection signal of the pad. (R/W)

RTCIO_PAD_PDAC1_SLP_SEL Sleep mode selection signal of the pad. Set this bit to 1 to put the

pad to sleep. (R/W)

RTCIO_PAD_PDAC1_SLP_IE Input enable of the pad in sleep mode. 1: enabled; 0: disabled. (R/W)

RTCIO_PAD_PDAC1_SLP_OE Output enable of the pad. 1: enabled ; 0: disabled. (R/W)

RTCIO_PAD_PDAC1_FUN_IE Input enable of the pad. 1: enabled it; 0: disabled. (R/W)

RTCIO_PAD_PDAC1_DAC_XPD_FORCE Power on DAC1. Usually, we need to tristate PDAC1 if

we power on the DAC, i.e. IE=0, OE=0, RDE=0, RUE=0. (R/W)

Espressif Systems 84
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.50. RTCIO_PAD_DAC2_REG (0x0088)

RTC
IO

_P
AD_P

DAC2_
DRV

2

31 30

RTC
IO

_P
AD_P

DAC2_
HOLD

0

29

RTC
IO

_P
AD_P

DAC2_
RDE

0

28

RTC
IO

_P
AD_P

DAC2_
RUE

0

27

RTC
IO

_P
AD_P

DAC2_
DAC

0

26 19

RTC
IO

_P
AD_P

DAC2_
XP

D_D
AC

0

18

RTC
IO

_P
AD_P

DAC2_
M

UX_
SEL

0

17

RTC
IO

_P
AD_P

DAC2_
FU

N_S
EL

0

16 15

RTC
IO

_P
AD_P

DAC2_
SLP

_S
EL

0

14

RTC
IO

_P
AD_P

DAC2_
SLP

_IE

0

13

RTC
IO

_P
AD_P

DAC2_
SLP

_O
E

0

12

RTC
IO

_P
AD_P

DAC2_
FU

N_IE

0

11

RTC
IO

_P
AD_P

DAC2_
DAC_X

PD_F
ORCE

0

10

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

9 0

Reset

RTCIO_PAD_PDAC2_DRV Select the drive strength of the pad. (R/W)

RTCIO_PAD_PDAC2_HOLD Set to 1 to hold the output value on the pad; 0 is for normal operation.

(R/W)

RTCIO_PAD_PDAC2_RDE 1: Pull-down on pad enabled; 0: Pull-down disabled. (R/W)

RTCIO_PAD_PDAC2_RUE 1: Pull-up on pad enabled; 0: Pull-up disabled. (R/W)

RTCIO_PAD_PDAC2_DAC PAD DAC2 output value. (R/W)

RTCIO_PAD_PDAC2_XPD_DAC Power on DAC2. PDAC2 needs to be tristated if we power on the

DAC, i.e. IE=0, OE=0, RDE=0, RUE=0. (R/W)

RTCIO_PAD_PDAC2_MUX_SEL 0: route pad to the digital IO_MUX; (R/W)

1: route to the RTC block.

RTCIO_PAD_PDAC2_FUN_SEL Select the RTC function for this pad. 0: select Function 0. (R/W)

RTCIO_PAD_PDAC2_SLP_SEL Sleep mode selection signal of the pad. Set this bit to 1 to put the

pad to sleep. (R/W)

RTCIO_PAD_PDAC2_SLP_IE Input enable of the pad in sleep mode. 1: enabled; 0: disabled. (R/W)

RTCIO_PAD_PDAC2_SLP_OE Output enable of the pad. 1: enabled; 0: disabled. (R/W)

RTCIO_PAD_PDAC2_FUN_IE Input enable of the pad. 1: enabled; 0: disabled. (R/W)

RTCIO_PAD_PDAC2_DAC_XPD_FORCE Power on DAC2. Usually, we need to tristate PDAC2 if

we power on the DAC, i.e. IE=0, OE=0, RDE=0, RUE=0. (R/W)

Espressif Systems 85
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.51. RTCIO_XTAL_32K_PAD_REG (0x008C)

RTC
IO

_X
TA

L_
X3

2N
_D

RV

2

31 30

RTC
IO

_X
TA

L_
X3

2N
_H

OLD

0

29

RTC
IO

_X
TA

L_
X3

2N
_R

DE

0

28

RTC
IO

_X
TA

L_
X3

2N
_R

UE

0

27

RTC
IO

_X
TA

L_
X3

2P
_D

RV

2

26 25

RTC
IO

_X
TA

L_
X3

2P
_H

OLD

0

24

RTC
IO

_X
TA

L_
X3

2P
_R

DE

0

23

RTC
IO

_X
TA

L_
X3

2P
_R

UE

0

22

RTC
IO

_X
TA

L_
DAC_X

TA
L_

32
K

0 1

21 20

RTC
IO

_X
TA

L_
XP

D_X
TA

L_
32

K

0

19

RTC
IO

_X
TA

L_
X3

2N
_M

UX_
SEL

0

18

RTC
IO

_X
TA

L_
X3

2P
_M

UX_
SEL

0

17

RTC
IO

_X
TA

L_
X3

2N
_F

UN_S
EL

0

16 15

RTC
IO

_X
TA

L_
X3

2N
_S

LP
_S

EL

0

14

RTC
IO

_X
TA

L_
X3

2N
_S

LP
_IE

0

13

RTC
IO

_X
TA

L_
X3

2N
_S

LP
_O

E

0

12

RTC
IO

_X
TA

L_
X3

2N
_F

UN_IE

0

11

RTC
IO

_X
TA

L_
X3

2P
_F

UN_S
EL

0

10 9

RTC
IO

_X
TA

L_
X3

2P
_S

LP
_S

EL

0

8

RTC
IO

_X
TA

L_
X3

2P
_S

LP
_IE

0

7

RTC
IO

_X
TA

L_
X3

2P
_S

LP
_O

E

0

6

RTC
IO

_X
TA

L_
X3

2P
_F

UN_IE

0

5

RTC
IO

_X
TA

L_
DRES_X

TA
L_

32
K

1 0

4 3

RTC
IO

_X
TA

L_
DBIA

S_X
TA

L_
32

K

0 0

2 1

(re
se

rve
d)

0

0

Reset

RTCIO_XTAL_X32N_DRV Select the drive strength of the pad. (R/W)

RTCIO_XTAL_X32N_HOLD Set to 1 to hold the output value on the pad; 0 is for normal operation.

(R/W)

RTCIO_XTAL_X32N_RDE 1: Pull-down on pad enabled; 0: Pull-down disabled. (R/W)

RTCIO_XTAL_X32N_RUE 1: Pull-up on pad enabled; 0: Pull-up disabled. (R/W)

RTCIO_XTAL_X32P_DRV Select the drive strength of the pad. (R/W)

RTCIO_XTAL_X32P_HOLD Set to 1 to hold the output value on the pad, 0 is for normal operation.

(R/W)

RTCIO_XTAL_X32P_RDE 1: Pull-down on pad enabled; 0: Pull-down disabled. (R/W)

RTCIO_XTAL_X32P_RUE 1: Pull-up on pad enabled; 0: Pull-up disabled. (R/W)

RTCIO_XTAL_DAC_XTAL_32K 32K XTAL bias current DAC value. (R/W)

RTCIO_XTAL_XPD_XTAL_32K Power up 32 KHz crystal oscillator. (R/W)

RTCIO_XTAL_X32N_MUX_SEL 0: route X32N pad to the digital IO_MUX; 1: route to RTC block.

(R/W)

RTCIO_XTAL_X32P_MUX_SEL 0: route X32P pad to the digital IO_MUX; 1: route to RTC block.

(R/W)

RTCIO_XTAL_X32N_FUN_SEL Select the RTC function. 0: select function 0. (R/W)

RTCIO_XTAL_X32N_SLP_SEL Sleep mode selection. Set this bit to 1 to put the pad to sleep. (R/W)

RTCIO_XTAL_X32N_SLP_IE Input enable of the pad in sleep mode. 1: enabled; 0: disabled. (R/W)

RTCIO_XTAL_X32N_SLP_OE Output enable of the pad. 1: enabled; 0; disabled. (R/W)

RTCIO_XTAL_X32N_FUN_IE Input enable of the pad. 1: enabled; 0: disabled. (R/W)

RTCIO_XTAL_X32P_FUN_SEL Select the RTC function. 0: select function 0; 1: select function 1.

(R/W)

RTCIO_XTAL_X32P_SLP_SEL Sleep mode selection. Set this bit to 1 to put the pad to sleep. (R/W)

RTCIO_XTAL_X32P_SLP_IE Input enable of the pad in sleep mode. 1: enabled; 0: disabled. (R/W)

Continued on the next page...

Espressif Systems 86
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.51. RTCIO_XTAL_32K_PAD_REG (0x008C)

Continued from the previous page...

RTCIO_XTAL_X32P_SLP_OE Output enable of the pad in sleep mode. 1: enabled; 0: disabled.

(R/W)

RTCIO_XTAL_X32P_FUN_IE Input enable of the pad. 1: enabled; 0: disabled. (R/W)

RTCIO_XTAL_DRES_XTAL_32K 32K XTAL resistor bias control. (R/W)

RTCIO_XTAL_DBIAS_XTAL_32K 32K XTAL self-bias reference control. (R/W)

Register 4.52. RTCIO_TOUCH_CFG_REG (0x0090)

RTC
IO

_T
OUCH_X

PD_B
IA

S

0

31

RTC
IO

_T
OUCH_D

REFH

1 1

30 29

RTC
IO

_T
OUCH_D

REFL

0 0

28 27

RTC
IO

_T
OUCH_D

RANGE

1 1

26 25

RTC
IO

_T
OUCH_D

CUR

0 0

24 23

(re
se

rve
d)

0 0

22 0

Reset

RTCIO_TOUCH_XPD_BIAS Touch sensor bias power on bit. 1: power on; 0: disabled. (R/W)

RTCIO_TOUCH_DREFH Touch sensor saw wave top voltage. (R/W)

RTCIO_TOUCH_DREFL Touch sensor saw wave bottom voltage. (R/W)

RTCIO_TOUCH_DRANGE Touch sensor saw wave voltage range. (R/W)

RTCIO_TOUCH_DCUR Touch sensor bias current. When BIAS_SLEEP is enabled, this setting is

available. (R/W)

Espressif Systems 87
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.53. RTCIO_TOUCH_PADn_REG (n: 09) (94+4*n)

(re
se

rve
d)

0 0 0 0 0 0

31 26

RTC
IO

_T
OUCH_P

ADn
_D

AC

0x4

25 23

RTC
IO

_T
OUCH_P

ADn
_S

TA
RT

0

22

RTC
IO

_T
OUCH_P

ADn
_T

IE_O
PT

0

21

RTC
IO

_T
OUCH_P

ADn
_X

PD

0

20

RTC
IO

_T
OUCH_P

ADn
_T

O_G
PIO

0

19

RTC
IO

_T
OUCH_P

ADn
_F

UN_S
EL

0 0

18 17

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0

Reset

RTCIO_TOUCH_PADn_DAC Touch sensor slope control. 3-bit for each touch pad, defaults to 100.

(R/W)

RTCIO_TOUCH_PADn_START Start touch sensor. (R/W)

RTCIO_TOUCH_PADn_TIE_OPT Default touch sensor tie option. 0: tie low; 1: tie high. (R/W)

RTCIO_TOUCH_PADn_XPD Touch sensor power on. (R/W)

RTCIO_TOUCH_PADn_TO_GPIO Connect the RTC pad input to digital pad input; 0 is available.

(R/W)

RTCIO_TOUCH_PADn_FUN_SEL Selects the function of RTC pad. 0: RTC Function 0. (R/W)

Register 4.54. RTCIO_EXT_WAKEUP0_REG (0x00BC)

RTC
IO

_E
XT

_W
AKEUP0_

SEL

0

31 27

(re
se

rve
d)

0 0

26 0

Reset

RTCIO_EXT_WAKEUP0_SEL GPIO[0-17] can be used to wake up the chip when the chip is in the

sleep mode. This register prompts the pad source to wake up the chip when the latter is in

deep/light sleep mode. 0: select GPIO0; 1: select GPIO2, etc. (R/W)

Espressif Systems 88
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Register 4.55. RTCIO_XTL_EXT_CTR_REG (0x00C0)

RTC
IO

_X
TL

_E
XT

_C
TR

_S
EL

0

31 27

(re
se

rve
d)

0 0

26 0

Reset

RTCIO_XTL_EXT_CTR_SEL Select the external crystal power down enable source to get into

sleep mode. 0: select GPIO0; 1: select GPIO2, etc. The input value on this pin XOR

RTC_CNTL_XTL_EXT_CTR_LV is the crystal power down enable signal. (R/W)

Register 4.56. RTCIO_SAR_I2C_IO_REG (0x00C4)

RTC
IO

_S
AR_I2

C_S
DA_S

EL

0

31 30

RTC
IO

_S
AR_I2

C_S
CL_

SEL

0

29 28

(re
se

rve
d)

0 0

27 0

Reset

RTCIO_SAR_I2C_SDA_SEL Selects the other pad as the RTC I2C SDA signal. 0: pad

TOUCH_PAD[1]; 1: pad TOUCH_PAD[3]. Default value is 0. (R/W)

RTCIO_SAR_I2C_SCL_SEL Selects the other pad as the RTC I2C SCL signal. 0: pad

TOUCH_PAD[0]; 1: pad TOUCH_PAD[2]. Default value is 0. (R/W)

Espressif Systems 89
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

5 DPort Registers

5.1 Introduction
The ESP32 integrates a large number of peripherals, and enables the control of individual peripherals to achieve

optimal characteristics in performance-vs-power-consumption scenarios. The DPort registers control clock man-

agement (clock gating), power management, and the configuration of peripherals and core-system modules. The

system arranges each module with configuration registers contained in the DPort Register.

5.2 Features
DPort registers correspond to different peripheral blocks and core modules:

• System and memory

• Reset and clock

• Interrupt matrix

• DMA

• MPU/MMU

• APP_CPU controller

• Peripheral clock gating and reset

5.3 Functional Description
5.3.1 System and Memory Register
System and memory registers are used for system and memory configuration, such as cache configuration and

memory remapping. They are listed in Section 5.4, categorized as ”System and memory registers”. For a detailed

description of these registers, please refer to Chapter System and Memory.

5.3.2 Reset and Clock Registers
Reset and clock registers are listed in Section 5.4, categorized as ”Reset and clock registers”. For a detailed

description of these registers, please refer to Chapter Reset and Clock.

5.3.3 Interrupt Matrix Register
The interrupt matrix registers are used for configuring and mapping interrupts through the interrupt matrix. They

are listed in Section 5.4, categorized as ”Interrupt matrix registers”. For a detailed description of these registers,

please refer to Chapter Interrupt Matrix (INTERRUPT).

5.3.4 DMA Registers
DMA registers are used for the SPI DMA configuration. They are listed in Section 5.4, categorized as ”DMA

registers”. For a detailed description of these registers, please refer to Chapter DMA Controller (DMA).

5.3.5 MPU/MMU Registers
MPU/MMU registers are used for MPU/MMU configuration and operation control. They are listed in Section 5.4,

categorized as ”MPU/MMU registers”. For a detailed description of these registers, please refer to Chapter Memory

Management and Protection Units (MMU, MPU).

Espressif Systems 90
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

5.3.6 APP_CPU Controller Registers
APP_CPU controller registers are used for some basic configuration of the APP_CPU, such as performing a stalling

execution, and for configuring the ROM boot jump address. The registers are listed in Section 5.4, categorized

as ”APP_CPU controller registers”. A detailed description of these registers is provided in section 5.5. Note that

reset bits are not self-clearing.

5.3.7 Peripheral Clock Gating and Reset
Peripheral clock gating and reset registers are listed in Section 5.4. They are active-high registers. A detailed

description of these registers is provided in section 5.5. Note that reset bits are not self-clearing.

Espressif Systems 91
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

5.4 Register Summary

Name Description Address Access

System and memory registers

DPORT_PRO_BOOT_REMAP_CTRL_REG remap mode for PRO_CPU 0x3FF00000 R/W

DPORT_APP_BOOT_REMAP_CTRL_REG remap mode for APP_CPU 0x3FF00004 R/W

DPORT_CACHE_MUX_MODE_REG
the mode of the two caches

sharing the memory
0x3FF0007C R/W

Reset and clock registers

DPORT_CPU_PER_CONF_REG Selects CPU clock 0x3FF0003C R/W

Interrupt matrix registers

DPORT_CPU_INTR_FROM_CPU_0_REG interrupt 0 in both CPUs 0x3FF000DC R/W

DPORT_CPU_INTR_FROM_CPU_1_REG interrupt 1 in both CPUs 0x3FF000E0 R/W

DPORT_CPU_INTR_FROM_CPU_2_REG interrupt 2 in both CPUs 0x3FF000E4 R/W

DPORT_CPU_INTR_FROM_CPU_3_REG interrupt 3 in both CPUs 0x3FF000E8 R/W

DPORT_PRO_INTR_STATUS_REG_0_REG PRO_CPU interrupt status 0 0x3FF000EC RO

DPORT_PRO_INTR_STATUS_REG_1_REG PRO_CPU interrupt status 1 0x3FF000F0 RO

DPORT_PRO_INTR_STATUS_REG_2_REG PRO_CPU interrupt status 2 0x3FF000F4 RO

DPORT_APP_INTR_STATUS_REG_0_REG APP_CPU interrupt status 0 0x3FF000F8 RO

DPORT_APP_INTR_STATUS_REG_1_REG APP_CPU interrupt status 1 0x3FF000FC RO

DPORT_APP_INTR_STATUS_REG_2_REG APP_CPU interrupt status 2 0x3FF00100 RO

DPORT_PRO_MAC_INTR_MAP_REG interrupt map 0x3FF00104 R/W

DPORT_PRO_MAC_NMI_MAP_REG interrupt map 0x3FF00108 R/W

DPORT_PRO_BB_INT_MAP_REG interrupt map 0x3FF0010C R/W

DPORT_PRO_BT_MAC_INT_MAP_REG interrupt map 0x3FF00110 R/W

DPORT_PRO_BT_BB_INT_MAP_REG interrupt map 0x3FF00114 R/W

DPORT_PRO_BT_BB_NMI_MAP_REG interrupt map 0x3FF00118 R/W

DPORT_PRO_RWBT_IRQ_MAP_REG interrupt map 0x3FF0011C R/W

DPORT_PRO_RWBLE_IRQ_MAP_REG interrupt map 0x3FF00120 R/W

DPORT_PRO_RWBT_NMI_MAP_REG interrupt map 0x3FF00124 R/W

DPORT_PRO_RWBLE_NMI_MAP_REG interrupt map 0x3FF00128 R/W

DPORT_PRO_SLC0_INTR_MAP_REG interrupt map 0x3FF0012C R/W

DPORT_PRO_SLC1_INTR_MAP_REG interrupt map 0x3FF00130 R/W

DPORT_PRO_UHCI0_INTR_MAP_REG interrupt map 0x3FF00134 R/W

DPORT_PRO_UHCI1_INTR_MAP_REG interrupt map 0x3FF00138 R/W

DPORT_PRO_TG_T0_LEVEL_INT_MAP_REG interrupt map 0x3FF0013C R/W

DPORT_PRO_TG_T1_LEVEL_INT_MAP_REG interrupt map 0x3FF00140 R/W

DPORT_PRO_TG_WDT_LEVEL_INT_MAP_REG interrupt map 0x3FF00144 R/W

DPORT_PRO_TG_LACT_LEVEL_INT_MAP_REG interrupt map 0x3FF00148 R/W

DPORT_PRO_TG1_T0_LEVEL_INT_MAP_REG interrupt map 0x3FF0014C R/W

DPORT_PRO_TG1_T1_LEVEL_INT_MAP_REG interrupt map 0x3FF00150 R/W

DPORT_PRO_TG1_WDT_LEVEL_INT_MAP_REG interrupt map 0x3FF00154 R/W

DPORT_PRO_TG1_LACT_LEVEL_INT_MAP_REG interrupt map 0x3FF00158 R/W

DPORT_PRO_GPIO_INTERRUPT_MAP_REG interrupt map 0x3FF0015C R/W

DPORT_PRO_GPIO_INTERRUPT_NMI_MAP_REG interrupt map 0x3FF00160 R/W

Espressif Systems 92
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Name Description Address Access

DPORT_PRO_CPU_INTR_FROM_CPU_0_MAP_REG interrupt map 0x3FF00164 R/W

DPORT_PRO_CPU_INTR_FROM_CPU_1_MAP_REG interrupt map 0x3FF00168 R/W

DPORT_PRO_CPU_INTR_FROM_CPU_2_MAP_REG Interrupt map 0x3FF0016C R/W

DPORT_PRO_CPU_INTR_FROM_CPU_3_MAP_REG interrupt map 0x3FF00170 R/W

DPORT_PRO_SPI_INTR_0_MAP_REG interrupt map 0x3FF00174 R/W

DPORT_PRO_SPI_INTR_1_MAP_REG interrupt map 0x3FF00178 R/W

DPORT_PRO_SPI_INTR_2_MAP_REG interrupt map 0x3FF0017C R/W

DPORT_PRO_SPI_INTR_3_MAP_REG interrupt map 0x3FF00180 R/W

DPORT_PRO_I2S0_INT_MAP_REG interrupt map 0x3FF00184 R/W

DPORT_PRO_I2S1_INT_MAP_REG interrupt map 0x3FF00188 R/W

DPORT_PRO_UART_INTR_MAP_REG interrupt map 0x3FF0018C R/W

DPORT_PRO_UART1_INTR_MAP_REG interrupt map 0x3FF00190 R/W

DPORT_PRO_UART2_INTR_MAP_REG interrupt map 0x3FF00194 R/W

DPORT_PRO_SDIO_HOST_INTERRUPT_MAP_REG interrupt map 0x3FF00198 R/W

DPORT_PRO_EMAC_INT_MAP_REG interrupt map 0x3FF0019C R/W

DPORT_PRO_PWM0_INTR_MAP_REG interrupt map 0x3FF001A0 R/W

DPORT_PRO_PWM1_INTR_MAP_REG interrupt map 0x3FF001A4 R/W

DPORT_PRO_LEDC_INT_MAP_REG interrupt map 0x3FF001B0 R/W

DPORT_PRO_EFUSE_INT_MAP_REG interrupt map 0x3FF001B4 R/W

DPORT_PRO_TWAI_INT_MAP_REG interrupt map 0x3FF001B8 R/W

DPORT_PRO_RTC_CORE_INTR_MAP_REG interrupt map 0x3FF001BC R/W

DPORT_PRO_RMT_INTR_MAP_REG interrupt map 0x3FF001C0 R/W

DPORT_PRO_PCNT_INTR_MAP_REG interrupt map 0x3FF001C4 R/W

DPORT_PRO_I2C_EXT0_INTR_MAP_REG interrupt map 0x3FF001C8 R/W

DPORT_PRO_I2C_EXT1_INTR_MAP_REG interrupt map 0x3FF001CC R/W

DPORT_PRO_RSA_INTR_MAP_REG interrupt map 0x3FF001D0 R/W

DPORT_PRO_SPI1_DMA_INT_MAP_REG interrupt map 0x3FF001D4 R/W

DPORT_PRO_SPI2_DMA_INT_MAP_REG interrupt map 0x3FF001D8 R/W

DPORT_PRO_SPI3_DMA_INT_MAP_REG interrupt map 0x3FF001DC R/W

DPORT_PRO_WDG_INT_MAP_REG interrupt map 0x3FF001E0 R/W

DPORT_PRO_TIMER_INT1_MAP_REG interrupt map 0x3FF001E4 R/W

DPORT_PRO_TIMER_INT2_MAP_REG interrupt map 0x3FF001E8 R/W

DPORT_PRO_TG_T0_EDGE_INT_MAP_REG interrupt map 0x3FF001EC R/W

DPORT_PRO_TG_T1_EDGE_INT_MAP_REG interrupt map 0x3FF001F0 R/W

DPORT_PRO_TG_WDT_EDGE_INT_MAP_REG interrupt map 0x3FF001F4 R/W

DPORT_PRO_TG_LACT_EDGE_INT_MAP_REG interrupt map 0x3FF001F8 R/W

DPORT_PRO_TG1_T0_EDGE_INT_MAP_REG interrupt map 0x3FF001FC R/W

DPORT_PRO_TG1_T1_EDGE_INT_MAP_REG interrupt map 0x3FF00200 R/W

DPORT_PRO_TG1_WDT_EDGE_INT_MAP_REG interrupt map 0x3FF00204 R/W

DPORT_PRO_TG1_LACT_EDGE_INT_MAP_REG interrupt map 0x3FF00208 R/W

DPORT_PRO_MMU_IA_INT_MAP_REG interrupt map 0x3FF0020C R/W

DPORT_PRO_MPU_IA_INT_MAP_REG interrupt map 0x3FF00210 R/W

DPORT_PRO_CACHE_IA_INT_MAP_REG interrupt map 0x3FF00214 R/W

Espressif Systems 93
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Name Description Address Access

DPORT_APP_MAC_INTR_MAP_REG interrupt map 0x3FF00218 R/W

DPORT_APP_MAC_NMI_MAP_REG interrupt map 0x3FF0021C R/W

DPORT_APP_BB_INT_MAP_REG interrupt map 0x3FF00220 R/W

DPORT_APP_BT_MAC_INT_MAP_REG interrupt map 0x3FF00224 R/W

DPORT_APP_BT_BB_INT_MAP_REG interrupt map 0x3FF00228 R/W

DPORT_APP_BT_BB_NMI_MAP_REG interrupt map 0x3FF0022C R/W

DPORT_APP_RWBT_IRQ_MAP_REG interrupt map 0x3FF00230 R/W

DPORT_APP_RWBLE_IRQ_MAP_REG interrupt map 0x3FF00234 R/W

DPORT_APP_RWBT_NMI_MAP_REG interrupt map 0x3FF00238 R/W

DPORT_APP_RWBLE_NMI_MAP_REG interrupt map 0x3FF0023C R/W

DPORT_APP_SLC0_INTR_MAP_REG interrupt map 0x3FF00240 R/W

DPORT_APP_SLC1_INTR_MAP_REG interrupt map 0x3FF00244 R/W

DPORT_APP_UHCI0_INTR_MAP_REG interrupt map 0x3FF00248 R/W

DPORT_APP_UHCI1_INTR_MAP_REG interrupt map 0x3FF0024C R/W

DPORT_APP_TG_T0_LEVEL_INT_MAP_REG interrupt map 0x3FF00250 R/W

DPORT_APP_TG_T1_LEVEL_INT_MAP_REG interrupt map 0x3FF00254 R/W

DPORT_APP_TG_WDT_LEVEL_INT_MAP_REG interrupt map 0x3FF00258 R/W

DPORT_APP_TG_LACT_LEVEL_INT_MAP_REG interrupt map 0x3FF0025C R/W

DPORT_APP_TG1_T0_LEVEL_INT_MAP_REG interrupt map 0x3FF00260 R/W

DPORT_APP_TG1_T1_LEVEL_INT_MAP_REG interrupt map 0x3FF00264 R/W

DPORT_APP_TG1_WDT_LEVEL_INT_MAP_REG interrupt map 0x3FF00268 R/W

DPORT_APP_TG1_LACT_LEVEL_INT_MAP_REG interrupt map 0x3FF0026C R/W

DPORT_APP_GPIO_INTERRUPT_MAP_REG interrupt map 0x3FF00270 R/W

DPORT_APP_GPIO_INTERRUPT_NMI_MAP_REG interrupt map 0x3FF00274 R/W

DPORT_APP_CPU_INTR_FROM_CPU_0_MAP_REG interrupt map 0x3FF00278 R/W

DPORT_APP_CPU_INTR_FROM_CPU_1_MAP_REG interrupt map 0x3FF0027C R/W

DPORT_APP_CPU_INTR_FROM_CPU_2_MAP_REG interrupt map 0x3FF00280 R/W

DPORT_APP_CPU_INTR_FROM_CPU_3_MAP_REG interrupt map 0x3FF00284 R/W

DPORT_APP_SPI_INTR_0_MAP_REG interrupt map 0x3FF00288 R/W

DPORT_APP_SPI_INTR_1_MAP_REG interrupt map 0x3FF0028C R/W

DPORT_APP_SPI_INTR_2_MAP_REG interrupt map 0x3FF00290 R/W

DPORT_APP_SPI_INTR_3_MAP_REG interrupt map 0x3FF00294 R/W

DPORT_APP_I2S0_INT_MAP_REG interrupt map 0x3FF00298 R/W

DPORT_APP_I2S1_INT_MAP_REG interrupt map 0x3FF0029C R/W

DPORT_APP_UART_INTR_MAP_REG interrupt map 0x3FF002A0 R/W

DPORT_APP_UART1_INTR_MAP_REG interrupt map 0x3FF002A4 R/W

DPORT_APP_UART2_INTR_MAP_REG interrupt map 0x3FF002A8 R/W

DPORT_APP_SDIO_HOST_INTERRUPT_MAP_REG interrupt map 0x3FF002AC R/W

DPORT_APP_EMAC_INT_MAP_REG interrupt map 0x3FF002B0 R/W

DPORT_APP_PWM0_INTR_MAP_REG interrupt map 0x3FF002B4 R/W

DPORT_APP_PWM1_INTR_MAP_REG interrupt map 0x3FF002B8 R/W

DPORT_APP_LEDC_INT_MAP_REG interrupt map 0x3FF002C4 R/W

DPORT_APP_EFUSE_INT_MAP_REG interrupt map 0x3FF002C8 R/W

Espressif Systems 94
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Name Description Address Access

DPORT_APP_TWAI_INT_MAP_REG interrupt map 0x3FF002CC R/W

DPORT_APP_RTC_CORE_INTR_MAP_REG interrupt map 0x3FF002D0 R/W

DPORT_APP_RMT_INTR_MAP_REG interrupt map 0x3FF002D4 R/W

DPORT_APP_PCNT_INTR_MAP_REG interrupt map 0x3FF002D8 R/W

DPORT_APP_I2C_EXT0_INTR_MAP_REG interrupt map 0x3FF002DC R/W

DPORT_APP_I2C_EXT1_INTR_MAP_REG interrupt map 0x3FF002E0 R/W

DPORT_APP_RSA_INTR_MAP_REG interrupt map 0x3FF002E4 R/W

DPORT_APP_SPI1_DMA_INT_MAP_REG interrupt map 0x3FF002E8 R/W

DPORT_APP_SPI2_DMA_INT_MAP_REG interrupt map 0x3FF002EC R/W

DPORT_APP_SPI3_DMA_INT_MAP_REG interrupt map 0x3FF002F0 R/W

DPORT_APP_WDG_INT_MAP_REG interrupt map 0x3FF002F4 R/W

DPORT_APP_TIMER_INT1_MAP_REG interrupt map 0x3FF002F8 R/W

DPORT_APP_TIMER_INT2_MAP_REG interrupt map 0x3FF002FC R/W

DPORT_APP_TG_T0_EDGE_INT_MAP_REG interrupt map 0x3FF00300 R/W

DPORT_APP_TG_T1_EDGE_INT_MAP_REG interrupt map 0x3FF00304 R/W

DPORT_APP_TG_WDT_EDGE_INT_MAP_REG interrupt map 0x3FF00308 R/W

DPORT_APP_TG_LACT_EDGE_INT_MAP_REG interrupt map 0x3FF0030C R/W

DPORT_APP_TG1_T0_EDGE_INT_MAP_REG interrupt map 0x3FF00310 R/W

DPORT_APP_TG1_T1_EDGE_INT_MAP_REG interrupt map 0x3FF00314 R/W

DPORT_APP_TG1_WDT_EDGE_INT_MAP_REG interrupt map 0x3FF00318 R/W

DPORT_APP_TG1_LACT_EDGE_INT_MAP_REG interrupt map 0x3FF0031C R/W

DPORT_APP_MMU_IA_INT_MAP_REG interrupt map 0x3FF00320 R/W

DPORT_APP_MPU_IA_INT_MAP_REG interrupt map 0x3FF00324 R/W

DPORT_APP_CACHE_IA_INT_MAP_REG interrupt map 0x3FF00328 R/W

DMA registers

DPORT_SPI_DMA_CHAN_SEL_REG
selects DMA channel for

SPI1, SPI2, and SPI3
0x3FF005A8 R/W

MPU/MMU registers

DPORT_PRO_CACHE_CTRL_REG

determines the virtual

address mode of the external

SRAM

0x3FF00040 R/W

DPORT_APP_CACHE_CTRL_REG

determines the virtual

address mode of the external

SRAM

0x3FF00058 R/W

DPORT_IMMU_PAGE_MODE_REG
page size in the MMU for the

internal SRAM 0
0x3FF00080 R/W

DPORT_DMMU_PAGE_MODE_REG
page size in the MMU for the

internal SRAM 2
0x3FF00084 R/W

DPORT_AHB_MPU_TABLE_0_REG MPU for configuring DMA 0x3FF000B4 R/W

DPORT_AHB_MPU_TABLE_1_REG MPU for configuring DMA 0x3FF000B8 R/W

DPORT_AHBLITE_MPU_TABLE_UART_REG MPU for peripherals 0x3FF0032C R/W

DPORT_AHBLITE_MPU_TABLE_SPI1_REG MPU for peripherals 0x3FF00330 R/W

DPORT_AHBLITE_MPU_TABLE_SPI0_REG MPU for peripherals 0x3FF00334 R/W

Espressif Systems 95
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Name Description Address Access

DPORT_AHBLITE_MPU_TABLE_GPIO_REG MPU for peripherals 0x3FF00338 R/W

DPORT_AHBLITE_MPU_TABLE_RTC_REG MPU for peripherals 0x3FF00348 R/W

DPORT_AHBLITE_MPU_TABLE_IO_MUX_REG MPU for peripherals 0x3FF0034C R/W

DPORT_AHBLITE_MPU_TABLE_HINF_REG MPU for peripherals 0x3FF00354 R/W

DPORT_AHBLITE_MPU_TABLE_UHCI1_REG MPU for peripherals 0x3FF00358 R/W

DPORT_AHBLITE_MPU_TABLE_I2S0_REG MPU for peripherals 0x3FF00364 R/W

DPORT_AHBLITE_MPU_TABLE_UART1_REG MPU for peripherals 0x3FF00368 R/W

DPORT_AHBLITE_MPU_TABLE_I2C_EXT0_REG MPU for peripherals 0x3FF00374 R/W

DPORT_AHBLITE_MPU_TABLE_UHCI0_REG MPU for peripherals 0x3FF00378 R/W

DPORT_AHBLITE_MPU_TABLE_SLCHOST_REG MPU for peripherals 0x3FF0037C R/W

DPORT_AHBLITE_MPU_TABLE_RMT_REG MPU for peripherals 0x3FF00380 R/W

DPORT_AHBLITE_MPU_TABLE_PCNT_REG MPU for peripherals 0x3FF00384 R/W

DPORT_AHBLITE_MPU_TABLE_SLC_REG MPU for peripherals 0x3FF00388 R/W

DPORT_AHBLITE_MPU_TABLE_LEDC_REG MPU for peripherals 0x3FF0038C R/W

DPORT_AHBLITE_MPU_TABLE_EFUSE_REG MPU for peripherals 0x3FF00390 R/W

DPORT_AHBLITE_MPU_TABLE_SPI_ENCRYPT_REG MPU for peripherals 0x3FF00394 R/W

DPORT_AHBLITE_MPU_TABLE_PWM0_REG MPU for peripherals 0x3FF0039C R/W

DPORT_AHBLITE_MPU_TABLE_TIMERGROUP_REG MPU for peripherals 0x3FF003A0 R/W

DPORT_AHBLITE_MPU_TABLE_TIMERGROUP1_REG
MPU for peripherals 0x3FF003A4 R/W

DPORT_AHBLITE_MPU_TABLE_SPI2_REG MPU for peripherals 0x3FF003A8 R/W

DPORT_AHBLITE_MPU_TABLE_SPI3_REG MPU for peripherals 0x3FF003AC R/W

DPORT_AHBLITE_MPU_TABLE_APB_CTRL_REG MPU for peripherals 0x3FF003B0 R/W

DPORT_AHBLITE_MPU_TABLE_I2C_EXT1_REG MPU for peripherals 0x3FF003B4 R/W

DPORT_AHBLITE_MPU_TABLE_SDIO_HOST_REG MPU for peripherals 0x3FF003B8 R/W

DPORT_AHBLITE_MPU_TABLE_EMAC_REG MPU for peripherals 0x3FF003BC R/W

DPORT_AHBLITE_MPU_TABLE_PWM1_REG MPU for peripherals 0x3FF003C4 R/W

DPORT_AHBLITE_MPU_TABLE_I2S1_REG MPU for peripherals 0x3FF003C8 R/W

DPORT_AHBLITE_MPU_TABLE_UART2_REG MPU for peripherals 0x3FF003CC R/W

DPORT_AHBLITE_MPU_TABLE_PWR_REG MPU for peripherals 0x3FF003E4 R/W

DPORT_IMMU_TABLE0_REG
MMU register 1 for internal

SRAM 0
0x3FF00504 R/W

DPORT_IMMU_TABLE1_REG
MMU register 1 for internal

SRAM 0
0x3FF00508 R/W

DPORT_IMMU_TABLE2_REG
MMU register 1 for Internal

SRAM 0
0x3FF0050C R/W

DPORT_IMMU_TABLE3_REG
MMU register 1 for internal

SRAM 0
0x3FF00510 R/W

DPORT_IMMU_TABLE4_REG
MMU register 1 for internal

SRAM 0
0x3FF00514 R/W

DPORT_IMMU_TABLE5_REG
MMU register 1 for internal

SRAM 0
0x3FF00518 R/W

Espressif Systems 96
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Name Description Address Access

DPORT_IMMU_TABLE6_REG
MMU register 1 for internal

SRAM 0
0x3FF0051C R/W

DPORT_IMMU_TABLE7_REG
MMU register 1 for internal

SRAM 0
0x3FF00520 R/W

DPORT_IMMU_TABLE8_REG
MMU register 1 for internal

SRAM 0
0x3FF00524 R/W

DPORT_IMMU_TABLE9_REG
MMU register 1 for internal

SRAM 0
0x3FF00528 R/W

DPORT_IMMU_TABLE10_REG
MMU register 1 for internal

SRAM 0
0x3FF0052C R/W

DPORT_IMMU_TABLE11_REG
MMU register 1 for internal

SRAM 0
0x3FF00530 R/W

DPORT_IMMU_TABLE12_REG
MMU register 1 for Internal

SRAM 0
0x3FF00534 R/W

DPORT_IMMU_TABLE13_REG
MMU register 1 for internal

SRAM 0
0x3FF00538 R/W

DPORT_IMMU_TABLE14_REG
MMU register 1 for internal

SRAM 0
0x3FF0053C R/W

DPORT_IMMU_TABLE15_REG
MMU register 1 for internal

SRAM 0
0x3FF00540 R/W

DPORT_DMMU_TABLE0_REG
MMU register 1 for Internal

SRAM 2
0x3FF00544 R/W

DPORT_DMMU_TABLE1_REG
MMU register 1 for internal

SRAM 2
0x3FF00548 R/W

DPORT_DMMU_TABLE2_REG
MMU register 1 for internal

SRAM 2
0x3FF0054C R/W

DPORT_DMMU_TABLE3_REG
MMU register 1 for internal

SRAM 2
0x3FF00550 R/W

DPORT_DMMU_TABLE4_REG
MMU register 1 for internal

SRAM 2
0x3FF00554 R/W

DPORT_DMMU_TABLE5_REG
MMU register 1 for internal

SRAM 2
0x3FF00558 R/W

DPORT_DMMU_TABLE6_REG
MMU register 1 for internal

SRAM 2
0x3FF0055C R/W

DPORT_DMMU_TABLE7_REG
MMU register 1 for internal

SRAM 2
0x3FF00560 R/W

DPORT_DMMU_TABLE8_REG
MMU register 1 for internal

SRAM 2
0x3FF00564 R/W

DPORT_DMMU_TABLE9_REG
MMU register 1 for internal

SRAM 2
0x3FF00568 R/W

DPORT_DMMU_TABLE10_REG
MMU register 1 for internal

SRAM 2
0x3FF0056C R/W

DPORT_DMMU_TABLE11_REG
MMU register 1 for internal

SRAM 2
0x3FF00570 R/W

Espressif Systems 97
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Name Description Address Access

DPORT_DMMU_TABLE12_REG
MMU register 1 for internal

SRAM 2
0x3FF00574 R/W

DPORT_DMMU_TABLE13_REG
MMU register 1 for internal

SRAM 2
0x3FF00578 R/W

DPORT_DMMU_TABLE14_REG
MMU register 1 for internal

SRAM 2
0x3FF0057C R/W

DPORT_DMMU_TABLE15_REG
MMU register 1 for internal

SRAM 2
0x3FF00580 R/W

APP_CPU controller registers

DPORT_APPCPU_CTRL_REG_A_REG reset for APP_CPU 0x3FF0002C R/W

DPORT_APPCPU_CTRL_REG_B_REG clock gate for APP_CPU 0x3FF00030 R/W

DPORT_APPCPU_CTRL_REG_C_REG stall for APP_CPU 0x3FF00034 R/W

DPORT_APPCPU_CTRL_REG_D_REG boot address for APP_CPU 0x3FF00038 R/W

Peripheral clock gating and reset registers

DPORT_PERI_CLK_EN_REG clock gate for peripherals 0x3FF0001C R/W

DPORT_PERI_RST_EN_REG reset for peripherals 0x3FF00020 R/W

DPORT_PERIP_CLK_EN_REG clock gate for peripherals 0x3FF000C0 R/W

DPORT_PERIP_RST_EN_REG reset for peripherals 0x3FF000C4 R/W

DPORT_WIFI_CLK_EN_REG clock gate for Wi-Fi 0x3FF000CC R/W

DPORT_WIFI_RST_EN_REG reset for Wi-Fi 0x3FF000D0 R/W

Espressif Systems 98
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

5.5 Registers
The addresses in parenthesis besides register names are the register addresses relative to the DPORT base ad-

dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 5.4 Register Summary.

Register 5.1. DPORT_PRO_BOOT_REMAP_CTRL_REG (0x000)

(re
se

rve
d)

0 0

31 1

DPORT_
PRO_B

OOT_
REM

AP

0

0

Reset

DPORT_PRO_BOOT_REMAP Remap mode for PRO_CPU. (R/W)

Register 5.2. DPORT_APP_BOOT_REMAP_CTRL_REG (0x004)

(re
se

rve
d)

0 0

31 1

DPORT_
APP_B

OOT_
REM

AP

0

0

Reset

DPORT_APP_BOOT_REMAP Remap mode for APP_CPU. (R/W)

Espressif Systems 99
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Register 5.3. DPORT_PERI_CLK_EN_REG (0x01C)

(re
se

rve
d)

0 0

31 3

DPORT_
PERI_E

N_R
SA

0

2

DPORT_
PERI_E

N_S
HA

0

1

DPORT_
PERI_E

N_A
ES

0

0

Reset

DPORT_PERI_EN_RSA Set the bit to enable the clock of RSA module. Clear the bit to disable the

clock of RSA module. (R/W)

DPORT_PERI_EN_SHA Set the bit to enable the clock of SHA module. Clear the bit to disable the

clock of SHA module. (R/W)

DPORT_PERI_EN_AES Set the bit to enable the clock of AES module. Clear the bit to disable the

clock of AES module. (R/W)

Register 5.4. DPORT_PERI_RST_EN_REG (0x020)

(re
se

rve
d)

0 0

31 3

DPORT_
PERI_R

ST_
RSA

0

2

DPORT_
PERI_R

ST_
SHA

0

1

DPORT_
PERI_R

ST_
AES

0

0

Reset

DPORT_PERI_RST_RSA Set the bit to reset the clock of RSA module. Clear the bit to release the

clock of RSA module. (R/W)

DPORT_PERI_RST_SHA Set the bit to reset the clock of SHA module. Clear the bit to release the

clock of SHA module. (R/W)

DPORT_PERI_RST_AES Set the bit to reset the clock of AES module. Clear the bit to release the

clock of AES module. (R/W)

Espressif Systems 100
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Register 5.5. DPORT_APPCPU_CTRL_REG_A_REG (0x02C)

(re
se

rve
d)

0 0

31 1

DPORT_
APPCPU_R

ESETT
IN

G

1

0

Reset

DPORT_APPCPU_RESETTING Set to 1 to reset APP_CPU. Clear the bit to release APP_CPU. (R/W)

Register 5.6. DPORT_APPCPU_CTRL_REG_B_REG (0x030)

(re
se

rve
d)

0 0

31 1

DPORT_
APPCPU_C

LK
GAT

E_E
N

0

0

Reset

DPORT_APPCPU_CLKGATE_EN Set to 1 to enable the clock of APP_CPU. Clear the bit to disable

the clock of APP_CPU. (R/W)

Register 5.7. DPORT_APPCPU_CTRL_REG_C_REG (0x034)

(re
se

rve
d)

0 0

31 1

DPORT_
APPCPU_R

UNSTA
LL

0

0

Reset

DPORT_APPCPU_RUNSTALL Set to 1 to put APP_CPU into stalled state. Clear the bit to release

APP_CPU from stalled state. (R/W)

Espressif Systems 101
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Register 5.8. DPORT_APPCPU_CTRL_REG_D_REG (0x038)

0x000000000

31 0

Reset

DPORT_APPCPU_CTRL_REG_D_REG When APP_CPU is booted up with ROM code, it will jump

to the address stored in this register. (R/W)

Register 5.9. DPORT_CPU_PER_CONF_REG (0x03C)

(re
se

rve
d)

0 0

31 2

DPORT_
CPU_C

PUPERIO
D_S

EL

0 0

1 0

Reset

DPORT_CPU_CPUPERIOD_SEL Select CPU clock. Refer to Table 3-3 for details. (R/W)

Register 5.10. DPORT_PRO_CACHE_CTRL_REG (0x040)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

DPORT_
PRO_D

RAM
_H

L

0

16

(re
se

rve
d)

0 0 0 0

15 12

DPORT_
PRO_D

RAM
_S

PLIT

0

11

DPORT_
PRO_S

IN
GLE

_IR
AM

_E
NA

0

10

(re
se

rve
d)

0 0 0 0

9 6

DPORT_
PRO_C

ACHE_F
LU

SH_D
ONE

0

5

DPORT_
PRO_C

ACHE_F
LU

SH_E
NA

1

4

DPORT_
PRO_C

ACHE_E
NABLE

0

3

(re
se

rve
d)

0 0 0

2 0

Reset

DPORT_PRO_DRAM_HL Determines the virtual address mode of the external SRAM. (R/W)

DPORT_PRO_DRAM_SPLIT Determines the virtual address mode of the external SRAM. (R/W)

DPORT_PRO_SINGLE_IRAM_ENA Determines a special mode for PRO_CPU access to the external

flash. (R/W)

DPORT_PRO_CACHE_FLUSH_DONE PRO_CPU cache-flush done. (RO)

DPORT_PRO_CACHE_FLUSH_ENA Flushes the PRO_CPU cache. (R/W)

DPORT_PRO_CACHE_ENABLE Enables the PRO_CPU cache. (R/W)

Espressif Systems 102
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Register 5.11. DPORT_APP_CACHE_CTRL_REG (0x058)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 15

DPORT_
APP_D

RAM
_H

L

0

14

(re
se

rve
d)

0 0

13 12

DPORT_
APP_D

RAM
_S

PLIT

0

11

DPORT_
APP_S

IN
GLE

_IR
AM

_E
NA

0

10

(re
se

rve
d)

0 0 0 0

9 6

DPORT_
APP_C

ACHE_F
LU

SH_D
ONE

0

5

DPORT_
APP_C

ACHE_F
LU

SH_E
NA

1

4

DPORT_
APP_C

ACHE_E
NABLE

0

3

(re
se

rve
d)

0 0 0

2 0

Reset

DPORT_APP_DRAM_HL Determines the virtual address mode of the External SRAM. (R/W)

DPORT_APP_DRAM_SPLIT Determines the virtual address mode of the External SRAM. (R/W)

DPORT_APP_SINGLE_IRAM_ENA Determines a special mode for APP_CPU access to the external

flash. (R/W)

DPORT_APP_CACHE_FLUSH_DONE APP_CPU cache-flush done. (RO)

DPORT_APP_CACHE_FLUSH_ENA Flushes the APP_CPU cache. (R/W)

DPORT_APP_CACHE_ENABLE Enables the APP_CPU cache. (R/W)

Register 5.12. DPORT_CACHE_MUX_MODE_REG (0x07C)

(re
se

rve
d)

0 0

31 2

DPORT_
CACHE_M

UX_
M

ODE

0 0

1 0

Reset

DPORT_CACHE_MUX_MODE The mode of the two caches sharing the memory. (R/W)

Espressif Systems 103
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Register 5.13. DPORT_IMMU_PAGE_MODE_REG (0x080)

(re
se

rve
d)

0 0

31 3

DPORT_
IM

M
U_P

AGE_M
ODE

0 0

2 1

(re
se

rve
d)

0

0

Reset

DPORT_IMMU_PAGE_MODE Page size in the MMU for the internal SRAM 0. (R/W)

Register 5.14. DPORT_DMMU_PAGE_MODE_REG (0x084)

(re
se

rve
d)

0 0

31 3

DPORT_
DM

M
U_P

AGE_M
ODE

0 0

2 1

(re
se

rve
d)

0

0

Reset

DPORT_DMMU_PAGE_MODE Page size in the MMU for the internal SRAM 2. (R/W)

Register 5.15. DPORT_AHB_MPU_TABLE_0_REG (0x0B4)

0xFFFFFFFF

31 0

Reset

DPORT_AHB_MPU_TABLE_0_REG MPU for DMA. (R/W)

Register 5.16. DPORT_AHB_MPU_TABLE_1_REG (0x0B8)

(re
se

rve
d)

0 0

31 9

DPORT_
AHB_A

CCESS_G
RANT_

1

0x1FF

8 0

Reset

DPORT_AHB_ACCESS_GRANT_1 MPU for DMA. (R/W)

Espressif Systems 104
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Register 5.17. DPORT_PERIP_CLK_EN_REG (0x0C0)

(re
se

rve
d)

11111

31 27

(re
se

rve
d)

0

26

(re
se

rve
d)

0

25

DPORT_
UART_

M
EM

_C
LK

_E
N

1

24

DPORT_
UART2

_C
LK

_E
N

1

23

DPORT_
SPI_D

M
A_C

LK
_E

N

1

22

DPORT_
I2S

1_
CLK

_E
N

0

21

DPORT_
PW

M
1_

CLK
_E

N

0

20

DPORT_
TW

AI_C
LK

_E
N

0

19

DPORT_
I2C

_E
XT

1_
CLK

_E
N

0

18

DPORT_
PW

M
0_

CLK
_E

N

0

17

DPORT_
SPI3_

CLK
_E

N

1

16

DPORT_
TIM

ERGROUP1_
CLK

_E
N

1

15

DPORT_
EFU

SE_C
LK

_E
N

1

14

DPORT_
TIM

ERGROUP_C
LK

_E
N

1

13

DPORT_
UHCI1_

CLK
_E

N

0

12

DPORT_
LE

DC_C
LK

_E
N

0

11

DPORT_
PCNT_

CLK
_E

N

0

10

DPORT_
RM

T_
CLK

_E
N

0

9

DPORT_
UHCI0_

CLK
_E

N

0

8

DPORT_
I2C

_E
XT

0_
CLK

_E
N

0

7

DPORT_
SPI2_

CLK
_E

N

1

6

DPORT_
UART1

_C
LK

_E
N

1

5

DPORT_
I2S

0_
CLK

_E
N

0

4

(re
se

rve
d)

1

3

DPORT_
UART_

CLK
_E

N

1

2

DPORT_
SPI01

_C
LK

_E
N

1

1

(re
se

rve
d)

1

0

Reset

Set the following bit to enable the clock of the corresponding module. Clear the bit to disable the clock

of the corresponding module.

DPORT_UART_MEM_CLK_EN Shared memory of UART0 ~ 2. (R/W)

DPORT_UART2_CLK_EN UART2 module. (R/W)

DPORT_SPI_DMA_CLK_EN SPI_DMA module. (R/W)

DPORT_I2S1_CLK_EN I2S1 module. (R/W)

DPORT_PWM1_CLK_EN PWM1 module. (R/W)

DPORT_TWAI_CLK_EN TWAI module. (R/W)

DPORT_I2C_EXT1_CLK_EN I2C1 module. (R/W)

DPORT_PWM0_CLK_EN PWM0 module. (R/W)

DPORT_SPI3_CLK_EN SPI3 module. (R/W)

DPORT_TIMERGROUP1_CLK_EN TIMG1 module. (R/W)

DPORT_EFUSE_CLK_EN eFuse module. (R/W)

DPORT_TIMERGROUP_CLK_EN TIMG0 module. (R/W)

DPORT_UHCI1_CLK_EN UDMA1 module. (R/W)

DPORT_LEDC_CLK_EN LEDC module. (R/W)

DPORT_PCNT_CLK_EN PCNT module. (R/W)

DPORT_RMT_CLK_EN RMT module. (R/W)

DPORT_UHCI0_CLK_EN UDMA0 module. (R/W)

DPORT_I2C_EXT0_CLK_EN I2C0 module. (R/W)

DPORT_SPI2_CLK_EN SPI2 module. (R/W)

Continued on the next page...

Espressif Systems 105
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Register 5.17. DPORT_PERIP_CLK_EN_REG (0x0C0)

Continued from the previous page...

DPORT_UART1_CLK_EN UART1 module. (R/W)

DPORT_I2S0_CLK_EN I2S0 module. (R/W)

DPORT_UART_CLK_EN UART0 module. (R/W)

DPORT_SPI01_CLK_EN SPI0 and SPI1 module. (R/W)

Register 5.18. DPORT_PERIP_RST_EN_REG (0x0C4)

(re
se

rve
d)

00000

31 27

(re
se

rve
d)

0

26

(re
se

rve
d)

0

25

DPORT_
UART_

M
EM

_R
ST

0

24

DPORT_
UART2

_R
ST

0

23

DPORT_
SPI_D

M
A_R

ST

0

22

DPORT_
I2S

1_
RST

0

21

DPORT_
PW

M
1_

RST

0

20

DPORT_
TW

AI_R
ST

0

19

DPORT_
I2C

_E
XT

1_
RST

0

18

DPORT_
PW

M
0_

RST

0

17

DPORT_
SPI3_

RST

0

16

DPORT_
TIM

ERGROUP1_
RST

0

15

DPORT_
EFU

SE_R
ST

0

14

DPORT_
TIM

ERGROUP_R
ST

0

13

DPORT_
UHCI1_

RST

0

12

DPORT_
LE

DC_R
ST

0

11

DPORT_
PCNT_

RST

0

10

DPORT_
RM

T_
RST

0

9

DPORT_
UHCI0_

RST

0

8

DPORT_
I2C

_E
XT

0_
RST

0

7

DPORT_
SPI2_

RST

0

6

DPORT_
UART1

_R
ST

0

5

DPORT_
I2S

0_
RST

0

4

(re
se

rve
d)

0

3

DPORT_
UART_

RST

0

2

DPORT_
SPI01

_R
ST

0

1

(re
se

rve
d)

0

0

Reset

Set each bit to reset the corresponding module. Clear the bit to release the corresponding module. For the list of

modules, please refer to register 5.17.

Register 5.19. DPORT_WIFI_CLK_EN_REG (0x0CC)

(re
se

rve
d)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1

31 15

DPORT_
W

IFI
_C

LK
_E

M
AC_E

N

1

14

DPORT_
W

IFI
_C

LK
_S

DIO
_H

OST_
EN

1

13

(re
se

rve
d)

0 0 0 0 0 0 0 1

12 5

DPORT_
W

IFI
_C

LK
_S

DIO
SLA

VE_E
N

1

4

(re
se

rve
d)

0 0 0 0

3 0

Reset

DPORT_WIFI_CLK_EMAC_EN Set the bit to enable the clock of Ethernet MAC module. Clear the

bit to disable the clock of Ethernet MAC module. (R/W)

DPORT_WIFI_CLK_SDIO_HOST_EN Set the bit to enable the clock of SD/MMC module. Clear the

bit to disable the clock of SD/MMC module. (R/W)

DPORT_WIFI_CLK_SDIOSLAVE_EN Set the bit to enable the clock of SDIO module. Clear the bit

to disable the clock of SDIO module. (R/W)

Espressif Systems 106
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Register 5.20. DPORT_WIFI_RST_EN_REG (0x0D0)

(re
se

rve
d)

0 0

31 8

DPORT_
EM

AC_R
ST

0

7

DPORT_
SDIO

_H
OST_

RST

0

6

DPORT_
SDIO

_R
ST

0

5

(re
se

rve
d)

0 0 0 0 0

4 0

Reset

DPORT_EMAC_RST Set the bit to reset Ethernet MAC module. Clear the bit to release Ethernet

MAC module. (R/W)

DPORT_SDIO_HOST_RST Set the bit to reset SD/MMC module. Clear the bit to release SD/MMC

module. (R/W)

DPORT_SDIO_RST Set the bit to reset SDIO module. Clear the bit to release SDIO module. (R/W)

Register 5.21. DPORT_CPU_INTR_FROM_CPU_n_REG (n: 03) (0xDC+4*n)

(re
se

rve
d)

0 0

31 1

DPORT_
CPU_IN

TR
_F

ROM
_C

PU_n

0

0

Reset

DPORT_CPU_INTR_FROM_CPU_n Interrupt in both CPUs. (R/W)

Register 5.22. DPORT_PRO_INTR_STATUS_REG_n_REG (n: 02) (0xEC+4*n)

0x000000000

31 0

Reset

DPORT_PRO_INTR_STATUS_REG_n_REG PRO_CPU interrupt status. (RO)

Register 5.23. DPORT_APP_INTR_STATUS_REG_n_REG (n: 02) (0xF8+4*n)

0x000000000

31 0

Reset

DPORT_APP_INTR_STATUS_REG_n_REG APP_CPU interrupt status. (RO)

Espressif Systems 107
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Register 5.24. DPORT_PRO_MAC_INTR_MAP_REG (0x104)

Register 5.25. DPORT_PRO_MAC_NMI_MAP_REG (0x108)

Register 5.26. DPORT_PRO_BB_INT_MAP_REG (0x10C)

Register 5.27. DPORT_PRO_BT_MAC_INT_MAP_REG (0x110)

Register 5.28. DPORT_PRO_BT_BB_INT_MAP_REG (0x114)

Register 5.29. DPORT_PRO_BT_BB_NMI_MAP_REG (0x118)

Register 5.30. DPORT_PRO_RWBT_IRQ_MAP_REG (0x11C)

Register 5.31. DPORT_PRO_RWBLE_IRQ_MAP_REG (0x120)

Register 5.32. DPORT_PRO_RWBT_NMI_MAP_REG (0x124)

Register 5.33. DPORT_PRO_RWBLE_NMI_MAP_REG (0x128)

Register 5.34. DPORT_PRO_SLC0_INTR_MAP_REG (0x12C)

Register 5.35. DPORT_PRO_SLC1_INTR_MAP_REG (0x130)

Register 5.36. DPORT_PRO_UHCI0_INTR_MAP_REG (0x134)

Register 5.37. DPORT_PRO_UHCI1_INTR_MAP_REG (0x138)

Register 5.38. DPORT_PRO_TG_T0_LEVEL_INT_MAP_REG (0x13C)

Register 5.39. DPORT_PRO_TG_T1_LEVEL_INT_MAP_REG (0x140)

Register 5.40. DPORT_PRO_TG_WDT_LEVEL_INT_MAP_REG (0x144)

Register 5.41. DPORT_PRO_TG_LACT_LEVEL_INT_MAP_REG (0x148)

Register 5.42. DPORT_PRO_TG1_T0_LEVEL_INT_MAP_REG (0x14C)

Register 5.43. DPORT_PRO_TG1_T1_LEVEL_INT_MAP_REG (0x150)

Register 5.44. DPORT_PRO_TG1_WDT_LEVEL_INT_MAP_REG (0x154)

Register 5.45. DPORT_PRO_TG1_LACT_LEVEL_INT_MAP_REG (0x158)

Register 5.46. DPORT_PRO_GPIO_INTERRUPT_MAP_REG (0x15C)

Register 5.47. DPORT_PRO_GPIO_INTERRUPT_NMI_MAP_REG (0x160)

Register 5.48. DPORT_PRO_CPU_INTR_FROM_CPU_0_MAP_REG (0x164)

Register 5.49. DPORT_PRO_CPU_INTR_FROM_CPU_1_MAP_REG (0x168)

Register 5.50. DPORT_PRO_CPU_INTR_FROM_CPU_2_MAP_REG (0x16C)

Register 5.51. DPORT_PRO_CPU_INTR_FROM_CPU_3_MAP_REG (0x170)

Register 5.52. DPORT_PRO_SPI_INTR_0_MAP_REG (0x174)

Register 5.53. DPORT_PRO_SPI_INTR_1_MAP_REG (0x178)

Register 5.54. DPORT_PRO_SPI_INTR_2_MAP_REG (0x17C)

Register 5.55. DPORT_PRO_SPI_INTR_3_MAP_REG (0x180)

Register 5.56. DPORT_PRO_I2S0_INT_MAP_REG (0x184)

Register 5.57. DPORT_PRO_I2S1_INT_MAP_REG (0x188)

Register 5.58. DPORT_PRO_UART_INTR_MAP_REG (0x18C)

Espressif Systems 108
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Register 5.59. DPORT_PRO_UART1_INTR_MAP_REG (0x190)

Register 5.60. DPORT_PRO_UART2_INTR_MAP_REG (0x194)

Register 5.61. DPORT_PRO_SDIO_HOST_INTERRUPT_MAP_REG (0x198)

Register 5.62. DPORT_PRO_EMAC_INT_MAP_REG (0x19C)

Register 5.63. DPORT_PRO_PWM0_INTR_MAP_REG (0x1A0)

Register 5.64. DPORT_PRO_PWM1_INTR_MAP_REG (0x1A4)

Register 5.65. DPORT_PRO_LEDC_INT_MAP_REG (0x1B0)

Register 5.66. DPORT_PRO_EFUSE_INT_MAP_REG (0x1B4)

Register 5.67. DPORT_PRO_TWAI_INT_MAP_REG (0x1B8)

Register 5.68. DPORT_PRO_RTC_CORE_INTR_MAP_REG (0x1BC)

Register 5.69. DPORT_PRO_RMT_INTR_MAP_REG (0x1C0)

Register 5.70. DPORT_PRO_PCNT_INTR_MAP_REG (0x1C4)

Register 5.71. DPORT_PRO_I2C_EXT0_INTR_MAP_REG (0x1C8)

Register 5.72. DPORT_PRO_I2C_EXT1_INTR_MAP_REG (0x1CC)

Register 5.73. DPORT_PRO_RSA_INTR_MAP_REG (0x1D0)

Register 5.74. DPORT_PRO_SPI1_DMA_INT_MAP_REG (0x1D4)

Register 5.75. DPORT_PRO_SPI2_DMA_INT_MAP_REG (0x1D8)

Register 5.76. DPORT_PRO_SPI3_DMA_INT_MAP_REG (0x1DC)

Register 5.77. DPORT_PRO_WDG_INT_MAP_REG (0x1E0)

Register 5.78. DPORT_PRO_TIMER_INT1_MAP_REG (0x1E4)

Register 5.79. DPORT_PRO_TIMER_INT2_MAP_REG (0x1E8)

Register 5.80. DPORT_PRO_TG_T0_EDGE_INT_MAP_REG (0x1EC)

Register 5.81. DPORT_PRO_TG_T1_EDGE_INT_MAP_REG (0x1F0)

Register 5.82. DPORT_PRO_TG_WDT_EDGE_INT_MAP_REG (0x1F4)

Register 5.83. DPORT_PRO_TG_LACT_EDGE_INT_MAP_REG (0x1F8)

Register 5.84. DPORT_PRO_TG1_T0_EDGE_INT_MAP_REG (0x1FC)

Register 5.85. DPORT_PRO_TG1_T1_EDGE_INT_MAP_REG (0x200)

Register 5.86. DPORT_PRO_TG1_WDT_EDGE_INT_MAP_REG (0x204)

Register 5.87. DPORT_PRO_TG1_LACT_EDGE_INT_MAP_REG (0x208)

Register 5.88. DPORT_PRO_MMU_IA_INT_MAP_REG (0x20C)

Register 5.89. DPORT_PRO_MPU_IA_INT_MAP_REG (0x210)

Register 5.90. DPORT_PRO_CACHE_IA_INT_MAP_REG (0x214)

(re
se

rve
d)

0 0

31 5

DPORT_
PRO_*

_M
AP

10000

4 0

Reset

DPORT_PRO_*_MAP Interrupt map. (R/W)

Espressif Systems 109
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Register 5.91. DPORT_APP_MAC_INTR_MAP_REG (0x218)

Register 5.92. DPORT_APP_MAC_NMI_MAP_REG (0x21C)

Register 5.93. DPORT_APP_BB_INT_MAP_REG (0x220)

Register 5.94. DPORT_APP_BT_MAC_INT_MAP_REG (0x224)

Register 5.95. DPORT_APP_BT_BB_INT_MAP_REG (0x228)

Register 5.96. DPORT_APP_BT_BB_NMI_MAP_REG (0x22C)

Register 5.97. DPORT_APP_RWBT_IRQ_MAP_REG (0x230)

Register 5.98. DPORT_APP_RWBLE_IRQ_MAP_REG (0x234)

Register 5.99. DPORT_APP_RWBT_NMI_MAP_REG (0x238)

Register 5.100. DPORT_APP_RWBLE_NMI_MAP_REG (0x23C)

Register 5.101. DPORT_APP_SLC0_INTR_MAP_REG (0x240)

Register 5.102. DPORT_APP_SLC1_INTR_MAP_REG (0x244)

Register 5.103. DPORT_APP_UHCI0_INTR_MAP_REG (0x248)

Register 5.104. DPORT_APP_UHCI1_INTR_MAP_REG (0x24C)

Register 5.105. DPORT_APP_TG_T0_LEVEL_INT_MAP_REG (0x250)

Register 5.106. DPORT_APP_TG_T1_LEVEL_INT_MAP_REG (0x254)

Register 5.107. DPORT_APP_TG_WDT_LEVEL_INT_MAP_REG (0x258)

Register 5.108. DPORT_APP_TG_LACT_LEVEL_INT_MAP_REG (0x25C)

Register 5.109. DPORT_APP_TG1_T0_LEVEL_INT_MAP_REG (0x260)

Register 5.110. DPORT_APP_TG1_T1_LEVEL_INT_MAP_REG (0x264)

Register 5.111. DPORT_APP_TG1_WDT_LEVEL_INT_MAP_REG (0x268)

Register 5.112. DPORT_APP_TG1_LACT_LEVEL_INT_MAP_REG (0x26C)

Register 5.113. DPORT_APP_GPIO_INTERRUPT_MAP_REG (0x270)

Register 5.114. DPORT_APP_GPIO_INTERRUPT_NMI_MAP_REG (0x274)

Register 5.115. DPORT_APP_CPU_INTR_FROM_CPU_0_MAP_REG (0x278)

Register 5.116. DPORT_APP_CPU_INTR_FROM_CPU_1_MAP_REG (0x27C)

Register 5.117. DPORT_APP_CPU_INTR_FROM_CPU_2_MAP_REG (0x280)

Register 5.118. DPORT_APP_CPU_INTR_FROM_CPU_3_MAP_REG (0x284)

Register 5.119. DPORT_APP_SPI_INTR_0_MAP_REG (0x288)

Register 5.120. DPORT_APP_SPI_INTR_1_MAP_REG (0x28C)

Register 5.121. DPORT_APP_SPI_INTR_2_MAP_REG (0x290)

Register 5.122. DPORT_APP_SPI_INTR_3_MAP_REG (0x294)

Register 5.123. DPORT_APP_I2S0_INT_MAP_REG (0x298)

Register 5.124. DPORT_APP_I2S1_INT_MAP_REG (0x29C)

Register 5.125. DPORT_APP_UART_INTR_MAP_REG (0x2A0)

Espressif Systems 110
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Register 5.126. DPORT_APP_UART1_INTR_MAP_REG (0x2A4)

Register 5.127. DPORT_APP_UART2_INTR_MAP_REG (0x2A8)

Register 5.128. DPORT_APP_SDIO_HOST_INTERRUPT_MAP_REG (0x2AC)

Register 5.129. DPORT_APP_EMAC_INT_MAP_REG (0x2B0)

Register 5.130. DPORT_APP_PWM0_INTR_MAP_REG (0x2B4)

Register 5.131. DPORT_APP_PWM1_INTR_MAP_REG (0x2B8)

Register 5.132. DPORT_APP_LEDC_INT_MAP_REG (0x2C4)

Register 5.133. DPORT_APP_EFUSE_INT_MAP_REG (0x2C8)

Register 5.134. DPORT_APP_TWAI_INT_MAP_REG (0x2CC)

Register 5.135. DPORT_APP_RTC_CORE_INTR_MAP_REG (0x2D0)

Register 5.136. DPORT_APP_RMT_INTR_MAP_REG (0x2D4)

Register 5.137. DPORT_APP_PCNT_INTR_MAP_REG (0x2D8)

Register 5.138. DPORT_APP_I2C_EXT0_INTR_MAP_REG (0x2DC)

Register 5.139. DPORT_APP_I2C_EXT1_INTR_MAP_REG (0x2E0)

Register 5.140. DPORT_APP_RSA_INTR_MAP_REG (0x2E4)

Register 5.141. DPORT_APP_SPI1_DMA_INT_MAP_REG (0x2E8)

Register 5.142. DPORT_APP_SPI2_DMA_INT_MAP_REG (0x2EC)

Register 5.143. DPORT_APP_SPI3_DMA_INT_MAP_REG (0x2F0)

Register 5.144. DPORT_APP_WDG_INT_MAP_REG (0x2F4)

Register 5.145. DPORT_APP_TIMER_INT1_MAP_REG (0x2F8)

Register 5.146. DPORT_APP_TIMER_INT2_MAP_REG (0x2FC)

Register 5.147. DPORT_APP_TG_T0_EDGE_INT_MAP_REG (0x300)

Register 5.148. DPORT_APP_TG_T1_EDGE_INT_MAP_REG (0x304)

Register 5.149. DPORT_APP_TG_WDT_EDGE_INT_MAP_REG (0x308)

Register 5.150. DPORT_APP_TG_LACT_EDGE_INT_MAP_REG (0x30C)

Register 5.151. DPORT_APP_TG1_T0_EDGE_INT_MAP_REG (0x310)

Register 5.152. DPORT_APP_TG1_T1_EDGE_INT_MAP_REG (0x314)

Register 5.153. DPORT_APP_TG1_WDT_EDGE_INT_MAP_REG (0x318)

Register 5.154. DPORT_APP_TG1_LACT_EDGE_INT_MAP_REG (0x31C)

Register 5.155. DPORT_APP_MMU_IA_INT_MAP_REG (0x320)

Register 5.156. DPORT_APP_MPU_IA_INT_MAP_REG (0x324)

Register 5.157. DPORT_APP_CACHE_IA_INT_MAP_REG (0x328)

(re
se

rve
d)

0 0

31 5

DPORT_
APP_*

_M
AP

10000

4 0

Reset

DPORT_APP_*_MAP Interrupt map. (R/W)

Espressif Systems 111
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Register 5.158. DPORT_AHBLITE_MPU_TABLE_UART_REG (0x32C)

Register 5.159. DPORT_AHBLITE_MPU_TABLE_SPI1_REG (0x330)

Register 5.160. DPORT_AHBLITE_MPU_TABLE_SPI0_REG (0x334)

Register 5.161. DPORT_AHBLITE_MPU_TABLE_GPIO_REG (0x338)

Register 5.162. DPORT_AHBLITE_MPU_TABLE_RTC_REG (0x348)

Register 5.163. DPORT_AHBLITE_MPU_TABLE_IO_MUX_REG (0x34C)

Register 5.164. DPORT_AHBLITE_MPU_TABLE_HINF_REG (0x354)

Register 5.165. DPORT_AHBLITE_MPU_TABLE_UHCI1_REG (0x358)

Register 5.166. DPORT_AHBLITE_MPU_TABLE_I2S0_REG (0x364)

Register 5.167. DPORT_AHBLITE_MPU_TABLE_UART1_REG (0x368)

Register 5.168. DPORT_AHBLITE_MPU_TABLE_I2C_EXT0_REG (0x374)

Register 5.169. DPORT_AHBLITE_MPU_TABLE_UHCI0_REG (0x378)

Register 5.170. DPORT_AHBLITE_MPU_TABLE_SLCHOST_REG (0x37C)

Register 5.171. DPORT_AHBLITE_MPU_TABLE_RMT_REG (0x380)

Register 5.172. DPORT_AHBLITE_MPU_TABLE_PCNT_REG (0x384)

Register 5.173. DPORT_AHBLITE_MPU_TABLE_SLC_REG (0x388)

Register 5.174. DPORT_AHBLITE_MPU_TABLE_LEDC_REG (0x38C)

Register 5.175. DPORT_AHBLITE_MPU_TABLE_EFUSE_REG (0x390)

Register 5.176. DPORT_AHBLITE_MPU_TABLE_SPI_ENCRYPT_REG (0x394)

Register 5.177. DPORT_AHBLITE_MPU_TABLE_PWM0_REG (0x39C)

Register 5.178. DPORT_AHBLITE_MPU_TABLE_TIMERGROUP_REG (0x3A0)

Register 5.179. DPORT_AHBLITE_MPU_TABLE_TIMERGROUP1_REG (0x3A4)

Register 5.180. DPORT_AHBLITE_MPU_TABLE_SPI2_REG (0x3A8)

Register 5.181. DPORT_AHBLITE_MPU_TABLE_SPI3_REG (0x3AC)

Register 5.182. DPORT_AHBLITE_MPU_TABLE_APB_CTRL_REG (0x3B0)

Register 5.183. DPORT_AHBLITE_MPU_TABLE_I2C_EXT1_REG (0x3B4)

Register 5.184. DPORT_AHBLITE_MPU_TABLE_SDIO_HOST_REG (0x3B8)

Register 5.185. DPORT_AHBLITE_MPU_TABLE_EMAC_REG (0x3BC)

Register 5.186. DPORT_AHBLITE_MPU_TABLE_PWM1_REG (0x3C4)

Register 5.187. DPORT_AHBLITE_MPU_TABLE_I2S1_REG (0x3C8)

Register 5.188. DPORT_AHBLITE_MPU_TABLE_UART2_REG (0x3CC)

Espressif Systems 112
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Register 5.189. DPORT_AHBLITE_MPU_TABLE_PWR_REG (0x3E4)

(re
se

rve
d)

0 0

31 6

DPORT_
AHBLIT

E_*
_A

CCESS_G
RANT_

CONFIG

0 0 0 0 0 0

5 0

Reset

DPORT_AHBLITE_*_ACCESS_GRANT_CONFIG MPU for peripherals. (R/W)

Register 5.190. DPORT_IMMU_TABLEn_REG (n: 015) (0x504+4*n)

(re
se

rve
d)

0 0

31 7

DPORT_
IM

M
U_T

ABLE
n

0000000

6 0

Reset

DPORT_IMMU_TABLEn MMU for internal SRAM. When n is 0 ~ 9, the reset value is 0. When n is 10

~ 15, the reset value is 10, 11, 12, 13, 14, 15, respectively. (R/W)

Register 5.191. DPORT_DMMU_TABLEn_REG (n: 015) (0x544+4*n)

(re
se

rve
d)

0 0

31 7

DPORT_
DM

M
U_T

ABLE
n

0000000

6 0

Reset

DPORT_DMMU_TABLEn MMU for internal SRAM. When n is 0 ~ 15, the reset value is 0 ~ 15, re-

spectively. (R/W)

Espressif Systems 113
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

5 DPort Registers

Register 5.192. DPORT_SPI_DMA_CHAN_SEL_REG (0x5A8)

(re
se

rve
d)

0 0

31 6

DPORT_
SPI_S

PI3_
DM

A_C
HAN_S

EL

0 0

5 4

DPORT_
SPI_S

PI2_
DM

A_C
HAN_S

EL

0 0

3 2

DPORT_
SPI_S

PI1_
DM

A_C
HAN_S

EL

0 0

1 0

Reset

DPORT_SPI_SPI3_DMA_CHAN_SEL Selects DMA channel for SPI3. (R/W)

DPORT_SPI_SPI2_DMA_CHAN_SEL Selects DMA channel for SPI2. (R/W)

DPORT_SPI_SPI1_DMA_CHAN_SEL Selects DMA channel for SPI1. (R/W)

Espressif Systems 114
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

6 DMA Controller (DMA)

6 DMA Controller (DMA)

6.1 Overview
Direct Memory Access (DMA) is used for high-speed data transfer between peripherals and memory, as well as

from memory to memory. Data can be quickly moved with DMA without any CPU intervention, thus allowing for

more efficient use of the cores when processing data.

In the ESP32, 13 peripherals are capable of using DMA for data transfer, namely, UART0, UART1, UART2, SPI1,

SPI2, SPI3, I2S0, I2S1, SDIO slave, SD/MMC host, EMAC, BT, and Wi-Fi.

6.2 Features
The DMA controllers in the ESP32 feature:

• AHB bus architecture

• Support for full-duplex and half-duplex data transfers

• Programmable data transfer length in bytes

• Support for 4-beat burst transfer

• 328 KB DMA address space

• All high-speed communication modules powered by DMA

6.3 Functional Description
All modules that require high-speed data transfer in bulk contain a DMA controller. DMA addressing uses the same

data bus as the CPU to read/write to the internal RAM.

Each DMA controller features different functions. However, the architecture of the DMA engine (DMA_ENGINE) is

the same in all DMA controllers.

6.3.1 DMA Engine Architecture

Figure 61. DMA Engine Architecture

The DMA Engine accesses SRAM over the AHB BUS. In Figure 6-1, the RAM represents the internal SRAM banks

available on ESP32. Further details on the SRAM addressing range can be found in Chapter System and Memory.

Espressif Systems 115
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

6 DMA Controller (DMA)

Software can use a DMA Engine by assigning a linked list to define the DMA operational parameters.

The DMA Engine transmits the data from the RAM to a peripheral, according to the contents of the out_link de-

scriptor. Also, the DMA Engine stores the data received from a peripheral into a specified RAM location, according

to the contents of the in_link descriptor.

6.3.2 Linked List

Figure 62. Linked List Structure

The DMA descriptor’s linked lists (out_link and in_link) have the same structure. As shown in Figure 6-2, a linked-list

descriptor consists of three words. The meaning of each field is as follows:

• owner (DW0) [31]: The allowed operator of the buffer corresponding to the current linked list.

1’b0: the allowed operator is the CPU;

1’b1: the allowed operator is the DMA controller.

• eof (DW0) [30]: End-Of-File character.

1’b0: the linked-list item does not mark the end of the linked list;

1’b1: the linked-list item is at the end of the linked list.

• reserved (DW0) [29:24]: Reserved bits.

Software should not write 1’s in this space.

• length (DW0) [23:12]: The number of valid bytes in the buffer corresponding to the current linked list. The

field value indicates the number of bytes to be transferred to/from the buffer denoted by word DW1.

• size (DW0) [11:0]: The size of the buffer corresponding to the current linked list.

NOTE: The size must be word-aligned.

• buffer address pointer (DW1): Buffer address pointer. This is the address of the data buffer.

NOTE: The buffer address must be word-aligned.

• next descriptor address (DW2): The address pointer of the next linked-list item. The value is 0, if the current

linked-list item is the last on the list (eof=1).

When receiving data, if the data transfer length is smaller than the specified buffer size, DMA will not use the

remaining space. This enables the DMA engine to be used for transferring an arbitrary number of data bytes.

6.4 UART DMA (UDMA)
The ESP32 has three UART interfaces that share two UDMA (UART DMA) controllers. The UHCI_UARTx_CE (x is

0, 1, or 2) is used for selecting the UART controller to use the UDMA.

Espressif Systems 116
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

6 DMA Controller (DMA)

Figure 63. Data Transfer in UDMA Mode

Figure 6-3 shows the data transfer in UDMA mode. Before the DMA Engine receives data, software must initialize

the receive-linked-list. UHCI_INLINK_ADDR is used to point to the first in_link descriptor. The register must be

programmed with the lower 20 bits of the address of the initial linked-list item. After UHCI_INLINK_START is set,

the Universal Host Controller Interface (UHCI) will transmit the data received by UART to the Decoder. After being

parsed, the data will be stored in the RAM as specified by the receive-linked-list descriptor.

Before DMA transmits data, software must initialize the transmit-linked-list and the data to be transferred. UHCI_

OUTLINK_ADDR is used to point to the first out_link descriptor. The register must be programmed with the lower

20 bits of the address of the initial transmit-linked-list item. After UHCI_OUTLINK_START is set, the DMA Engine

will read data from the RAM location specified by the linked-list descriptor and then transfer the data through the

Encoder. The DMA Engine will then shift the data out serially through the UART transmitter.

The UART DMA follows a format of (separator + data + separator). The Encoder is used for adding separa-

tors before and after data, as well as using special-character sequences to replace data that are the same

as separators. The Decoder is used for removing separators before and after data, as well as replacing the

special-character sequences with separators. There can be multiple consecutive separators marking the be-

ginning or end of data. These separators can be configured through UHCI_SEPER_CH, with the default val-

ues being 0xC0. Data that are the same as separators can be replaced with UHCI_ESC_SEQ0_CHAR0 (0xDB

by default) and UHCI_ESC_SEQ0_CHAR1 (0xDD by default). After the transmission process is complete, a

UHCI_OUT_TOTAL_EOF_INT interrupt will be generated. After the reception procedure is complete, a UHCI_IN_

SUC_EOF_INT interrupt will be generated.

Note:

Please note that the buffer address pointer field in in_link descriptors should be word-aligned, and the size field in the last

in_link descriptor should be at least 4 bytes larger than the length of received data.

Espressif Systems 117
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

6 DMA Controller (DMA)

6.5 SPI DMA Interface

Figure 64. SPI DMA

ESP32 SPI modules can use DMA as well as the CPU for data exchange with peripherals. As can be seen from

Figure 6-4, two DMA channels are shared by SPI1, SPI2 and SPI3 controllers. Each DMA channel can be used

by any one SPI controller at any given time.

The ESP32 SPI DMA Engine also uses a linked list to receive/transmit data. Burst transmission is supported. The

minimum data length for a single transfer is one byte. Consecutive data transfer is also supported.

SPI1_DMA_CHAN_SEL[1:0], SPI2_DMA_CHAN_SEL[1:0] and SPI3_DMA_CHAN_SEL[1:0] in DPORT_SPI_DMA_

CHAN_SEL_REG must be configured to enable the SPI DMA interface for a specific SPI controller. Each SPI

controller corresponds to one domain which has two bits with values 0, 1 and 2. Value 3 is reserved and must not

be configured for operation.

Considering SPI1 as an example,

if SPI SPI1_DMA_CHAN_SEL[1:0] = 0, then SPI1 does not use any DMA channel;

if SPI1_DMA_CHAN_SEL[1:0] = 1, then SPI1 enables DMA channel1;

if SPI1_DMA_CHAN_SEL[1:0] = 2, then SPI1 enables DMA channel2.

The SPI_OUTLINK_START bit in SPI_DMA_OUT_LINK_REG and the SPI_INLINK_START bit in SPI_DMA_IN_LINK_REG

are used for enabling the DMA Engine. The two bits are self-cleared by hardware. When SPI_OUTLINK_START

is set to 1, the DMA Engine starts processing the outbound linked list descriptor and prepares to transmit data.

When SPI_INLINK_START is set to 1, then the DMA Engine starts processing the inbound linked-list descriptor

and gets prepared to receive data.

Software should configure the SPI DMA as follows:

1. Reset the DMA state machine and FIFO parameters;

2. Configure the DMA-related registers for operation;

3. Configure the SPI-controller-related registers accordingly;

4. Set SPI_USR to enable DMA operation.

Espressif Systems 118
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

6 DMA Controller (DMA)

6.6 I2S DMA Interface
The ESP32 integrates two I2S modules, I2S0 and I2S1, each of which is powered by a DMA channel. The

REG_I2S_DSCR_EN bit in I2S_FIFO_CONF_REG is used for enabling the DMA operation. ESP32 I2S DMA

uses the standard linked-list descriptor to configure DMA operations for data transfer. Burst transfer is sup-

ported. However, unlike the SPI DMA channels, the data size for a single transfer is one word, or four bytes.

REG_I2S_RX_EOF_NUM[31:0] bit in I2S_RXEOF_NUM_REG is used for configuring the data size of a single trans-

fer operation, in multiples of one word.

I2S_OUTLINK_START bit in I2S_OUT_LINK_REG and I2S_INLINK_START bit in I2S_IN_LINK_REG are used for en-

abling the DMA Engine and are self-cleared by hardware. When I2S_OUTLINK_START is set to 1, the DMA Engine

starts processing the outbound linked-list descriptor and gets prepared to send data. When I2S_INLINK_START

is set to 1, the DMA Engine starts processing the inbound linked-list descriptor and gets prepared to receive

data.

Software should configure the I2S DMA as follows:

1. Configure I2S-controller-related registers;

2. Reset the DMA state machine and FIFO parameters;

3. Configure DMA-related registers for operation;

4. In I2S master mode, set I2S_TX_START bit or I2S_RX_START bit to initiate an I2S operation;

In I2S slave mode, set I2S_TX_START bit or I2S_RX_START bit and wait for data transfer to be initiated by

the host device.

For more information on I2S DMA interrupts, please see Section DMA Interrupts, in Chapter I2S.

Espressif Systems 119
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

7 SPI Controller (SPI)

7.1 Overview

Figure 71. SPI Architecture

As Figure 7-1 shows, ESP32 integrates four SPI controllers which can be used to communicate with external

devices that use the SPI protocol. Controller SPI0 is used as a buffer for accessing external memory. Controller

SPI1 can be used as a master. Controllers SPI2 and SPI3 can be configured as either a master or a slave. When

used as a master, each SPI controller can drive multiple CS signals (CS0 ~ CS2) to activate multiple slaves.

Controllers SPI1 ~ SPI3 share two DMA channels.

The SPI signal buses consist of D, Q, CS0-CS2, CLK, WP, and HD signals, as Table 7-1 shows. Controllers

SPI0 and SPI1 share one signal bus through an arbiter; the signals of the shared bus start with ”SPI”. Controllers

SPI2 and SPI3 use signal buses starting with ”HSPI” and ”VSPI” respectively. The I/O lines included in the above-

mentioned signal buses can be mapped to pins via either the IO_MUX module or the GPIO matrix. (Please refer

to Chapter IO_MUX for details.)

The SPI controller supports four-line full-duplex/half-duplex communication (MOSI, MISO, CS, and CLK lines) and

three-line half-duplex-only communication (DATA, CS, and CLK lines) in GP-SPI mode. In QSPI mode, an SPI

controller accesses the flash or SRAM by using signal buses D, Q, CS0 ~ CS2, CLK, WP, and HD as a four-bit

parallel SPI bus. The mapping between SPI bus signals and pin function signals under different communication

modes is shown in Table 7-1.

Table 71. Mapping Between SPI Bus Signals and Pin Function Signals

Four-line GP-SPI Three-line GP-SPI QSPI Pin function signals

Full-duplex/half-

duplex signal bus

Half-duplex signal

bus

Signal bus SPI signal

bus

HSPI signal

bus

VSPI signal

bus

MOSI DATA D SPID HSPID VSPID

MISO - Q SPIQ HSPIQ VSPIQ

CS CS CS SPICS0 HSPICS0 VSPICS0

CLK CLK CLK SPICLK HSPICLK VSPICLK

- - WP SPIWP HSPIWP VSPIWP

- - HD SPIHD HSPIHD VSPIHD

Espressif Systems 120
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

7.2 SPI Features
General Purpose SPI (GPSPI)

• Programmable data transfer length, in multiples of 1 byte

• Four-line full-duplex/half-duplex communication and three-line half-duplex communication support

• Master mode and slave mode

• Programmable CPOL and CPHA

• Programmable clock

Parallel QSPI

• Communication format support for specific slave devices such as flash

• Programmable communication format

• Six variations of flash-read operations available

• Automatic shift between flash and SRAM access

• Automatic wait states for flash access

SPI DMA Support

• Support for sending and receiving data using linked lists

SPI Interrupt Hardware

• SPI interrupts

• SPI DMA interrupts

7.3 GPSPI
The SPI master mode supports four-line full-duplex/half-duplex communication and three-line half-duplex commu-

nication. Figure 7-2 outlines the connections needed for four-line full-duplex/half-duplex communications.

Figure 72. SPI Master and Slave Fullduplex/Halfduplex Communication

The SPI1 ~ SPI3 controllers can communicate with other slaves as a standard SPI master. SPI2 and SPI3 can

be configured as either a master or a slave. Every SPI master can be connected to three slaves at most by default.

When not using DMA, the maximum length of data received/sent in one burst is 64 bytes. The data length is in

multiples of one byte.

Espressif Systems 121
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Table 72. Command Definitions Supported by GPSPI Slave in Halfduplex Mode

Command Description

0x1 Received by slave; writes data sent by the master into the slave status register via MOSI.

0x2 Received by slave; writes data sent by the master into the slave data buffer via MOSI.

0x3 Sent by slave; sends data in the slave buffer to master via MISO.

0x4 Sent by slave; sends data in the slave status register to master via MISO.

0x6
Writes master data on MOSI into data buffer and then sends the date in the slave data buffer

to MISO.

7.3.1 GPSPI Fourline Fullduplex Communication
When configured to four-line full-duplex mode, the ESP32 SPI can act as either a master or a slave. The length of

received and sent data needs to be set by configuring the SPI_MISO_DLEN_REG, SPI_MOSI_DLEN_REG registers

for master mode as well as SPI_SLV_RDBUF_DLEN_REG, SPI_SLV_WRBUF_DLEN_REG registers for slave mode.

The SPI_DOUTDIN bit and SPI_USR_MOSI bit in register SPI_USER_REG should be configured to enable this

communication mode. The SPI_USR bit in register SPI_CMD_REG needs to be configured to initialize a data

transfer.

7.3.2 GPSPI Fourline Halfduplex Communication
When configured to four-line half-duplex mode, the ESP32 SPI can act as either a master or a slave. In this

mode, the SPI communication supports flexible communication format as: command + address + dummy phase

+ received and/or sent data. The format is specified as follows:

1. command: length of 0 ~ 16 bits; Master Out Slave In (MOSI).

2. address: length of 0 ~ 32/64 bits; Master Out Slave In (MOSI).

3. dummy phase: length of 0 ~ 256 SPI clocks.

4. received and/or sent data: length of 0 ~ 512 bits (64 bytes); Master Out Slave In (MOSI) or Master In Slave

Out (MISO).

The address length is up to 32 bits in GP-SPI master mode and 64 bits in QSPI master mode. The command

phase, address phase, dummy phase and received/sent data phase are controlled by bits SPI_USR_COMMAND,

SPI_USR_ADDR, SPI_USR_DUMMY and SPI_USR_MISO/SPI_USR_MOSI respectively in register SPI_USER_REG.

A certain phase is enabled only when its corresponding control bit is set to 1. Details can be found in register de-

scription. When SPI works as a master, the register can be configured by software as required to determine

whether or not to enable a certain phase.

When SPI works as a slave, the communication format must contain command, address, received and/or sent

data, among which the command has several options listed in Table 7-2. During data transmission or reception,

the CS signal should keep logic level low. If the CS signal is pulled up during transmission, the internal state of the

slave will be reset.

The master can write the slave status register SPI_SLV_WR_STATUS_REG, and decide whether to read data from

register SPI_SLV_WR_STATUS_REG or register SPI_RD_STATUS_REG via the SPI_SLV_STATUS_READBACK bit

in register SPI_SLAVE1_REG. The SPI master can maintain communication with the slave by reading and writing

slave status register, thus realizing complex communication with ease.

The length of received and sent data is controlled by SPI_MISO_DLEN_REG and SPI_MOSI_DLEN_REG in master

mode, as well as SPI_SLV_RDBUF_DLEN_REG and SPI_SLV_WRBUF_DLEN_REG in slave mode. A reception or

Espressif Systems 122
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

transmission of data is controlled by bit SPI_USR_MOSI or SPI_USR_MISO in SPI_USER_REG. The SPI_USR bit

in register SPI_CMD_REG needs to be configured to initialize a data transfer.

7.3.3 GPSPI Threeline Halfduplex Communication
The three-line half-duplex communication differs from four-line half-duplex communication in that the reception

and transmission shares one signal bus and that the communication format must contain command, address,

received and/or sent data. Software can enable three-line half-duplex communication by configuring SPI_SIO bit

in SPI_USER_REG register.

Note:

• In half-duplex communication, the order of command, address, received and/or sent data in the communication

format should be followed strictly.

• In half-duplex communication, communication formats ”command + address + received data + sent data” and

”received data + sent data” are not applicable to DMA.

• When ESP32 SPI acts as a slave, the master CS should be active at least one SPI clock period before a read/write

process is initiated, and should be inactive at least one SPI clock period after the read/write process is completed.

7.3.4 GPSPI Data Buffer

Figure 73. SPI Data Buffer

ESP32 SPI has 16 × 32 bits of data buffer to buffer data-send and data-receive operations. As is shown in Figure

7-3, received data is written from the low byte of SPI_W0_REG by default and the writing ends with SPI_W15_REG.

If the data length is over 64 bytes, the extra part will be written from SPI_W0_REG.

Data buffer blocks SPI_W0_REG ~ SPI_W7_REG and SPI_W8_REG ~ SPI_W15_REG data correspond to the

lower part and the higher part respectively. They can be used separately, and are controlled by the SPI_USR_MOSI

_HIGHPART bit and the SPI_USR_MISO_HIGHPART bit in register SPI_USER_REG. For example, if SPI is con-

figured as a master, when SPI_USR_MOSI_HIGHPART = 1, SPI_W8_REG ~ SPI_W15_REG are used as buffer

for sending data; when SPI_USR_MISO_HIGHPART = 1, SPI_W8_REG ~ SPI_W15_REG are used as buffer for

receiving data. If SPI acts as a slave, when SPI_USR_MOSI_HIGHPART = 1, SPI_W8_REG ~ SPI_W15_REG

are used as buffer for receiving data; when SPI_USR_MISO_HIGHPART = 1, SPI_W8_REG ~ SPI_W15_REG are

used as buffer for sending data.

Espressif Systems 123
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Table 73. Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Master

Registers mode0 mode1 mode2 mode3

SPI_CK_IDLE_EDGE 0 0 1 1

SPI_CK_OUT_EDGE 0 1 1 0

SPI_MISO_DELAY_MODE 2(0) 1(0) 1(0) 2(0)

SPI_MISO_DELAY_NUM 0 0 0 0

SPI_MOSI_DELAY_MODE 0 0 0 0

SPI_MOSI_DELAY_NUM 0 0 0 0

7.4 GPSPI Clock Control
The maximum output clock frequency of ESP32 GP-SPI master is fapb/2, and the maximum input clock frequency

of the ESP32 GP-SPI slave is fapb/8. The master can derive other clock frequencies via frequency division.

fspi =
fapb

(SPI_CLKCNT_N+1)(SPI_CLKDIV_PRE+1)

SPI_CLKCNT_N and SPI_CLKDIV_PRE are two bits of register SPI_CLOCK_REG (Please refer to 7.7 Regis-

ter Description for details). SPI_CLKCNT_H = ⌊SPI_CLKCNT_N+1
2 –1⌋, SPI_CLKCNT_N=SPI_CLKCNT_L. When the

SPI_CLK_EQU_SYSCLK bit in register SPI_CLOCK_REG is set to 1, and the other bits are set to 0, SPI output

clock frequency is fapb. For other clock frequencies, SPI_CLK_EQU_SYSCLK needs to be 0. In slave mode,

SPI_CLKCNT_N, SPI_CLKCNT_L, SPI_CLKCNT_H and SPI_CLKDIV_PRE should all be 0.

7.4.1 GPSPI Clock Polarity (CPOL) and Clock Phase (CPHA)
The clock polarity and clock phase of ESP32 SPI are controlled by SPI_CK_IDLE_EDGE bit in register SPI_PIN_REG,

SPI_CK_OUT_EDGE bit and SPI_CK_I_EDGE bit in register SPI_USER_REG, as well as SPI_MISO_DELAY_MODE[1:0]

bit, SPI_MISO_DELAY_NUM[2:0] bit, SPI_MOSI_DELAY_MODE[1:0] bit, SPI_MOSI_DELAY_MUM[2:0] bit in reg-

ister SPI_CTRL2_REG. Table 7-3 and Table 7-4 show the clock polarity and phase as well as the corresponding

register values for ESP32 SPI master and slave, respectively. Note that for mode0 and mode2 in Table 7-4, the

registers are configured differently in non-DMA mode and DMA mode, and that the SPI slave data is output in

advance in DMA mode.

Table 74. Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Slave

Registers mode0 mode1 mode2 mode3

Non-DMA DMA Non-DMA DMA

SPI_CK_IDLE_EDGE 1 0 1 0 1 0

SPI_CK_I_EDGE 0 1 1 1 0 0

SPI_MISO_DELAY_MODE 0 0 2 0 0 1

SPI_MISO_DELAY_NUM 0 2 0 0 2 0

SPI_MOSI_DELAY_MODE 2 0 0 1 0 0

SPI_MOSI_DELAY_NUM 2 3 0 2 3 0

1. mode0 means CPOL=0, CPHA=0. When SPI is idle, the clock output is logic low; data changes on the

falling edge of the SPI clock and is sampled on the rising edge;

2. mode1 means CPOL=0, CPHA=1. When SPI is idle, the clock output is logic low; data changes on the rising

edge of the SPI clock and is sampled on the falling edge;

Espressif Systems 124
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

3. mode2 means when CPOL=1, CPHA=0. When SPI is idle, the clock output is logic high; data changes on

the rising edge of the SPI clock and is sampled on the falling edge;

4. mode3 means when CPOL=1, CPHA=1. When SPI is idle, the clock output is logic high; data changes on

the falling edge of the SPI clock and is sampled on the rising edge.

7.4.2 GPSPI Timing
The data signals of ESP32 GP-SPI can be mapped to physical pins either via IO_MUX or via IO_MUX and GPIO

matrix. Input signals will be delayed by two clkapb clock cycles when they pass through the matrix. Output signals

will not be delayed.

When GP-SPI is used as master and the data signals are not received by the SPI controller via GPIO matrix, if

GP-SPI output clock frequency is clkapb/2, register SPI_MISO_DELAY_MODE should be set to 0 when configuring

the clock polarity. If GP-SPI output clock frequency is not higher than clkapb/4, register SPI_MISO_DELAY_MODE

can be set to the corresponding value in Table 7-3 when configuring the clock polarity.

When GP-SPI is used in master mode and the data signals enter the SPI controller via the GPIO matrix:

1. If GP-SPI output clock frequency is clkapb/2, register SPI_MISO_DELAY_MODE should be set to 0 and the

dummy phase should be enabled (SPI_USR_DUMMY = 1) for one clkspi clock cycle (SPI_USR_DUMMY_CYC

LELEN = 0) when configuring the clock polarity;

2. If GP-SPI output clock frequency is clkapb/4, register SPI_MISO_DELAY_MODE should be set to 0 when

configuring the clock polarity;

3. If GP-SPI output clock frequency is not higher than clkapb/8, register SPI_MISO_DELAY_MODE can be set

to the corresponding value in Table 7-3 when configuring the clock polarity.

When GP-SPI is used in slave mode, the clock signal and the data signals should be routed to the SPI controller

via the same path, i.e., neither the clock signal nor the data signals passes through GPIO matrix, or both of them

pass through GPIO matrix. This is important in ensuring that the signals are not delayed by different time periods

before they reach the SPI hardware.

Assume that tspi, tpre and tv in Figure 7-4 denote SPI clock period, how far ahead data output is, and data output

delay time, respectively. Assume the SPI slave’s main clock period is tapb. For non-DMA mode0, SPI slave data

output is delayed by tv:

• tv < 3.5 ∗ tapb, if CLK does not pass through GPIO matrix;

• tv < 5.5 ∗ tapb, if CLK passes through GPIO matrix.

In DMA mode1 and mode3, SPI slave data output is delayed by the same period of time as in non-DMA mode.

However, for mode0 and mode2, SPI slave data is output earlier by tpre:

• tpre < (tspi/2− 5.5 ∗ tapb), if CLK does not pass through GPIO matrix;

• tpre < (tspi/2− 7.5 ∗ tapb), if CLK passes through GPIO matrix.

Espressif Systems 125
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Figure 74. GPSPI ������

To conclude, if signals do not pass through GPIO matrix, the SPI slave clock frequency is up to fapb/8; if signals

pass through GPIO matrix, the SPI slave clock frequency is up to fapb/12. Note that (tspi/2–tpre) represents data

output hold time for SPI slave in mode0 and mode2.

7.5 Parallel QSPI
ESP32 SPI controllers support SPI bus memory devices (such as flash and SRAM). The hardware connection

between the SPI pins and the memories is shown by Figure 7-5.

Figure 75. Parallel QSPI

SPI1, SPI2 and SPI3 controllers can also be configured as QSPI master to connect to external memory. The

maximum output clock frequency of the SPI memory interface is fapb, with the same clock configuration as that of

the GP-SPI master.

7.5.1 Communication Format of Parallel QSPI
To support communication with special slave devices, ESP32 QSPI implements a specifically designed commu-

nication protocol. The communication format of ESP32 QSPI master is the same as that of GP-SPI four-line

half-duplex communication, except that in address phase and data phase, software can configure registers to en-

able two-line or four-line transmission. Figure 7-6 shows a QSPI communication mode with four-line transmission

in address phase and data phase.

Espressif Systems 126
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Figure 76. Communication Format of Parallel QSPI

ESP32 QSPI supports flash-read operation in one-line, two-line, and four-line modes. When working as a QSPI

master, the command phase, address phase, dummy phase and data phase can be configured as needed, as

flexible as in GP-SPI mode.

Note that GPI-SPI full-duplex mode does not support dummy phase.

7.6 GPSPI Interrupt Hardware
ESP32 SPI generates two types of interrupts. One is the SPI interrupt and the other is the SPI DMA interrupt.

ESP32 SPI reckons the completion of send- and/or receive-operations as the completion of one operation from

the controller and generates one interrupt. When ESP32 SPI is configured to slave mode, the slave will generate

read/write status registers and read/write buffer data interrupts according to different operations.

7.6.1 SPI Interrupts
The SPI_*_INTEN bits in the SPI_SLAVE_REG register can be set to enable SPI interrupts. When an SPI interrupt

happens, the interrupt flag in the corresponding SPI_*_DONE register will get set. This flag is writable, and an

interrupt can be cleared by setting the bit to zero.

• SPI_TRANS_DONE_INT: Triggered when an SPI operation is done.

• SPI_SLV_WR_STA_INT: Triggered when an SPI slave status write is done.

• SPI_SLV_RD_STA_INT: Triggered when an SPI slave status read is done.

• SPI_SLV_WR_BUF_INT: Triggered when an SPI slave buffer write is done.

• SPI_SLV_RD_BUD_INT: Triggered when an SPI slave buffer read is done.

7.6.2 DMA Interrupts
• SPI_OUT_TOTAL_EOF_INT: Triggered when all linked lists are sent.

• SPI_OUT_EOF_INT: Triggered when one linked list is sent.

• SPI_OUT_DONE_INT: Triggered when the last linked list item has zero length.

• SPI_IN_SUC_EOF_INT: Triggered when all linked lists are received.

• SPI_IN_ERR_EOF_INT: Triggered when there is an error receiving linked lists.

• SPI_IN_DONE_INT: Triggered when the last received linked list had a length of 0.

• SPI_INLINK_DSCR_ERROR_INT: Triggered when the received linked list is invalid.

• SPI_OUTLINK_DSCR_ERROR_INT: Triggered when the linked list to be sent is invalid.

Espressif Systems 127
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

• SPI_INLINK_DSCR_EMPTY_INT: Triggered when no valid linked list is available.

7.7 Register Summary

Name Description SPI0 SPI1 SPI2 SPI3 Acc

Control and configuration registers

SPI_CTRL_REG

Bit order and

QIO/DIO/QOUT/DOUT

mode settings

3FF43008 3FF42008 3FF64008 3FF65008 R/W

SPI_CTRL2_REG Timing configuration 3FF43014 3FF42014 3FF64014 3FF65014 R/W

SPI_CLOCK_REG Clock configuration 3FF43018 3FF42018 3FF64018 3FF65018 R/W

SPI_PIN_REG
Polarity and CS con-

figuration
3FF43034 3FF42034 3FF64034 3FF65034 R/W

Slave mode configuration registers

SPI_SLAVE_REG

Slave mode config-

uration and interrupt

status

3FF43038 3FF42038 3FF64038 3FF65038 R/W

SPI_SLAVE1_REG Slave data bit lengths 3FF4303C 3FF4203C 3FF6403C 3FF6503C R/W

SPI_SLAVE2_REG
Dummy cycle length

configuration
3FF43040 3FF42040 3FF64040 3FF65040 R/W

SPI_SLV_WR_STATUS_REG
Slave status/Part of

lower master address
3FF43030 3FF42030 3FF64030 3FF65030 R/W

SPI_SLV_WRBUF_DLEN_REG
Write-buffer opera-

tion length
3FF43048 3FF42048 3FF64048 3FF65048 R/W

SPI_SLV_RDBUF_DLEN_REG
Read-buffer opera-

tion length
3FF4304C 3FF4204C 3FF6404C 3FF6504C R/W

SPI_SLV_RD_BIT_REG
Read data operation

length
3FF43064 3FF42064 3FF64064 3FF65064 R/W

Userdefined command mode registers

SPI_CMD_REG
Start user-defined

command
3FF43000 3FF42000 3FF64000 3FF65000 R/W

SPI_ADDR_REG Address data 3FF43004 3FF42004 3FF64004 3FF65004 R/W

SPI_USER_REG
User defined com-

mand configuration
3FF4301C 3FF4201C 3FF6401C 3FF6501C R/W

SPI_USER1_REG
Address and dummy

cycle configuration
3FF43020 3FF42020 3FF64020 3FF65020 R/W

SPI_USER2_REG

Command length

and value configura-

tion

3FF43024 3FF42024 3FF64024 3FF65024 R/W

SPI_MOSI_DLEN_REG MOSI length 3FF43028 3FF42028 3FF64028 3FF65028 R/W

SPI_W0_REG SPI data register 0 3FF43080 3FF42080 3FF64080 3FF65080 R/W

SPI_W1_REG SPI data register 1 3FF43084 3FF42084 3FF64084 3FF65084 R/W

SPI_W2_REG SPI data register 2 3FF43088 3FF42088 3FF64088 3FF65088 R/W

SPI_W3_REG SPI data register 3 3FF4308C 3FF4208C 3FF6408C 3FF6508C R/W

SPI_W4_REG SPI data register 4 3FF43090 3FF42090 3FF64090 3FF65090 R/W

Espressif Systems 128
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Name Description SPI0 SPI1 SPI2 SPI3 Acc

SPI_W5_REG SPI data register 5 3FF43094 3FF42094 3FF64094 3FF65094 R/W

SPI_W6_REG SPI data register 6 3FF43098 3FF42098 3FF64098 3FF65098 R/W

SPI_W7_REG SPI data register 7 3FF4309C 3FF4209C 3FF6409C 3FF6509C R/W

SPI_W8_REG SPI data register 8 3FF430A0 3FF420A0 3FF640A0 3FF650A0 R/W

SPI_W9_REG SPI data register 9 3FF430A4 3FF420A4 3FF640A4 3FF650A4 R/W

SPI_W10_REG SPI data register 10 3FF430A8 3FF420A8 3FF640A8 3FF650A8 R/W

SPI_W11_REG SPI data register 11 3FF430AC 3FF420AC 3FF640AC 3FF650AC R/W

SPI_W12_REG SPI data register 12 3FF430B0 3FF420B0 3FF640B0 3FF650B0 R/W

SPI_W13_REG SPI data register 13 3FF430B4 3FF420B4 3FF640B4 3FF650B4 R/W

SPI_W14_REG SPI data register 14 3FF430B8 3FF420B8 3FF640B8 3FF650B8 R/W

SPI_W15_REG SPI data register 15 3FF430BC 3FF420BC 3FF640BC 3FF650BC R/W

DMA configuration registers

SPI_DMA_CONF_REG
DMA configuration

register
3FF43100 3FF42100 3FF64100 3FF65100 R/W

SPI_DMA_OUT_LINK_REG
DMA outlink address

and configuration
3FF43104 3FF42104 3FF64104 3FF65104 R/W

SPI_DMA_IN_LINK_REG
DMA inlink address

and configuration
3FF43108 3FF42108 3FF64108 3FF65108 R/W

SPI_DMA_STATUS_REG DMA status 3FF4310C 3FF4210C 3FF6410C 3FF6510C RO

SPI_IN_ERR_EOF_DES_ADDR_REG

Descriptor address

where an error

occurs

3FF43120 3FF42120 3FF64120 3FF65120 RO

SPI_IN_SUC_EOF_DES_ADDR_REG
Descriptor address

where EOF occurs
3FF43124 3FF42124 3FF64124 3FF65124 RO

SPI_INLINK_DSCR_REG
Current descriptor

pointer
3FF43128 3FF42128 3FF64128 3FF65128 RO

SPI_INLINK_DSCR_BF0_REG
Next descriptor data

pointer
3FF4312C 3FF4212C 3FF6412C 3FF6512C RO

SPI_INLINK_DSCR_BF1_REG
Current descriptor

data pointer
3FF43130 3FF42130 3FF64130 3FF65130 RO

SPI_OUT_EOF_BFR_DES_ADDR_REG

Relative buffer ad-

dress where EOF

occurs

3FF43134 3FF42134 3FF64134 3FF65134 RO

SPI_OUT_EOF_DES_ADDR_REG
Descriptor address

where EOF occurs
3FF43138 3FF42138 3FF64138 3FF65138 RO

SPI_OUTLINK_DSCR_REG
Current descriptor

pointer
3FF4313C 3FF4213C 3FF6413C 3FF6513C RO

SPI_OUTLINK_DSCR_BF0_REG
Next descriptor data

pointer
3FF43140 3FF42140 3FF64140 3FF65140 RO

SPI_OUTLINK_DSCR_BF1_REG
Current descriptor

data pointer
3FF43144 3FF42144 3FF64144 3FF65144 RO

SPI_DMA_RSTATUS_REG
DMA memory read

status
3FF43148 3FF42148 3FF64148 3FF65148 RO

Espressif Systems 129
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Name Description SPI0 SPI1 SPI2 SPI3 Acc

SPI_DMA_TSTATUS_REG
DMA memory write

status
3FF4314C 3FF4214C 3FF6414C 3FF6514C RO

DMA interrupt registers

SPI_DMA_INT_RAW_REG Raw interrupt status 3FF43114 3FF42114 3FF64114 3FF65114 RO

SPI_DMA_INT_ST_REG
Masked interrupt sta-

tus
3FF43118 3FF42118 3FF64118 3FF65118 RO

SPI_DMA_INT_ENA_REG Interrupt enable bits 3FF43110 3FF42110 3FF64110 3FF65110 R/W

SPI_DMA_INT_CLR_REG Interrupt clear bits 3FF4311C 3FF4211C 3FF6411C 3FF6511C R/W

Espressif Systems 130
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

7.8 Registers
The addresses in parenthesis besides register names are the register addresses relative to the SPI0/SPI1/SPI2/SPI3

base addresses provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute

register addresses are listed in Section 7.7 Register Summary.

Register 7.1. SPI_CMD_REG (0x0)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

SPI_U
SR

0

18

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0

Reset

SPI_USR An SPI operation will be triggered when this bit is set. The bit will be cleared once the

operation is done. (R/W)

Register 7.2. SPI_ADDR_REG (0x4)

0x000000000

31 0

Reset

SPI_ADDR_REG It stores the transmitting address when master is in half-duplex mode or QSPI mode.

If the address length is bigger than 32 bits, this register stores the higher 32 bits of address value,

SPI_SLV_WR_STATUS_REG stores the rest lower part of address value. If the address length is

smaller than 33 bits, this register stores all the address value. The register is in valid only when

SPI_USR_ADDR bit is set to 1. (R/W)

Espressif Systems 131
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.3. SPI_CTRL_REG (0x8)

(re
se

rve
d)

0 0 0 0 0

31 27

SPI_W
R_B

IT_
ORDER

0

26

SPI_R
D_B

IT_
ORDER

0

25

SPI_F
READ_Q

IO

0

24

SPI_F
READ_D

IO

0

23

(re
se

rve
d)

0

22

SPI_W
P

1

21

SPI_F
READ_Q

UAD

0

20

(re
se

rve
d)

0 0 0 0 0

19 15

SPI_F
READ_D

UAL

0

14

SPI_F
ASTR

D_M
ODE

1

13

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

12 0

Reset

SPI_WR_BIT_ORDER This bit determines the bit order for command, address and data in transmitted

signal. 1: sends LSB first; 0: sends MSB first. (R/W)

SPI_RD_BIT_ORDER This bit determines the bit order for received data in received signal. 1: receives

LSB first; 0: receives MSB first. (R/W)

SPI_FREAD_QIO This bit is used to enable four-line address writes and data reads in QSPI mode.

(R/W)

SPI_FREAD_DIO This bit is used to enable two-line address writes and data reads in QSPI mode.

(R/W)

SPI_WP This bit determines the write-protection signal output when SPI is idle in QSPI mode. 1:

output high; 0: output low. (R/W)

SPI_FREAD_QUAD This bit is used to enable four-line data reads in QSPI mode. (R/W)

SPI_FREAD_DUAL This bit is used to enable two-line data reads in QSPI mode. (R/W)

SPI_FASTRD_MODE Reserved.

Register 7.4. SPI_CTRL1_REG (0xC)

SPI_C
S_H

OLD
_D

ELA
Y

0x05

31 28

(re
se

rve
d)

0 0

27 0

Reset

SPI_CS_HOLD_DELAY Reserved.

Espressif Systems 132
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.5. SPI_RD_STATUS_REG (0x10)

SPI_S
TA

TU
S_E

XT

0x000

31 24

0x000

23 16

SPI_S
TA

TU
S

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

SPI_STATUS_EXT Reserved.

SPI_STATUS Reserved.

Espressif Systems 133
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.6. SPI_CTRL2_REG (0x14)

SPI_C
S_D

ELA
Y_N

UM

0x00

31 28

SPI_C
S_D

ELA
Y_M

ODE

0x0

27 26

SPI_M
OSI_D

ELA
Y_N

UM

0x0

25 23

SPI_M
OSI_D

ELA
Y_M

ODE

0x0

22 21

SPI_M
IS

O_D
ELA

Y_N
UM

0x0

20 18

SPI_M
IS

O_D
ELA

Y_M
ODE

0x0

17 16

SPI_C
K_O

UT_
HIG

H_M
ODE

0x00

15 12

res
er

ve
d

0x00

11 8

SPI_H
OLD

_T
IM

E

0x01

7 4

SPI_S
ETU

P_T
IM

E

0x01

3 0

Reset

SPI_CS_DELAY_NUM Reserved.

SPI_CS_DELAY_MODE Reserved.

SPI_MOSI_DELAY_NUM It is used to configure the number of system clock cycles by which the

MOSI signals are delayed. (R/W)

SPI_MOSI_DELAY_MODE This register field determines the way the MOSI signals are delayed by

SPI clock. (R/W)

After being delayed by SPI_MOSI_DELAY_NUM system clocks, the MOSI signals will then be de-

layed by the configuration of SPI_MOSI_DELAY_MODE, specifically:

0: no delay.

1: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, the MOSI signals are delayed by half a cycle,

otherwise they are delayed by one cycle.

2: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, the MOSI signals are delayed by one cycle,

otherwise they are delayed by half a cycle.

3: the MOSI signals are delayed one cycle.

SPI_MISO_DELAY_NUM It is used to configure the number of system clock cycles by which the

MISO signals are delayed. (R/W)

SPI_MISO_DELAY_MODE This register field determines the way MISO signals are delayed by SPI

clock. (R/W)

After being delayed by SPI_MISO_DELAY_NUM system clock, the MISO signals will then be de-

layed by the configuration of SPI_MISO_DELAY_MODE, specifically:

0: no delay.

1: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, the MISO signals are delayed by half a cycle,

otherwise they are delayed by one cycle.

2: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, the MISO signals are delayed by one cycle,

otherwise they are delayed by half a cycle.

3: the MISO signals are delayed by one cycle.

SPI_HOLD_TIME The number of SPI clock cycles by which CS pin signals are delayed. It is only valid

when SPI_CS_HOLD is set to 1. (R/W)

SPI_SETUP_TIME It is to configure the time between the CS signal active edge and the first SPI

clock edge. It is only valid in half-duplex mode or QSPI mode and when SPI_CS_SETUP is set to

1. (R/W)

Espressif Systems 134
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.7. SPI_CLOCK_REG (0x18)

SPI_C
LK

_E
QU_S

YSCLK

1

31

SPI_C
LK

DIV_P
RE

0 0 0 0 0 0 0 0 0 0 0 0 0

30 18

SPI_C
LK

CNT_
N

0x03

17 12

SPI_C
LK

CNT_
H

0x01

11 6

SPI_C
LK

CNT_
L

0x03

5 0

Reset

SPI_CLK_EQU_SYSCLK In master mode, when this bit is set to 1, SPI output clock is equal to system

clock; when set to 0, SPI output clock is divided from system clock. In slave mode, it should be

set to 0. (R/W)

SPI_CLKDIV_PRE In master mode, it is used to configure the pre-divider value for SPI output clock.

It is only valid when SPI_CLK_EQU_SYSCLK is 0. In slave mode, it should be set to 0. (R/W)

SPI_CLKCNT_N In master mode, it is used to configure the divider for SPI output clock. It is only

valid when SPI_CLK_EQU_SYSCLK is 0. In slave mode, it should be set to 0. (R/W)

SPI_CLKCNT_H In master mode, SPI_CLKCNT_H = ⌊SPI_CLKCNT_N+1
2 –1⌋. It is only valid when

SPI_CLK_EQU_SYSCLK is 0. In slave mode, it should be set to 0. (R/W)

SPI_CLKCNT_L In master mode, it is equal to SPI_CLKCNT_N. It is only valid when

SPI_CLK_EQU_SYSCLK is 0. In slave mode, it should be set to 0. (R/W)

Espressif Systems 135
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.8. SPI_USER_REG (0x1C)

SPI_U
SR_C

OM
M

AND

1

31

SPI_U
SR_A

DDR

0

30

SPI_U
SR_D

UM
M

Y

0

29

SPI_U
SR_M

IS
O

0

28

SPI_U
SR_M

OSI

0

27

SPI_U
SR_D

UM
M

Y_ID
LE

0

26

SPI_U
SR_M

OSI_H
IG

HPA
RT

0

25

SPI_U
SR_M

IS
O_H

IG
HPA

RT

0

24

(re
se

rve
d)

0 0 0 0 0 0 0

23 17

SPI_S
IO

0

16

SPI_F
W

RITE
_Q

IO

0

15

SPI_F
W

RITE
_D

IO

0

14

SPI_F
W

RITE
_Q

UAD

0

13

SPI_F
W

RITE
_D

UAL

0

12

SPI_W
R_B

YTE
_O

RDER

0

11

SPI_R
D_B

YTE
_O

RDER

0

10

(re
se

rve
d)

0 0

9 8

SPI_C
K_O

UT_
EDGE

0

7

SPI_C
K_I_

EDGE

1

6

SPI_C
S_S

ETU
P

0

5

SPI_C
S_H

OLD

0

4

(re
se

rve
d)

0 0 0

3 1

SPI_D
OUTD

IN

0

0

Reset

SPI_USR_COMMAND This bit enables the command phase of an SPI operation in SPI half-duplex

mode and QSPI mode. (R/W)

SPI_USR_ADDR This bit enables the address phase of an SPI operation in SPI half-duplex mode and

QSPI mode. (R/W)

SPI_USR_DUMMY This bit enables the dummy phase of an SPI operation in SPI half-duplex mode

and QSPI mode. (R/W)

SPI_USR_MISO This bit enables the read-data phase of an SPI operation in SPI half-duplex mode

and QSPI mode. (R/W)

SPI_USR_MOSI This bit enables the write-data phase of an SPI operation in SPI half-duplex mode

and QSPI mode. (R/W)

SPI_USR_DUMMY_IDLE The SPI clock signal is disabled in the dummy phase when the bit is set in

SPI half-duplex mode and QSPI mode. (R/W)

SPI_USR_MOSI_HIGHPART If set, MOSI data is stored in SPI_W8 ~ SPI_W15 of the SPI buffer.

(R/W)

SPI_USR_MISO_HIGHPART If set, MISO data is stored in SPI_W8 ~ SPI_W15 of the SPI buffer.

(R/W)

SPI_SIO Set this bit to enable three-line half-duplex communication. (R/W)

SPI_FWRITE_QIO Reserved.

SPI_FWRITE_DIO Reserved.

SPI_FWRITE_QUAD Reserved.

SPI_FWRITE_DUAL Reserved.

SPI_WR_BYTE_ORDER This bit determines the byte order of the command, address and data in

transmitted signal. 1: big-endian; 0: little-endian. (R/W)

SPI_RD_BYTE_ORDER This bit determines the byte order of received data in transmitted signal. 1:

big-endian; 0: little_endian. (R/W)

SPI_CK_OUT_EDGE This bit, combined with SPI_MOSI_DELAY_MODE, sets the MOSI signal delay

mode. It is only valid in master mode. (R/W)

SPI_CK_I_EDGE In slave mode, the bit is the same as SPI_CK_OUT_EDGE in master mode. It is

combined with SPI_MISO_DELAY_MODE. It is only valid in slave mode. (R/W)

Continued on the next page...
Espressif Systems 136

Submit Documentation Feedback
ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.8. SPI_USER_REG (0x1C)

Continued from the previous page...

SPI_CS_SETUP Setting this bit enables a delay between CS active edge and the first clock edge,

in multiples of one SPI clock cycle. In full-duplex mode and QSPI mode, setting this bit results in

(SPI_SETUP_TIME + 1.5) SPI clock cycles delay. In full-duplex mode, there will be 1.5 SPI clock

cycles delay for mode0 and mode2, and 1 SPI clock cycle delay for mode1 and mode3. (R/W)

SPI_CS_HOLD Setting this bit enables a delay between the end of a transmission and CS being

inactive, as specified in SPI_HOLD_TIME. (R/W)

SPI_DOUTDIN Set the bit to enable full-duplex communication. (R/W)

Register 7.9. SPI_USER1_REG (0x20)

SPI_U
SR_A

DDR_B
ITL

EN

23

31 26

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 8

SPI_U
SR_D

UM
M

Y_C
YCLE

LE
N

7

7 0

Reset

SPI_USR_ADDR_BITLEN It indicates the bit length of the transmitted address minus one in half-

duplex mode and QSPI mode, in multiples of one bit. It is only valid when SPI_USR_ADDR is set

to 1. (RO)

SPI_USR_DUMMY_CYCLELEN It indicates the number of SPI clock cycles for the dummy phase

minus one in SPI half-duplex mode and QSPI mode. It is only valid when SPI_USR_DUMMY is set

to 1. (R/W)

Espressif Systems 137
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.10. SPI_USER2_REG (0x24)

SPI_U
SR_C

OM
M

AND_B
ITL

EN

7

31 28

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

27 16

SPI_U
SR_C

OM
M

AND_V
ALU

E

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

SPI_USR_COMMAND_BITLEN It indicates the bit length of the command phase minus one in SPI

half-duplex mode and QSPI mode. It is only valid when SPI_USR_COMMAND is set to 1. (R/W)

SPI_USR_COMMAND_VALUE It indicates the value of the command to be transmitted in SPI half-

duplex mode and QSPI mode. It is only valid when SPI_USR_COMMAND is set to 1. (R/W)

Register 7.11. SPI_MOSI_DLEN_REG (0x28)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

SPI_U
SR_M

OSI_D
BITL

EN

0x0000000

23 0

Reset

SPI_USR_MOSI_DBITLEN It indicates the length of MOSI data minus one, in multiples of one bit. It

is only valid when SPI_USR_MOSI is set to 1 in master mode. (R/W)

Register 7.12. SPI_MISO_DLEN_REG (0x2C)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

SPI_U
SR_M

IS
O_D

BITL
EN

0x0000000

23 0

Reset

SPI_USR_MISO_DBITLEN It indicates the length of MISO data minus one, in multiples of one bit. It

is only valid when SPI_USR_MISO is set to 1 in master mode. (R/W)

Espressif Systems 138
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.13. SPI_SLV_WR_STATUS_REG (0x30)

0 0

31 0

Reset

SPI_SLV_WR_STATUS_REG In the slave mode this register is the status register for the master to

write the slave. In the master mode, if the address length is bigger than 32 bits, SPI_ADDR_REG

stores the higher 32 bits of address value, and this register stores the rest lower part of address

value. (R/W)

Register 7.14. SPI_PIN_REG (0x34)

(re
se

rve
d)

0

31

SPI_C
S_K

EEP_A
CTIV

E

0

30

SPI_C
K_ID

LE
_E

DGE

0

29

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 14

SPI_M
ASTE

R_C
K_S

EL

0 0 0

13 11

(re
se

rve
d)

0 0

10 9

SPI_M
ASTE

R_C
S_P

OL

0 0 0 0 0

8 6

SPI_C
K_D

IS

0

5

(re
se

rve
d)

0 0

4 3

SPI_C
S2_

DIS

1

2

SPI_C
S1_

DIS

1

1

SPI_C
S0_

DIS

0

0

Reset

SPI_CS_KEEP_ACTIVE This bit is only used in master mode where when it is set, the CS signal will

keep active. (R/W)

SPI_CK_IDLE_EDGE This bit is only used in master mode to configure the logicl level of SPI output

clock in idle state. (R/W)

1: the spi_clk line keeps high when idle;

0: the spi_clk line keeps low when idle.

SPI_MASTER_CK_SEL Reserved.

SPI_MASTER_CS_POL Reserved.

SPI_CK_DIS Reserved.

SPI_CS2_DIS This bit enables the SPI CS2 signal. 1: disables CS2; 0: enables CS2. (R/W)

SPI_CS1_DIS This bit enables the SPI CS1 signal. 1: disables CS1; 0: enables CS1. (R/W)

SPI_CS0_DIS This bit enables the SPI CS0 signal. 1: disables CS0; 0: enables CS0. (R/W)

Espressif Systems 139
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.15. SPI_SLAVE_REG (0x38)

SPI_S
YNC_R

ESET

0

31

SPI_S
LA

VE_M
ODE

0

30

SPI_S
LV

_W
R_R

D_B
UF_

EN

0

29

SPI_S
LV

_W
R_R

D_S
TA

_E
N

0

28

SPI_S
LV

_C
M

D_D
EFIN

E

0

27

SPI_T
RANS_C

NT

0 0 0 0

26 23

SPI_S
LV

_L
AST_

STA
TE

0 0 0

22 20

SPI_S
LV

_L
AST_

COM
M

AND

0 0 0

19 17

(re
se

rve
d)

0 0 0 0 0

16 12

SPI_C
S_I_

M
ODE

0 0

11 10

SPI_T
RANS_IN

TE
N

0

9

SPI_S
LV

_W
R_S

TA
_IN

TE
N

0

8

SPI_S
LV

_R
D_S

TA
_IN

TE
N

0

7

SPI_S
LV

_W
R_B

UF_
IN

TE
N

0

6

SPI_S
LV

_R
D_B

UF_
IN

TE
N

0

5

SPI_T
RANS_D

ONE

0

4

SPI_S
LV

_W
R_S

TA
_D

ONE

0

3

SPI_S
LV

_R
D_S

TA
_D

ONE

0

2

SPI_S
LV

_W
R_B

UF_
DONE

0

1

SPI_S
LV

_R
D_B

UF_
DONE

0

0

Reset

SPI_SYNC_RESET When set, it resets the latched values of the SPI clock line, CS line and data line.

(R/W)

SPI_SLAVE_MODE This bit is used to set the mode of the SPI device. (R/W)

1: slave mode;

0: master mode.

SPI_SLV_WR_RD_BUF_EN This bit is only used in slave half-duplex mode, where when it is set, the

write and read data commands are enabled. (R/W)

SPI_SLV_WR_RD_STA_EN This bit is only used in slave half-duplex mode, where when it is set, the

write and read status commands are enabled. (R/W)

SPI_SLV_CMD_DEFINE Reserved.

SPI_TRANS_CNT The counter for operations in both the master mode and the slave mode. (RO)

SPI_SLV_LAST_STATE In slave mode, this contains the state of the SPI state machine. (RO)

SPI_SLV_LAST_COMMAND Reserved.

SPI_CS_I_MODE Reserved.

SPI_TRANS_INTEN The interrupt enable bit for the SPI_TRANS_DONE_INT interrupt. (R/W)

SPI_SLV_WR_STA_INTEN The interrupt enable bit for the SPI_SLV_WR_STA_INT interrupt. (R/W)

SPI_SLV_RD_STA_INTEN The interrupt enable bit for the SPI_SLV_RD_STA_INT interrupt. (R/W)

SPI_SLV_WR_BUF_INTEN The interrupt enable bit for the SPI_SLV_WR_BUF_INT interrupt. (R/W)

SPI_SLV_RD_BUF_INTEN The interrupt enable bit for the SPI_SLV_RD_BUF_INT interrupt. (R/W)

SPI_TRANS_DONE The raw interrupt status bit for the SPI_TRANS_DONE_INT interrupt. It is set by

hardware and cleared by software. (R/W)

SPI_SLV_WR_STA_DONE The raw interrupt status bit for the SPI_SLV_WR_STA_INT interrupt. It is

set by hardware and cleared by software, and only applicable to slave half-duplex mode. (R/W)

SPI_SLV_RD_STA_DONE The raw interrupt status bit for the SPI_SLV_RD_STA_INT interrupt. It is

set by hardware and cleared by software, and only applicable to slave half-duplex mode. (R/W)

Continued on the next page...

Espressif Systems 140
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.15. SPI_SLAVE_REG (0x38)

Continued from the previous page ...

SPI_SLV_WR_BUF_DONE The raw interrupt status bit for the SPI_SLV_WR_BUF_INT interrupt. It is

set by hardware and cleared by software, and only applicable to slave half-duplex mode. (R/W)

SPI_SLV_RD_BUF_DONE The raw interrupt status bit for the SPI_SLV_RD_BUF_INT interrupt. It is

set by hardware and cleared by software, and only applicable to slave half-duplex mode. (R/W)

Register 7.16. SPI_SLAVE1_REG (0x3C)

SPI_S
LV

_S
TA

TU
S_B

ITL
EN

0 0 0 0 0

31 27

SPI_S
LV

_S
TA

TU
S_F

AST_
EN

0

26

SPI_S
LV

_S
TA

TU
S_R

EADBACK

1

25

(re
se

rve
d)

0 0 0 0 0 0 0 0 0

24 16

SPI_S
LV

_R
D_A

DDR_B
ITL

EN

0x00

15 10

SPI_S
LV

_W
R_A

DDR_B
ITL

EN

0x00

9 4

SPI_S
LV

_W
RSTA

_D
UM

M
Y_E

N

0

3

SPI_S
LV

_R
DSTA

_D
UM

M
Y_E

N

0

2

SPI_S
LV

_W
RBUF_

DUM
M

Y_E
N

0

1

SPI_S
LV

_R
DBUF_

DUM
M

Y_E
N

0

0

Reset

SPI_SLV_STATUS_BITLEN It is only used in slave half-duplex mode to configure the length of the

master writing into the status register. (R/W)

SPI_SLV_STATUS_FAST_EN Reserved.

SPI_SLV_STATUS_READBACK Reserved.

SPI_SLV_RD_ADDR_BITLEN It indicates the address length in bits minus one for a slave-read oper-

ation. It is only valid in slave half-duplex mode. (R/W)

SPI_SLV_WR_ADDR_BITLEN It indicates the address length in bits minus one for a slave-write op-

eration. It is only valid in slave half-duplex mode. (R/W)

SPI_SLV_WRSTA_DUMMY_EN In slave mode, this bit enables the dummy phase for write-status

operations. It is only valid in slave half-duplex mode.(R/W)

SPI_SLV_RDSTA_DUMMY_EN In slave mode, this bit enables the dummy phase for read-status

operations. It is only valid in slave half-duplex mode. (R/W)

SPI_SLV_WRBUF_DUMMY_EN In slave mode, this bit enables the dummy phase for write-buffer

operations. It is only valid in slave half-duplex mode. (R/W)

SPI_SLV_RDBUF_DUMMY_EN In slave mode, this bit enables the dummy phase for read-buffer

operations. It is only valid in slave half-duplex mode. (R/W)

Espressif Systems 141
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.17. SPI_SLAVE2_REG (0x40)

SPI_S
LV

_W
RBUF_

DUM
M

Y_C
YCLE

LE
N

0 0 0 0 0 0 0 0

31 24

SPI_S
LV

_R
DBUF_

DUM
M

Y_C
YCLE

LE
N

0x000

23 16

SPI_S
LV

_W
RSTA

_D
UM

M
Y_C

YCLE
LE

N

0x000

15 8

SPI_S
LV

_R
DSTA

_D
UM

M
Y_C

YCLE
LE

N

0x000

7 0

Reset

SPI_SLV_WRBUF_DUMMY_CYCLELEN It indicates the number of SPI clock cycles minus one for

the dummy phase for write-data operations. It is only valid when SPI_SLV_WRBUF_DUMMY_EN

is set to 1 in slave half-duplex mode. (R/W)

SPI_SLV_RDBUF_DUMMY_CYCLELEN It indicates the number of SPI clock cycles minus one for

the dummy phase for read-data operations. It is only valid when SPI_SLV_RDBUF_DUMMY_EN is

set to 1 in slave half-duplex mode. (R/W)

SPI_SLV_WRSTA_DUMMY_CYCLELEN It indicates the number of SPI clock cycles minus

one for the dummy phase for write-status register operations. It is only valid when

SPI_SLV_WRSTA_DUMMY_EN is set to 1 in slave half-duplex mode. (R/W)

SPI_SLV_RDSTA_DUMMY_CYCLELEN It indicates the number of SPI clock cycles minus

one for the dummy phase for read-status register operations. It is only valid when

SPI_SLV_RDSTA_DUMMY_EN is set to 1 in slave half-duplex mode. (R/W)

Register 7.18. SPI_SLAVE3_REG (0x44)

SPI_S
LV

_W
RSTA

_C
M

D_V
ALU

E

0 0 0 0 0 0 0 0

31 24

SPI_S
LV

_R
DSTA

_C
M

D_V
ALU

E

0 0 0 0 0 0 0 0

23 16

SPI_S
LV

_W
RBUF_

CM
D_V

ALU
E

0 0 0 0 0 0 0 0

15 8

SPI_S
LV

_R
DBUF_

CM
D_V

ALU
E

0 0 0 0 0 0 0 0

7 0

Reset

SPI_SLV_WRSTA_CMD_VALUE Reserved.

SPI_SLV_RDSTA_CMD_VALUE Reserved.

SPI_SLV_WRBUF_CMD_VALUE Reserved.

SPI_SLV_RDBUF_CMD_VALUE Reserved.

Espressif Systems 142
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.19. SPI_SLV_WRBUF_DLEN_REG (0x48)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

SPI_S
LV

_W
RBUF_

DBITL
EN

0x0000000

23 0

Reset

SPI_SLV_WRBUF_DBITLEN It indicates the length of written data minus one, in multiples of one bit.

It is only valid in slave half-duplex mode. (R/W)

Register 7.20. SPI_SLV_RDBUF_DLEN_REG (0x4C)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

SPI_S
LV

_R
DBUF_

DBITL
EN

0x0000000

23 0

Reset

SPI_SLV_RDBUF_DBITLEN It indicates the length of read data minus one, in multiples of one bit. It

is only valid in slave half-duplex mode. (R/W)

Register 7.21. SPI_SLV_RD_BIT_REG (0x64)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

SPI_S
LV

_R
DAT

A_B
IT

0 0

23 0

Reset

SPI_SLV_RDATA_BIT It indicates the bit length of data the master reads from the slave, minus one.

It is only valid in slave half-duplex mode. (R/W)

Register 7.22. SPI_Wn_REG (n: 015) (0x80+4*n)

0 0

31 0

Reset

SPI_Wn_REG Data buffer. (R/W)

Espressif Systems 143
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.23. SPI_TX_CRC_REG (0xC0)

0 0

31 0

Reset

SPI_TX_CRC_REG Reserved.

Register 7.24. SPI_EXT2_REG (0xF8)

(re
se

rve
d)

0 0

31 3

SPI_S
T

0 0 0

2 0

Reset

SPI_ST The current state of the SPI state machine: (RO)

0: idle state

1: preparation state

2: send command state

3: send data state

4: read data state

5: write data state

6: wait state

7: done state

Espressif Systems 144
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.25. SPI_DMA_CONF_REG (0x100)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

SPI_D
M

A_C
ONTIN

UE

0

16

SPI_D
M

A_T
X_

STO
P

0

15

SPI_D
M

A_R
X_

STO
P

0

14

(re
se

rve
d)

0

13

SPI_O
UT_

DAT
A_B

URST_
EN

0

12

SPI_I
NDSCR_B

URST_
EN

0

11

SPI_O
UTD

SCR_B
URST_

EN

0

10

SPI_O
UT_

EOF_
M

ODE

1

9

(re
se

rve
d)

0 0 0

8 6

SPI_A
HBM

_R
ST

0

5

SPI_A
HBM

_F
IFO

_R
ST

0

4

SPI_O
UT_

RST

0

3

SPI_I
N_R

ST

0

2

(re
se

rve
d)

0 0

1 0

Reset

SPI_DMA_CONTINUE This bit enables SPI DMA continuous data TX/RX mode. (R/W)

SPI_DMA_TX_STOP When in continuous TX/RX mode, setting this bit stops sending data. (R/W)

SPI_DMA_RX_STOP When in continuous TX/RX mode, setting this bit stops receiving data. (R/W)

SPI_OUT_DATA_BURST_EN SPI DMA reads data from memory in burst mode. (R/W)

SPI_INDSCR_BURST_EN SPI DMA reads inlink descriptor in burst mode. (R/W)

SPI_OUTDSCR_BURST_EN SPI DMA reads outlink descriptor in burst mode. (R/W)

SPI_OUT_EOF_MODE DMA out-EOF-flag generation mode. (R/W)

1: out-EOF-flag is generated when DMA has popped all data from the FIFO;

0: out-EOF-flag is generated when DMA has pushed all data to the FIFO.

SPI_AHBM_RST reset SPI DMA AHB master. (R/W)

SPI_AHBM_FIFO_RST This bit is used to reset SPI DMA AHB master FIFO pointer. (R/W)

SPI_OUT_RST The bit is used to reset DMA out-FSM and out-data FIFO pointer. (R/W)

SPI_IN_RST The bit is used to reset DMA in-DSM and in-data FIFO pointer. (R/W)

Register 7.26. SPI_DMA_OUT_LINK_REG (0x104)

(re
se

rve
d)

0

31

SPI_O
UTL

IN
K_R

ESTA
RT

0

30

SPI_O
UTL

IN
K_S

TA
RT

0

29

SPI_O
UTL

IN
K_S

TO
P

0

28

(re
se

rve
d)

0 0 0 0 0 0 0 0

27 20

SPI_O
UTL

IN
K_A

DDR

0x000000

19 0

Reset

SPI_OUTLINK_RESTART Set the bit to add new outlink descriptors. (R/W)

SPI_OUTLINK_START Set the bit to start to use outlink descriptor. (R/W)

SPI_OUTLINK_STOP Set the bit to stop to use outlink descriptor. (R/W)

SPI_OUTLINK_ADDR The address of the first outlink descriptor. (R/W)

Espressif Systems 145
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.27. SPI_DMA_IN_LINK_REG (0x108)

(re
se

rve
d)

0

31

SPI_I
NLIN

K_R
ESTA

RT

0

30

SPI_I
NLIN

K_S
TA

RT

0

29

SPI_I
NLIN

K_S
TO

P

0

28

(re
se

rve
d)

0 0 0 0 0 0 0

27 21

SPI_I
NLIN

K_A
UTO

_R
ET

0

20

SPI_I
NLIN

K_A
DDR

0x000000

19 0

Reset

SPI_INLINK_RESTART Set the bit to add new inlink descriptors. (R/W)

SPI_INLINK_START Set the bit to start to use inlink descriptor. (R/W)

SPI_INLINK_STOP Set the bit to stop to use inlink descriptor. (R/W)

SPI_INLINK_AUTO_RET when the bit is set, inlink descriptor jumps to the next descriptor when a

packet is invalid. (R/W)

SPI_INLINK_ADDR The address of the first inlink descriptor. (R/W)

Register 7.28. SPI_DMA_STATUS_REG (0x10C)

(re
se

rve
d)

0 0

31 2

SPI_D
M

A_T
X_

EN

0

1

SPI_D
M

A_R
X_

EN

0

0

Reset

SPI_DMA_TX_EN SPI DMA write-data status bit. (RO)

SPI_DMA_RX_EN SPI DMA read-data status bit. (RO)

Espressif Systems 146
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.29. SPI_DMA_INT_ENA_REG (0x110)

(re
se

rve
d)

0 0

31 9

SPI_O
UT_

TO
TA

L_
EOF_

IN
T_

ENA

0

8

SPI_O
UT_

EOF_
IN

T_
ENA

0

7

SPI_O
UT_

DONE_IN
T_

ENA

0

6

SPI_I
N_S

UC_E
OF_

IN
T_

ENA

0

5

SPI_I
N_E

RR_E
OF_

IN
T_

ENA

0

4

SPI_I
N_D

ONE_IN
T_

ENA

0

3

SPI_I
NLIN

K_D
SCR_E

RROR_IN
T_

ENA

0

2

SPI_O
UTL

IN
K_D

SCR_E
RROR_IN

T_
ENA

0

1

SPI_I
NLIN

K_D
SCR_E

M
PTY

_IN
T_

ENA

0

0

Reset

SPI_OUT_TOTAL_EOF_INT_ENA The interrupt enable bit for the SPI_OUT_TOTAL_EOF_INT inter-

rupt. (R/W)

SPI_OUT_EOF_INT_ENA The interrupt enable bit for the SPI_OUT_EOF_INT interrupt. (R/W)

SPI_OUT_DONE_INT_ENA The interrupt enable bit for the SPI_OUT_DONE_INT interrupt. (R/W)

SPI_IN_SUC_EOF_INT_ENA The interrupt enable bit for the SPI_IN_SUC_EOF_INT interrupt. (R/W)

SPI_IN_ERR_EOF_INT_ENA The interrupt enable bit for the SPI_IN_ERR_EOF_INT interrupt. (R/W)

SPI_IN_DONE_INT_ENA The interrupt enable bit for the SPI_IN_DONE_INT interrupt. (R/W)

SPI_INLINK_DSCR_ERROR_INT_ENA The interrupt enable bit for the

SPI_INLINK_DSCR_ERROR_INT interrupt. (R/W)

SPI_OUTLINK_DSCR_ERROR_INT_ENA The interrupt enable bit for the

SPI_OUTLINK_DSCR_ERROR_INT interrupt. (R/W)

SPI_INLINK_DSCR_EMPTY_INT_ENA The interrupt enable bit for the

SPI_INLINK_DSCR_EMPTY_INT interrupt. (R/W)

Espressif Systems 147
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.30. SPI_DMA_INT_RAW_REG (0x114)

(re
se

rve
d)

0 0

31 9

SPI_O
UT_

TO
TA

L_
EOF_

IN
T_

RAW

0

8

SPI_O
UT_

EOF_
IN

T_
RAW

0

7

SPI_O
UT_

DONE_IN
T_

RAW

0

6

SPI_I
N_S

UC_E
OF_

IN
T_

RAW

0

5

SPI_I
N_E

RR_E
OF_

IN
T_

RAW

0

4

SPI_I
N_D

ONE_IN
T_

RAW

0

3

SPI_I
NLIN

K_D
SCR_E

RROR_IN
T_

RAW

0

2

SPI_O
UTL

IN
K_D

SCR_E
RROR_IN

T_
RAW

0

1

SPI_I
NLIN

K_D
SCR_E

M
PTY

_IN
T_

RAW

0

0

Reset

SPI_OUT_TOTAL_EOF_INT_RAW The raw interrupt status bit for the SPI_OUT_TOTAL_EOF_INT in-

terrupt. (RO)

SPI_OUT_EOF_INT_RAW The raw interrupt status bit for the SPI_OUT_EOF_INT interrupt. (RO)

SPI_OUT_DONE_INT_RAW The raw interrupt status bit for the SPI_OUT_DONE_INT interrupt. (RO)

SPI_IN_SUC_EOF_INT_RAW The raw interrupt status bit for the SPI_IN_SUC_EOF_INT interrupt.

(RO)

SPI_IN_ERR_EOF_INT_RAW The raw interrupt status bit for the SPI_IN_ERR_EOF_INT interrupt.

(RO)

SPI_IN_DONE_INT_RAW The raw interrupt status bit for the SPI_IN_DONE_INT interrupt. (RO)

SPI_INLINK_DSCR_ERROR_INT_RAW The raw interrupt status bit for the

SPI_INLINK_DSCR_ERROR_INT interrupt. (RO)

SPI_OUTLINK_DSCR_ERROR_INT_RAW The raw interrupt status bit for the

SPI_OUTLINK_DSCR_ERROR_INT interrupt. (RO)

SPI_INLINK_DSCR_EMPTY_INT_RAW The raw interrupt status bit for the

SPI_INLINK_DSCR_EMPTY_INT interrupt. (RO)

Espressif Systems 148
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.31. SPI_DMA_INT_ST_REG (0x118)

(re
se

rve
d)

0 0

31 9

SPI_O
UT_

TO
TA

L_
EOF_

IN
T_

ST

0

8

SPI_O
UT_

EOF_
IN

T_
ST

0

7

SPI_O
UT_

DONE_IN
T_

ST

0

6

SPI_I
N_S

UC_E
OF_

IN
T_

ST

0

5

SPI_I
N_E

RR_E
OF_

IN
T_

ST

0

4

SPI_I
N_D

ONE_IN
T_

ST

0

3

SPI_I
NLIN

K_D
SCR_E

RROR_IN
T_

ST

0

2

SPI_O
UTL

IN
K_D

SCR_E
RROR_IN

T_
ST

0

1

SPI_I
NLIN

K_D
SCR_E

M
PTY

_IN
T_

ST

0

0

Reset

SPI_OUT_TOTAL_EOF_INT_ST The masked interrupt status bit for the SPI_OUT_TOTAL_EOF_INT

interrupt. (RO)

SPI_OUT_EOF_INT_ST The masked interrupt status bit for the SPI_OUT_EOF_INT interrupt. (RO)

SPI_OUT_DONE_INT_ST The masked interrupt status bit for the SPI_OUT_DONE_INT interrupt.

(RO)

SPI_IN_SUC_EOF_INT_ST The masked interrupt status bit for the SPI_IN_SUC_EOF_INT interrupt.

(RO)

SPI_IN_ERR_EOF_INT_ST The masked interrupt status bit for the SPI_IN_ERR_EOF_INT interrupt.

(RO)

SPI_IN_DONE_INT_ST The masked interrupt status bit for the SPI_IN_DONE_INT interrupt. (RO)

SPI_INLINK_DSCR_ERROR_INT_ST The masked interrupt status bit for the

SPI_INLINK_DSCR_ERROR_INT interrupt. (RO)

SPI_OUTLINK_DSCR_ERROR_INT_ST The masked interrupt status bit for the

SPI_OUTLINK_DSCR_ERROR_INT interrupt. (RO)

SPI_INLINK_DSCR_EMPTY_INT_ST The masked interrupt status bit for the

SPI_INLINK_DSCR_EMPTY_INT interrupt. (RO)

Espressif Systems 149
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.32. SPI_DMA_INT_CLR_REG (0x11C)

(re
se

rve
d)

0 0

31 9

SPI_O
UT_

TO
TA

L_
EOF_

IN
T_

CLR

0

8

SPI_O
UT_

EOF_
IN

T_
CLR

0

7

SPI_O
UT_

DONE_IN
T_

CLR

0

6

SPI_I
N_S

UC_E
OF_

IN
T_

CLR

0

5

SPI_I
N_E

RR_E
OF_

IN
T_

CLR

0

4

SPI_I
N_D

ONE_IN
T_

CLR

0

3

SPI_I
NLIN

K_D
SCR_E

RROR_IN
T_

CLR

0

2

SPI_O
UTL

IN
K_D

SCR_E
RROR_IN

T_
CLR

0

1

SPI_I
NLIN

K_D
SCR_E

M
PTY

_IN
T_

CLR

0

0

Reset

SPI_OUT_TOTAL_EOF_INT_CLR Set this bit to clear the SPI_OUT_TOTAL_EOF_INT interrupt. (R/W)

SPI_OUT_EOF_INT_CLR Set this bit to clear the SPI_OUT_EOF_INT interrupt. (R/W)

SPI_OUT_DONE_INT_CLR Set this bit to clear the SPI_OUT_DONE_INT interrupt. (R/W)

SPI_IN_SUC_EOF_INT_CLR Set this bit to clear the SPI_IN_SUC_EOF_INT interrupt. (R/W)

SPI_IN_ERR_EOF_INT_CLR Set this bit to clear the SPI_IN_ERR_EOF_INT interrupt. (R/W)

SPI_IN_DONE_INT_CLR Set this bit to clear the SPI_IN_DONE_INT interrupt. (R/W)

SPI_INLINK_DSCR_ERROR_INT_CLR Set this bit to clear the SPI_INLINK_DSCR_ERROR_INT in-

terrupt. (R/W)

SPI_OUTLINK_DSCR_ERROR_INT_CLR Set this bit to clear the

SPI_OUTLINK_DSCR_ERROR_INT interrupt. (R/W)

SPI_INLINK_DSCR_EMPTY_INT_CLR Set this bit to clear the SPI_INLINK_DSCR_EMPTY_INT in-

terrupt. (R/W)

Register 7.33. SPI_IN_ERR_EOF_DES_ADDR_REG (0x120)

0 0

31 0

Reset

SPI_IN_ERR_EOF_DES_ADDR_REG The inlink descriptor address when SPI DMA encountered an

error in receiving data. (RO)

Register 7.34. SPI_IN_SUC_EOF_DES_ADDR_REG (0x124)

0 0

31 0

Reset

SPI_IN_SUC_EOF_DES_ADDR_REG The last inlink descriptor address when SPI DMA encountered

EOF. (RO)

Espressif Systems 150
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.35. SPI_INLINK_DSCR_REG (0x128)

0 0

31 0

Reset

SPI_INLINK_DSCR_REG The address of the current inlink descriptor. (RO)

Register 7.36. SPI_INLINK_DSCR_BF0_REG (0x12C)

0 0

31 0

Reset

SPI_INLINK_DSCR_BF0_REG The address of the next inlink descriptor. (RO)

Register 7.37. SPI_INLINK_DSCR_BF1_REG (0x130)

0 0

31 0

Reset

SPI_INLINK_DSCR_BF1_REG The address of the next inlink data buffer. (RO)

Register 7.38. SPI_OUT_EOF_BFR_DES_ADDR_REG (0x134)

0 0

31 0

Reset

SPI_OUT_EOF_BFR_DES_ADDR_REG The buffer address corresponding to the outlink descriptor

that produces EOF. (RO)

Register 7.39. SPI_OUT_EOF_DES_ADDR_REG (0x138)

0 0

31 0

Reset

SPI_OUT_EOF_DES_ADDR_REG The last outlink descriptor address when SPI DMA encountered

EOF. (RO)

Espressif Systems 151
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.40. SPI_OUTLINK_DSCR_REG (0x13C)

0 0

31 0

Reset

SPI_OUTLINK_DSCR_REG The address of the current outlink descriptor. (RO)

Register 7.41. SPI_OUTLINK_DSCR_BF0_REG (0x140)

0 0

31 0

Reset

SPI_OUTLINK_DSCR_BF0_REG The address of the next outlink descriptor. (RO)

Register 7.42. SPI_OUTLINK_DSCR_BF1_REG (0x144)

0 0

31 0

Reset

SPI_OUTLINK_DSCR_BF1_REG The address of the next outlink data buffer. (RO)

Register 7.43. SPI_DMA_RSTATUS_REG (0x148)

TX
_F

IFO
_E

M
PTY

0

31

TX
_F

IFO
_F

ULL

0

30

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

29 20

TX
_D

ES_A
DDRESS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

TX_FIFO_EMPTY The SPI DMA TX FIFO is empty. (RO)

TX_FIFO_FULL The SPI DMA TX FIFO is full. (RO)

TX_DES_ADDRESS The LSB of the SPI DMA outlink descriptor address. (RO)

Espressif Systems 152
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

7 SPI Controller (SPI)

Register 7.44. SPI_DMA_TSTATUS_REG (0x14C)

RX_
FIF

O_E
M

PTY

0

31

RX_
FIF

O_F
ULL

0

30

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

29 20

RX_
DES_A

DDRESS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

RX_FIFO_EMPTY The SPI DMA RX FIFO is empty. (RO)

RX_FIFO_FULL The SPI DMA RX FIFO is full. (RO)

RX_DES_ADDRESS The LSB of the SPI DMA inlink descriptor address. (RO)

Espressif Systems 153
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

8 SDIO Slave Controller

8.1 Overview
The ESP32 features hardware support for the industry-standard Secure Digital (SD) device interface that

conforms to the SD Input/Output (SDIO) Specification Version 2.0. This allows a host controller to access the

ESP32 via an SDIO bus protocol, enabling high-speed data transfer.

The SDIO interface may be used to read ESP32 SDIO registers directly and access shared memory via Direct

Memory Access (DMA), thus reducing processing overhead while maintaining high performance.

8.2 Features
• Meets SDIO V2.0 specification

• Supports SDIO SPI, 1-bit, and 4-bit transfer modes

• Full host clock range of 0 ~ 50 MHz

• Configurable sample and drive clock edge

• Integrated, SDIO-accessible registers for information interaction

• Supports SDIO interrupt mechanism

• Automatic data padding

• Block size of up to 512 bytes

• Interrupt vector between Host and Slave for bidirectional interrupt

• Supports DMA for data transfer

8.3 Functional Description
8.3.1 SDIO Slave Block Diagram
The functional block diagram of the SDIO slave module is shown in Figure 8-1.

Figure 81. SDIO Slave Block Diagram

The Host System represents any SDIO specification V2.0-compatible host device. The Host System interacts

with the ESP32 (configured as the SDIO slave) via the standard SDIO bus implementation.

The SDIO Device Interface block enables effective communication with the external Host by directly providing

SDIO interface registers and enabling DMA operation for high-speed data transfer over the Advanced

High-performance Bus (AHB) without engaging the CPU.

Espressif Systems 154
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

8.3.2 Sending and Receiving Data on SDIO Bus
Data is transmitted between Host and Slave through the SDIO bus I/O Function1. After the Host enables the I/O

Function1 in the Slave, according to the SDIO protocol, data transmission will begin.

ESP32 segregates data into packets sent to/from the Host. To achieve high bus utilization and data transfer

rates, we recommend the single block transmission mode. For detailed information on this mode, please refer to

the SDIO V2.0 protocol specification. When Host and Slave exchange data as blocks on the SDIO bus, the Slave

automatically pads data-when sending data out-and automatically strips padding data from the incoming data

block.

Whether the Slave pads or discards the data depends on the data address on the SDIO bus. When the data

address is equal to, or greater than, 0x1F800, the Slave will start padding or discarding data. Therefore, the

starting data address should be 0x1F800 - Packet_length, where Packet_length is measured in bytes. Data flow

on the SDIO bus is shown in Figure 8-2.

Figure 82. SDIO Bus Packet Transmission

The standard IO_RW_EXTENDED (CMD53) command is used to initiate a packet transfer of an arbitrary length.

The content of the CMD53 command used in data transmission is as illustrated in Figure 8-3 below. For detailed

information on CMD53, please refer to the SDIO protocol specifications.

Figure 83. CMD53 Content

8.3.3 Register Access
For effective interaction between Host and Slave, the Host can access certain registers in the Slave via the SDIO

bus I/O Function1. These registers are in continuous address fields from SLC0HOST_TOKEN_RDATA to

SLCHOST_INF_ST. The Host device can access these registers by simply setting the register addresses of

CMD52 or CMD53 to the low 10 bits of the corresponding register address. The Host can access several

consecutive registers at one go with CMD53, thus achieving a higher effective transfer rate.

There are 54 bytes of field between SLCHOST_CONF_W0_REG and SLCHOST_CONF_W15_REG. Host and

Slave can access and change these fields, thus facilitating the information interaction between Host and

Slave.

8.3.4 DMA
The SDIO Slave module uses dedicated DMA to access data residing in the RAM. As shown in Figure 8-1, the

RAM is accessed over the AHB. DMA accesses RAM through a linked-list descriptor. Every linked list is

Espressif Systems 155
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

composed of three words, as shown in Figure 8-4.

Figure 84. SDIO Slave DMA Linked List Structure

• Owner: The allowed operator of the buffer that corresponds to the current linked list. 0: CPU is the allowed

operator; 1: DMA is the allowed operator.

• Eof: End-of-file marker, indicating that this linked-list element is the last element of the data packet.

• Length: The number of valid bytes in the buffer, i.e., the number of bytes that should be accessed from the

buffer for reading/writing.

• Size: The maximum number of available buffers.

• Buffer Address Pointer: The address of the data buffer as seen by the CPU (according to the RAM address

space).

• Next Descriptor Address: The address of the next linked-list element in the CPU RAM address space. If the

current linked list is the last one, the Eof bit should be 1, and the last descriptor address should be 0.

The Slave’s linked-list chain is shown in Figure 8-5:

Figure 85. SDIO Slave Linked List

8.3.5 PacketSending/Receiving Procedure
The SDIO Host and Slave devices need to follow specific data transfer procedures to successfully exchange data

over the SDIO interface.

Espressif Systems 156
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

8.3.5.1 Sending Packets to SDIO Host

The transmission of packets from Slave to Host is initiated by the Slave. The Host will be notified with an interrupt

(for detailed information on interrupts, please refer to SDIO protocol). After the Host reads the relevant

information from the Slave, it will initiate an SDIO bus transaction accordingly. The whole procedure is illustrated

in Figure 8-6.

Figure 86. Packet Sending Procedure (Initiated by Slave)

When the Host is interrupted, it reads relevant information from the Slave by visiting registers SLC0HOST_INT

and SLCHOST_PKT_LEN.

• SLC0HOST_INT: Interrupt status register. If the value of SLC0_RX_NEW_PACKET_INT_ST is 1, this

indicates that the Slave has a packet to send.

• SLCHOST_PKT_LEN: Packet length accumulator register. The current value minus the value of last time

equals the packet length sent this time.

In order to start DMA, the CPU needs to write the low 20 bits of the address of the first linked-list element to the

Espressif Systems 157
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

SLC0_RXLINK_ADDR bit of SLC0RX_LINK, then set the SLC0_RXLINK_START bit of SLC0RX_LINK. The DMA

will automatically complete the data transfer. Upon completion of the operation, DMA will interrupt the CPU so

that the buffer space can be freed or reused.

8.3.5.2 Receiving Packets from SDIO Host

Transmission of packets from Host to Slave is initiated by the Host. The Slave receives data via DMA and stores it

in RAM. After transmission is completed, the CPU will be interrupted to process the data. The whole procedure is

demonstrated in Figure 8-7.

Figure 87. Packet Receiving Procedure (Initiated by Host)

The Host obtains the number of available receiving buffers from the Slave by accessing register

SLC0HOST_TOKEN_RDATA. The Slave CPU should update this value after the receiving DMA linked list is

prepared.

HOSTREG_SLC0_TOKEN1 in SLC0HOST_TOKEN_RDATA stores the accumulated number of available

buffers.

The Host can figure out the available buffer space, using HOSTREG_SLC0_TOKEN1 minus the number of

buffers already used.

If the buffers are not enough, the Host needs to constantly poll the register until there are enough buffers

available.

To ensure sufficient receiving buffers, the Slave CPU must constantly load buffers on the receiving linked list. The

process is shown in Figure 8-8.

Espressif Systems 158
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Figure 88. Loading Receiving Buffer

The CPU first needs to append new buffer segments at the end of the linked list that is being used by DMA and is

available for receiving data.

The CPU then needs to notify the DMA that the linked list has been modified. This can be done by setting bit

SLC0_TXLINK_RESTART of the SLC0TX_LINK register. Please note that when the CPU initiates DMA to receive

packets for the first time, SLC0_TXLINK_RESTART should be set to 1.

Lastly, the CPU refreshes any available buffer information by writing to the SLC0TOKEN1 register.

8.3.6 SDIO Bus Timing
The SDIO bus operates at a very high speed and the PCB trace length usually affects signal integrity by

introducing latency. To ensure that the timing characteristics conform to the desired bus timing, the SDIO Slave

module supports configuration of input sampling clock edge and output driving clock edge.

When the incoming data changes near the rising edge of the clock, the Slave will perform sampling on the falling

edge of the clock, or vice versa, as Figure 8-9 shows.

Figure 89. Sampling Timing Diagram

By default, the MTDO strapping value determines the Slave’s sampling edge. However, users can decide the

sampling edge by configuring the SLCHOST_CONF_REG register, with priority from high to low: (1) Set

SLCHOST_FRC_POS_SAMP to sample the corresponding signal at the rising edge; (2) Set

SLCHOST_FRC_NEG_SAMP to sample the corresponding signal at the falling edge.

SLCHOST_FRC_POS_SAMP and SLCHOST_FRC_NEG_SAMP fields are five bits wide. The bits correspond to

the CMD line and four DATA lines (0-3). Setting a bit causes the corresponding line to be sampled for input at the

rising clock edge or falling clock edge.

Espressif Systems 159
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

The Slave can also select which edge to drive the output lines, in order to accommodate for any latency caused

by the physical signal path. The output timing is shown in Figure 8-10.

Figure 810. Output Timing Diagram

By default, the GPIO5 strapping value determines the Slave’s output driving edge. However, users can decide

the output driving edge by configuring the following registers, with priority from high to low: (1) Set

SLCHOST_FRC_SDIO11 in SLCHOST_CONF_REG to output the corresponding signal at the falling clock edge;

(2) Set SLCHOST_FRC_SDIO22 in SLCHOST_CONF_REG to output the corresponding signal at the rising clock

edge; (3) Set HINF_HIGHSPEED_ENABLE in HINF_CFG_DATA1_REG and SLCHOST_HSPEED_CON_EN in

SLCHOST_CONF_REG, then set the EHS (Enable High-Speed) bit in CCCR at the Host side to output the

corresponding signal at the rising clock edge.

SLCHOST_FRC_SDIO11 and SLCHOST_FRC_SDIO22 fields are five bits wide. The bits correspond to the CMD

line and four DATA lines (0-3). Setting a bit causes the corresponding line to output at the rising clock edge or

falling clock edge.

Notes on priority setting: The configuration of strapping pins has the lowest priority when controlling the

sampling edge or driving edge. The lower-priority configuration takes effect only when the higher-priority

configuration is not set. For example, the MTDO strapping value determines the sampling edge only when

SCLHOST_FRC_POS_SAMP and SCLHOST_FRC_NEG_SAMP are not set.

8.3.7 Interrupt
Host and Slave can interrupt each other via the interrupt vector. Both Host and Slave have eight interrupt

vectors. The interrupt is enabled by configuring the interrupt vector register (setting the enable bit to 1). The

interrupt vector registers can clear themselves automatically, which means one interrupt at a time and no other

configuration is required.

8.3.7.1 Host Interrupt

• SLC0HOST_SLC0_RX_NEW_PACKET_INT Slave has a packet to send.

• SLC0HOST_SLC0_TX_OVF_INT Slave receiving buffer overflow interrupt.

• SLC0HOST_SLC0_RX_UDF_INT Slave sending buffer underflow interrupt.

• SLC0HOST_SLC0_TOHOST_BITn_INT (n: 0 ~ 7) Slave interrupts Host.

8.3.7.2 Slave Interrupt

• SLC0INT_SLC0_RX_DSCR_ERR_INT Slave sending descriptor error.

• SLC0INT_SLC0_TX_DSCR_ERR_INT Slave receiving descriptor error.

Espressif Systems 160
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

• SLC0INT_SLC0_RX_EOF_INT Slave sending operation is finished.

• SLC0INT_SLC0_RX_DONE_INT A single buffer is sent by Slave.

• SLC0INT_SLC0_TX_SUC_EOF_INT Slave receiving operation is finished.

• SLC0INT_SLC0_TX_DONE_INT A single buffer is finished during receiving operation.

• SLC0INT_SLC0_TX_OVF_INT Slave receiving buffer overflow interrupt.

• SLC0INT_SLC0_RX_UDF_INT Slave sending buffer underflow interrupt.

• SLC0INT_SLC0_TX_START_INT Slave receiving interrupt initialization.

• SLC0INT_SLC0_RX_START_INT Slave sending interrupt initialization.

• SLC0INT_SLC_FRHOST_BITn_INT (n: 0 ~ 7) Host interrupts Slave.

8.4 Register Summary

Name Description Address Access

SDIO DMA (SLC) configuration registers

SLCCONF0_REG SLCCONF0_SLC configuration 0x3FF58000 R/W

SLC0RX_LINK_REG Transmitting linked list configuration 0x3FF5803C R/W

SLC0TX_LINK_REG Receiving linked list configuration 0x3FF58040 R/W

SLCINTVEC_TOHOST_REG Interrupt sector for Slave to interrupt Host 0x3FF5804C WO

SLC0TOKEN1_REG Number of receiving buffer 0x3FF58054 WO

SLCCONF1_REG Control register 0x3FF58060 R/W

SLC_RX_DSCR_CONF_REG DMA transmission configuration 0x3FF58098 R/W

SLC0_LEN_CONF_REG Length control of the transmitting packets 0x3FF580E4 R/W

SLC0_LENGTH_REG Length of the transmitting packets 0x3FF580E8 R/W

Interrupt Registers

SLC0INT_RAW_REG Raw interrupt status 0x3FF58004 RO

SLC0INT_ST_REG Interrupt status 0x3FF58008 RO

SLC0INT_ENA_REG Interrupt enable 0x3FF5800C R/W

SLC0INT_CLR_REG Interrupt clear 0x3FF58010 WO

Name Description Address Access

SDIO SLC Host registers

SLC0HOST_TOKEN_RDATA
The accumulated number of Slave’s receiving

buffers
0x3FF55044 RO

SLCHOST_PKT_LEN_REG Length of the transmitting packets 0x3FF55060 RO

SLCHOST_CONF_W0_REG Host and Slave communication register0 0x3FF5506C R/W

SLCHOST_CONF_W1_REG Host and Slave communication register1 0x3FF55070 R/W

SLCHOST_CONF_W2_REG Host and Slave communication register2 0x3FF55074 R/W

SLCHOST_CONF_W3_REG Host and Slave communication register3 0x3FF55078 R/W

SLCHOST_CONF_W4_REG Host and Slave communication register4 0x3FF5507C R/W

SLCHOST_CONF_W6_REG Host and Slave communication register6 0x3FF55088 R/W

SLCHOST_CONF_W7_REG Interrupt vector for Host to interrupt Slave 0x3FF5508C WO

SLCHOST_CONF_W8_REG Host and Slave communication register8 0x3FF5509C R/W

Espressif Systems 161
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

SLCHOST_CONF_W9_REG Host and Slave communication register9 0x3FF550A0 R/W

SLCHOST_CONF_W10_REG Host and Slave communication register10 0x3FF550A4 R/W

SLCHOST_CONF_W11_REG Host and Slave communication register11 0x3FF550A8 R/W

SLCHOST_CONF_W12_REG Host and Slave communication register12 0x3FF550AC R/W

SLCHOST_CONF_W13_REG Host and Slave communication register13 0x3FF550B0 R/W

SLCHOST_CONF_W14_REG Host and Slave communication register14 0x3FF550B4 R/W

SLCHOST_CONF_W15_REG Host and Slave communication register15 0x3FF550B8 R/W

SLCHOST_CONF_REG Edge configuration 0x3FF551F0 R/W

Interrupt Registers

SLC0HOST_INT_RAW_REG Raw interrupt 0x3FF55000 RO

SLC0HOST_INT_ST_REG Masked interrupt status 0x3FF55058 RO

SLC0HOST_INT_CLR_REG Interrupt clear 0x3FF550D4 WO

SLC0HOST_FUNC1_INT_ENA_REG Interrupt enable 0x3FF550DC R/W

Name Description Address Access

SDIO HINF registers

HINF_CFG_DATA1_REG SDIO specification configuration 0x3FF4B004 R/W

Espressif Systems 162
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

8.5 SLC Registers
The addresses in parenthesis besides register names are the register addresses relative to the SDIO Slave base

address (0x3FF5_8000) provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The

absolute register addresses are listed in Section 8.4 Register Summary.

Register 8.1. SLCCONF0_REG (0x0)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 15

SLC
CONF0

_S
LC

0_
TO

KEN_A
UTO

_C
LR

1

14

(re
se

rve
d)

0 0 0 0 0 0 0

13 7

SLC
CONF0

_S
LC

0_
RX_

AUTO
_W

RBACK

0

6

SLC
CONF0

_S
LC

0_
RX_

LO
OP_T

EST

1

5

SLC
CONF0

_S
LC

0_
TX

_L
OOP_T

EST

1

4

(re
se

rve
d)

0 0

3 2

SLC
CONF0

_S
LC

0_
RX_

RST

0

1

SLC
CONF0

_S
LC

0_
TX

_R
ST

0

0

Reset

SLCCONF0_SLC0_TOKEN_AUTO_CLR Please initialize to 0. Do not modify it. (R/W)

SLCCONF0_SLC0_RX_AUTO_WRBACK Allows changing the owner bit of the transmitting buffer’s

linked list when transmitting data. (R/W)

SLCCONF0_SLC0_RX_LOOP_TEST Loop around when the slave buffer finishes sending packets.

When set to 1, hardware will not change the owner bit in the linked list. (R/W)

SLCCONF0_SLC0_TX_LOOP_TEST Loop around when the slave buffer finishes receiving packets.

When set to 1, hardware will not change the owner bit in the linked list. (R/W)

SLCCONF0_SLC0_RX_RST Set this bit to reset the transmitting FSM. (R/W)

SLCCONF0_SLC0_TX_RST Set this bit to reset the receiving FSM. (R/W)

Espressif Systems 163
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.2. SLC0INT_RAW_REG (0x4)

(re
se

rve
d)

0x00

31 27

(re
se

rve
d)

0 0 0 0 0 0

26 21

SL
C0IN

T_
SL

C0_
RX_

DSC
R_E

RR_IN
T_

RAW

0

20

SL
C0IN

T_
SL

C0_
TX

_D
SC

R_E
RR_IN

T_
RAW

0

19

(re
se

rve
d)

0

18

SL
C0IN

T_
SL

C0_
RX_

EO
F_

IN
T_

RAW

0

17

SL
C0IN

T_
SL

C0_
RX_

DONE_
IN

T_
RAW

0

16

SL
C0IN

T_
SL

C0_
TX

_S
UC_E

OF_
IN

T_
RAW

0

15

SL
C0IN

T_
SL

C0_
TX

_D
ONE_

IN
T_

RAW

0

14

(re
se

rve
d)

0 0

13 12

SL
C0IN

T_
SL

C0_
TX

_O
VF

_IN
T_

RAW

0

11

SL
C0IN

T_
SL

C0_
RX_

UDF_
IN

T_
RAW

0

10

SL
C0IN

T_
SL

C0_
TX

_S
TA

RT_
IN

T_
RAW

0

9

SL
C0IN

T_
SL

C0_
RX_

ST
AR

T_
IN

T_
RAW

0

8

SL
C0IN

T_
SL

C_F
RHOST

_B
IT7

_IN
T_

RAW

0

7

SL
C0IN

T_
SL

C_F
RHOST

_B
IT6

_IN
T_

RAW

0

6

SL
C0IN

T_
SL

C_F
RHOST

_B
IT5

_IN
T_

RAW

0

5

SL
C0IN

T_
SL

C_F
RHOST

_B
IT4

_IN
T_

RAW

0

4

SL
C0IN

T_
SL

C_F
RHOST

_B
IT3

_IN
T_

RAW

0

3

SL
C0IN

T_
SL

C_F
RHOST

_B
IT2

_IN
T_

RAW

0

2

SL
C0IN

T_
SL

C_F
RHOST

_B
IT1

_IN
T_

RAW

0

1

SL
C0IN

T_
SL

C_F
RHOST

_B
IT0

_IN
T_

RAW

0

0

Reset

SLC0INT_SLC0_RX_DSCR_ERR_INT_RAW The raw interrupt bit for Slave sending descriptor error

(RO)

SLC0INT_SLC0_TX_DSCR_ERR_INT_RAW The raw interrupt bit for Slave receiving descriptor error.

(RO)

SLC0INT_SLC0_RX_EOF_INT_RAW The interrupt mark bit for Slave sending operation finished.

(RO)

SLC0INT_SLC0_RX_DONE_INT_RAW The raw interrupt bit to mark single buffer as sent by Slave.

(RO)

SLC0INT_SLC0_TX_SUC_EOF_INT_RAW The raw interrupt bit to mark Slave receiving operation as

finished. (RO)

SLC0INT_SLC0_TX_DONE_INT_RAW The raw interrupt bit to mark a single buffer as finished during

Slave receiving operation. (RO)

SLC0INT_SLC0_TX_OVF_INT_RAW The raw interrupt bit to mark Slave receiving buffer overflow.

(RO)

SLC0INT_SLC0_RX_UDF_INT_RAW The raw interrupt bit for Slave sending buffer underflow. (RO)

SLC0INT_SLC0_TX_START_INT_RAW The raw interrupt bit for registering Slave receiving initializa-

tion interrupt. (RO)

SLC0INT_SLC0_RX_START_INT_RAW The raw interrupt bit to mark Slave sending initialization in-

terrupt. (RO)

SLC0INT_SLC_FRHOST_BIT7_INT_RAW The interrupt mark bit 7 for Host to interrupt Slave. (RO)

SLC0INT_SLC_FRHOST_BIT6_INT_RAW The interrupt mark bit 6 for Host to interrupt Slave. (RO)

SLC0INT_SLC_FRHOST_BIT5_INT_RAW The interrupt mark bit 5 for Host to interrupt Slave. (RO)

SLC0INT_SLC_FRHOST_BIT4_INT_RAW The interrupt mark bit 4 for Host to interrupt Slave. (RO)

SLC0INT_SLC_FRHOST_BIT3_INT_RAW The interrupt mark bit 3 for Host to interrupt Slave. (RO)

SLC0INT_SLC_FRHOST_BIT2_INT_RAW The interrupt mark bit 2 for Host to interrupt Slave. (RO)

SLC0INT_SLC_FRHOST_BIT1_INT_RAW The interrupt mark bit 1 for Host to interrupt Slave. (RO)

SLC0INT_SLC_FRHOST_BIT0_INT_RAW The interrupt mark bit 0 for Host to interrupt Slave. (RO)
Espressif Systems 164

Submit Documentation Feedback
ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.3. SLC0INT_ST_REG (0x8)

(re
se

rve
d)

0x00

31 27

(re
se

rve
d)

0 0 0 0 0 0

26 21

SLC
0IN

T_
SLC

0_
RX_

DSCR_E
RR_IN

T_
ST

0

20

SLC
0IN

T_
SLC

0_
TX

_D
SCR_E

RR_IN
T_

ST

0

19

(re
se

rve
d)

0

18

SLC
0IN

T_
SLC

0_
RX_

EOF_
IN

T_
ST

0

17

SLC
0IN

T_
SLC

0_
RX_

DONE_IN
T_

ST

0

16

SLC
0IN

T_
SLC

0_
TX

_S
UC_E

OF_
IN

T_
ST

0

15

SLC
0IN

T_
SLC

0_
TX

_D
ONE_IN

T_
ST

0

14

(re
se

rve
d)

0 0

13 12

SLC
0IN

T_
SLC

0_
TX

_O
VF_

IN
T_

ST

0

11

SLC
0IN

T_
SLC

0_
RX_

UDF_
IN

T_
ST

0

10

SLC
0IN

T_
SLC

0_
TX

_S
TA

RT_
IN

T_
ST

0

9

SLC
0IN

T_
SLC

0_
RX_

STA
RT_

IN
T_

ST

0

8

SLC
0IN

T_
SLC

_F
RHOST_

BIT7
_IN

T_
ST

0

7

SLC
0IN

T_
SLC

_F
RHOST_

BIT6
_IN

T_
ST

0

6

SLC
0IN

T_
SLC

_F
RHOST_

BIT5
_IN

T_
ST

0

5

SLC
0IN

T_
SLC

_F
RHOST_

BIT4
_IN

T_
ST

0

4

SLC
0IN

T_
SLC

_F
RHOST_

BIT3
_IN

T_
ST

0

3

SLC
0IN

T_
SLC

_F
RHOST_

BIT2
_IN

T_
ST

0

2

SLC
0IN

T_
SLC

_F
RHOST_

BIT1
_IN

T_
ST

0

1

SLC
0IN

T_
SLC

_F
RHOST_

BIT0
_IN

T_
ST

0

0

Reset

SLC0INT_SLC0_RX_DSCR_ERR_INT_ST The interrupt status bit for Slave sending descriptor error.

(RO)

SLC0INT_SLC0_TX_DSCR_ERR_INT_ST The interrupt status bit for Slave receiving descriptor error.

(RO)

SLC0INT_SLC0_RX_EOF_INT_ST The interrupt status bit for finished Slave sending operation. (RO)

SLC0INT_SLC0_RX_DONE_INT_ST The interrupt status bit for finished Slave sending operation.

(RO)

SLC0INT_SLC0_TX_SUC_EOF_INT_ST The interrupt status bit for marking Slave receiving opera-

tion as finished. (RO)

SLC0INT_SLC0_TX_DONE_INT_ST The interrupt status bit for marking a single buffer as finished

during the receiving operation. (RO)

SLC0INT_SLC0_TX_OVF_INT_ST The interrupt status bit for Slave receiving overflow interrupt. (RO)

SLC0INT_SLC0_RX_UDF_INT_ST The interrupt status bit for Slave sending buffer underflow. (RO)

SLC0INT_SLC0_TX_START_INT_ST The interrupt status bit for Slave receiving interrupt initialization.

(RO)

SLC0INT_SLC0_RX_START_INT_ST The interrupt status bit for Slave sending interrupt initialization.

(RO)

SLC0INT_SLC_FRHOST_BIT7_INT_ST The interrupt status bit 7 for Host to interrupt Slave. (RO)

SLC0INT_SLC_FRHOST_BIT6_INT_ST The interrupt status bit 6 for Host to interrupt Slave. (RO)

SLC0INT_SLC_FRHOST_BIT5_INT_ST The interrupt status bit 5 for Host to interrupt Slave. (RO)

SLC0INT_SLC_FRHOST_BIT4_INT_ST The interrupt status bit 4 for Host to interrupt Slave. (RO)

SLC0INT_SLC_FRHOST_BIT3_INT_ST The interrupt status bit 3 for Host to interrupt Slave. (RO)

SLC0INT_SLC_FRHOST_BIT2_INT_ST The interrupt status bit 2 for Host to interrupt Slave. (RO)

SLC0INT_SLC_FRHOST_BIT1_INT_ST The interrupt status bit 1 for Host to interrupt Slave. (RO)

SLC0INT_SLC_FRHOST_BIT0_INT_ST The interrupt status bit 0 for Host to interrupt Slave. (RO)

Espressif Systems 165
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.4. SLC0INT_ENA_REG (0xC)

(re
se

rv
ed

)

0x00

31 27

(re
se

rv
ed

)

0 0 0 0 0 0

26 21
SL

C0
IN

T_
SL

C0
_R

X_
DS

CR
_E

RR
_I

NT
_E

NA

0

20

SL
C0

IN
T_

SL
C0

_T
X_

DS
CR

_E
RR

_I
NT

_E
NA

0

19

(re
se

rv
ed

)

0

18

SL
C0

IN
T_

SL
C0

_R
X_

EO
F_

IN
T_

EN
A

0

17

SL
C0

IN
T_

SL
C0

_R
X_

DO
NE

_I
NT

_E
NA

0

16

SL
C0

IN
T_

SL
C0

_T
X_

SU
C_

EO
F_

IN
T_

EN
A

0

15

SL
C0

IN
T_

SL
C0

_T
X_

DO
NE

_I
NT

_E
NA

0

14

(re
se

rv
ed

)

0 0

13 12

SL
C0

IN
T_

SL
C0

_T
X_

O
VF

_I
NT

_E
NA

0

11

SL
C0

IN
T_

SL
C0

_R
X_

UD
F_

IN
T_

EN
A

0

10

SL
C0

IN
T_

SL
C0

_T
X_

ST
AR

T_
IN

T_
EN

A

0

9

SL
C0

IN
T_

SL
C0

_R
X_

ST
AR

T_
IN

T_
EN

A

0

8

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
7_

IN
T_

EN
A

0

7

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
6_

IN
T_

EN
A

0

6

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
5_

IN
T_

EN
A

0

5

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
4_

IN
T_

EN
A

0

4

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
3_

IN
T_

EN
A

0

3

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
2_

IN
T_

EN
A

0

2

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
1_

IN
T_

EN
A

0

1

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
0_

IN
T_

EN
A

0

0

Reset

SLC0INT_SLC0_RX_DSCR_ERR_INT_ENA The interrupt enable bit for Slave sending linked list de-

scriptor error. (R/W)

SLC0INT_SLC0_TX_DSCR_ERR_INT_ENA The interrupt enable bit for Slave receiving linked list de-

scriptor error. (R/W)

SLC0INT_SLC0_RX_EOF_INT_ENA The interrupt enable bit for Slave sending operation completion.

(R/W)

SLC0INT_SLC0_RX_DONE_INT_ENA The interrupt enable bit for single buffer’s sent interrupt, in

Slave sending mode. (R/W)

SLC0INT_SLC0_TX_SUC_EOF_INT_ENA The interrupt enable bit for Slave receiving operation com-

pletion. (R/W)

SLC0INT_SLC0_TX_DONE_INT_ENA The interrupt enable bit for single buffer’s full event, in Slave

receiving mode. (R/W)

SLC0INT_SLC0_TX_OVF_INT_ENA The interrupt enable bit for Slave receiving buffer overflow. (R/W)

SLC0INT_SLC0_RX_UDF_INT_ENA The interrupt enable bit for Slave sending buffer underflow.

(R/W)

SLC0INT_SLC0_TX_START_INT_ENA The interrupt enable bit for Slave receiving operation initial-

ization. (R/W)

SLC0INT_SLC0_RX_START_INT_ENA The interrupt enable bit for Slave sending operation initializa-

tion. (R/W)

SLC0INT_SLC_FRHOST_BIT7_INT_ENA The interrupt enable bit 7 for Host to interrupt Slave. (R/W)

SLC0INT_SLC_FRHOST_BIT6_INT_ENA The interrupt enable bit 6 for Host to interrupt Slave. (R/W)

SLC0INT_SLC_FRHOST_BIT5_INT_ENA The interrupt enable bit 5 for Host to interrupt Slave. (R/W)

SLC0INT_SLC_FRHOST_BIT4_INT_ENA The interrupt enable bit 4 for Host to interrupt Slave. (R/W)

SLC0INT_SLC_FRHOST_BIT3_INT_ENA The interrupt enable bit 3 for Host to interrupt Slave. (R/W)

SLC0INT_SLC_FRHOST_BIT2_INT_ENA The interrupt enable bit 2 for Host to interrupt Slave. (R/W)

SLC0INT_SLC_FRHOST_BIT1_INT_ENA The interrupt enable bit 1 for Host to interrupt Slave. (R/W)

SLC0INT_SLC_FRHOST_BIT0_INT_ENA The interrupt enable bit 0 for Host to interrupt Slave. (R/W)Espressif Systems 166
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.5. SLC0INT_CLR_REG (0x10)

(re
se

rv
ed

)

0x00

31 27

(re
se

rv
ed

)

0 0 0 0 0 0

26 21
SL

C0
IN

T_
SL

C0
_R

X_
DS

CR
_E

RR
_I

NT
_C

LR

0

20

SL
C0

IN
T_

SL
C0

_T
X_

DS
CR

_E
RR

_I
NT

_C
LR

0

19

(re
se

rv
ed

)

0

18

SL
C0

IN
T_

SL
C0

_R
X_

EO
F_

IN
T_

CL
R

0

17

SL
C0

IN
T_

SL
C0

_R
X_

DO
NE

_I
NT

_C
LR

0

16

SL
C0

IN
T_

SL
C0

_T
X_

SU
C_

EO
F_

IN
T_

CL
R

0

15

SL
C0

IN
T_

SL
C0

_T
X_

DO
NE

_I
NT

_C
LR

0

14

(re
se

rv
ed

)

0 0

13 12

SL
C0

IN
T_

SL
C0

_T
X_

O
VF

_I
NT

_C
LR

0

11

SL
C0

IN
T_

SL
C0

_R
X_

UD
F_

IN
T_

CL
R

0

10

SL
C0

IN
T_

SL
C0

_T
X_

ST
AR

T_
IN

T_
CL

R

0

9

SL
C0

IN
T_

SL
C0

_R
X_

ST
AR

T_
IN

T_
CL

R

0

8

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
7_

IN
T_

CL
R

0

7

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
6_

IN
T_

CL
R

0

6

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
5_

IN
T_

CL
R

0

5

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
4_

IN
T_

CL
R

0

4

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
3_

IN
T_

CL
R

0

3

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
2_

IN
T_

CL
R

0

2

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
1_

IN
T_

CL
R

0

1

SL
C0

IN
T_

SL
C_

FR
HO

ST
_B

IT
0_

IN
T_

CL
R

0

0

Reset

SLC0INT_SLC0_RX_DSCR_ERR_INT_CLR Interrupt clear bit for Slave sending linked list descriptor

error. (WO)

SLC0INT_SLC0_TX_DSCR_ERR_INT_CLR Interrupt clear bit for Slave receiving linked list descriptor

error. (WO)

SLC0INT_SLC0_RX_EOF_INT_CLR Interrupt clear bit for Slave sending operation completion. (WO)

SLC0INT_SLC0_RX_DONE_INT_CLR Interrupt clear bit for single buffer’s sent interrupt, in Slave

sending mode. (WO)

SLC0INT_SLC0_TX_SUC_EOF_INT_CLR Interrupt clear bit for Slave receiving operation comple-

tion. (WO)

SLC0INT_SLC0_TX_DONE_INT_CLR Interrupt clear bit for single buffer’s full event, in Slave receiving

mode. (WO)

SLC0INT_SLC0_TX_OVF_INT_CLR Set this bit to clear the Slave receiving overflow interrupt. (WO)

SLC0INT_SLC0_RX_UDF_INT_CLR Set this bit to clear the Slave sending underflow interrupt. (WO)

SLC0INT_SLC0_TX_START_INT_CLR Set this bit to clear the interrupt for Slave receiving operation

initialization. (WO)

SLC0INT_SLC0_RX_START_INT_CLR Set this bit to clear the interrupt for Slave sending operation

initialization. (WO)

SLC0INT_SLC_FRHOST_BIT7_INT_CLR Set this bit to clear the SLC0INT_SLC_FRHOST_BIT7_INT

interrupt. (WO)

SLC0INT_SLC_FRHOST_BIT6_INT_CLR Set this bit to clear the SLC0INT_SLC_FRHOST_BIT6_INT

interrupt. (WO)

SLC0INT_SLC_FRHOST_BIT5_INT_CLR Set this bit to clear the SLC0INT_SLC_FRHOST_BIT5_INT

interrupt. (WO)

SLC0INT_SLC_FRHOST_BIT4_INT_CLR Set this bit to clear the SLC0INT_SLC_FRHOST_BIT4_INT

interrupt. (WO)

Continued on the next page...

Espressif Systems 167
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.5. SLC0INT_CLR_REG (0x10)

Continued from the previous page...

SLC0INT_SLC_FRHOST_BIT3_INT_CLR Set this bit to clear SLC0INT_SLC_FRHOST_BIT3_INT in-

terrupt. (WO)

SLC0INT_SLC_FRHOST_BIT2_INT_CLR Set this bit to clear SLC0INT_SLC_FRHOST_BIT2_INT in-

terrupt. (WO)

SLC0INT_SLC_FRHOST_BIT1_INT_CLR Set this bit to clear SLC0INT_SLC_FRHOST_BIT1_INT in-

terrupt. (WO)

SLC0INT_SLC_FRHOST_BIT0_INT_CLR Set this bit to clear SLC0INT_SLC_FRHOST_BIT0_INT in-

terrupt. (WO)

Register 8.6. SLC0RX_LINK_REG (0x3C)

(re
se

rve
d)

0

31

SLC
0R

X_
SLC

0_
RXL

IN
K_R

ESTA
RT

0

30

SLC
0R

X_
SLC

0_
RXL

IN
K_S

TA
RT

0

29

SLC
0R

X_
SLC

0_
RXL

IN
K_S

TO
P

0

28

(re
se

rve
d)

0 0 0 0 0 0 0 0

27 20

SLC
0R

X_
SLC

0_
RXL

IN
K_A

DDR

0x000000

19 0

Reset

SLC0RX_SLC0_RXLINK_RESTART Set this bit to restart and continue the linked list operation for

sending packets. (R/W)

SLC0RX_SLC0_RXLINK_START Set this bit to start the linked list operation for sending packets.

Sending will start from the address indicated by SLC0_RXLINK_ADDR. (R/W)

SLC0RX_SLC0_RXLINK_STOP Set this bit to stop the linked list operation. (R/W)

SLC0RX_SLC0_RXLINK_ADDR The lowest 20 bits in the initial address of Slave’s sending linked list.

(R/W)

Espressif Systems 168
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.7. SLC0TX_LINK_REG (0x40)

(re
se

rve
d)

0

31

SLC
0T

X_
SLC

0_
TX

LIN
K_R

ESTA
RT

0

30

SLC
0T

X_
SLC

0_
TX

LIN
K_S

TA
RT

0

29

SLC
0T

X_
SLC

0_
TX

LIN
K_S

TO
P

0

28

(re
se

rve
d)

0 0 0 0 0 0 0 0

27 20

SLC
0T

X_
SLC

0_
TX

LIN
K_A

DDR

0x000000

19 0

Reset

SLC0TX_SLC0_TXLINK_RESTART Set this bit to restart and continue the linked list operation for

receiving packets. (R/W)

SLC0TX_SLC0_TXLINK_START Set this bit to start the linked list operation for receiving packets.

Receiving will start from the address indicated by SLC0_TXLINK_ADDR. (R/W)

SLC0TX_SLC0_TXLINK_STOP Set this bit to stop the linked list operation for receiving packets.

(R/W)

SLC0TX_SLC0_TXLINK_ADDR The lowest 20 bits in the initial address of Slave’s receiving linked

list. (R/W)

Register 8.8. SLCINTVEC_TOHOST_REG (0x4C)

(re
se

rve
d)

0x000

31 24

(re
se

rve
d)

0 0 0 0 0 0 0 0

23 16

(re
se

rve
d)

0x000

15 8

SLC
IN

TV
EC_S

LC
0_

TO
HOST_

IN
TV

EC

0x000

7 0

Reset

SLCINTVEC_SLC0_TOHOST_INTVEC The interrupt vector for Slave to interrupt Host. (WO)

Espressif Systems 169
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.9. SLC0TOKEN1_REG (0x54)

(re
se

rve
d)

0x00

31 28

SLC
0T

OKEN1_
SLC

0_
TO

KEN1

0x0000

27 16

(re
se

rve
d)

0

15

SLC
0T

OKEN1_
SLC

0_
TO

KEN1_
IN

C_M
ORE

0

14

(re
se

rve
d)

0 0

13 12

SLC
0T

OKEN1_
SLC

0_
TO

KEN1_
W

DAT
A

0x0000

11 0

Reset

SLC0TOKEN1_SLC0_TOKEN1 The accumulated number of buffers for receiving packets. (RO)

SLC0TOKEN1_SLC0_TOKEN1_INC_MORE Set this bit to add the value of

SLC0TOKEN1_SLC0_TOKEN1_WDATA to that of SLC0TOKEN1_SLC0_TOKEN1. (WO)

SLC0TOKEN1_SLC0_TOKEN1_WDATA The number of available receiving buffers. (WO)

Register 8.10. SLCCONF1_REG (0x60)

(re
se

rve
d)

0x000

31 23

(re
se

rve
d)

0 0 0 0 0 0 0

22 16

(re
se

rve
d)

0 0 0 0 0 0 0 0 0

15 7

SLC
CONF1

_S
LC

0_
RX_

STIT
CH_E

N

1

6

SLC
CONF1

_S
LC

0_
TX

_S
TIT

CH_E
N

1

5

SLC
CONF1

_S
LC

0_
LE

N_A
UTO

_C
LR

1

4

Reset

SLCCONF1_SLC0_RX_STITCH_EN Please initialize to 0. Do not modify it. (R/W)

SLCCONF1_SLC0_TX_STITCH_EN Please initialize to 0. Do not modify it. (R/W)

SLCCONF1_SLC0_LEN_AUTO_CLR Please initialize to 0. Do not modify it. (R/W)

Espressif Systems 170
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.11. SLC_RX_DSCR_CONF_REG (0x98)

(re
se

rve
d)

0 0

31 1

SLC
_S

LC
0_

TO
KEN_N

O_R
EPLA

CE

0

0

Reset

SLC_SLC0_TOKEN_NO_REPLACE Please initialize to 1. Do not modify it. (R/W)

Register 8.12. SLC0_LEN_CONF_REG (0xE4)

(re
se

rve
d)

0x0

31 29

(re
se

rve
d)

0 0 0 0 0 0

28 23

SLC
0_

LE
N_IN

C_M
ORE

0

22

(re
se

rve
d)

0 0

21 20

SLC
0_

LE
N_W

DAT
A

0x000000

19 0

Reset

SLC0_LEN_INC_MORE Set this bit to add the value of SLC0_LEN to that of SLC0_LEN_WDATA.

(WO)

SLC0_LEN_WDATA The packet length sent. (WO)

Register 8.13. SLC0_LENGTH_REG (0xE8)

(re
se

rve
d)

0x0000

31 20

SLC
0_

LE
N

0x000000

19 0

Reset

SLC0_LEN Indicates the packet length sent by the Slave. (RO)

8.6 SLC Host Registers
The addresses in parenthesis besides register names are the register addresses relative to the SDIO Slave base

address (0x3FF5_5000) provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The

absolute register addresses are listed in Section 8.4 Register Summary.

Espressif Systems 171
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.14. SLC0HOST_TOKEN_RDATA (0x44)

(re
se

rve
d)

0x000

31 28

HOSTR
EG_S

LC
0_

TO
KEN1

0x000

27 16

(re
se

rve
d)

0x000

15 0

Reset

HOSTREG_SLC0_TOKEN1 The accumulated number of Slave’s receiving buffers. (RO)

Espressif Systems 172
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.15. SLC0HOST_INT_RAW_REG (0x50)

(re
se

rv
ed

)

0x00

31 26

(re
se

rv
ed

)

0 0

25 24

SL
C0

HO
ST

_S
LC

0_
RX

_N
EW

_P
AC

KE
T_

IN
T_

RA
W

0

23

(re
se

rv
ed

)
0 0 0 0 0

22 18

SL
C0

HO
ST

_S
LC

0_
TX

_O
VF

_I
NT

_R
AW

0

17

SL
C0

HO
ST

_S
LC

0_
RX

_U
DF

_I
NT

_R
AW

0

16

(re
se

rv
ed

)

0 0 0 0 0 0 0 0

15 8

SL
C0

HO
ST

_S
LC

0_
TO

HO
ST

_B
IT

7_
IN

T_
RA

W

0

7

SL
C0

HO
ST

_S
LC

0_
TO

HO
ST

_B
IT

6_
IN

T_
RA

W

0

6

SL
C0

HO
ST

_S
LC

0_
TO

HO
ST

_B
IT

5_
IN

T_
RA

W

0

5

SL
C0

HO
ST

_S
LC

0_
TO

HO
ST

_B
IT

4_
IN

T_
RA

W

0

4

SL
C0

HO
ST

_S
LC

0_
TO

HO
ST

_B
IT

3_
IN

T_
RA

W

0

3

SL
C0

HO
ST

_S
LC

0_
TO

HO
ST

_B
IT

2_
IN

T_
RA

W

0

2

SL
C0

HO
ST

_S
LC

0_
TO

HO
ST

_B
IT

1_
IN

T_
RA

W

0

1

SL
C0

HO
ST

_S
LC

0_
TO

HO
ST

_B
IT

0_
IN

T_
RA

W

0

0

Reset

SLC0HOST_SLC0_RX_NEW_PACKET_INT_RAW The raw interrupt status bit for the

SLC0HOST_SLC0_RX_NEW_PACKET_INT interrupt. (RO)

SLC0HOST_SLC0_TX_OVF_INT_RAW The raw interrupt status bit for the

SLC0HOST_SLC0_TX_OVF_INT interrupt. (RO)

SLC0HOST_SLC0_RX_UDF_INT_RAW The raw interrupt status bit for the

SLC0HOST_SLC0_RX_UDF_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT7_INT_RAW The raw interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT7_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT6_INT_RAW The raw interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT6_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT5_INT_RAW The raw interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT5_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT4_INT_RAW The raw interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT4_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT3_INT_RAW The raw interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT3_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT2_INT_RAW The raw interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT2_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT1_INT_RAW The raw interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT1_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT0_INT_RAW The raw interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT0_INT interrupt. (RO)

Espressif Systems 173
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.16. SLC0HOST_INT_ST_REG (0x58)

(re
se

rv
ed

)

0x00

31 26

(re
se

rv
ed

)

0 0

25 24

SL
C

0H
O

ST
_S

LC
0_

RX
_N

EW
_P

AC
KE

T_
IN

T_
ST

0

23

(re
se

rv
ed

)
0 0 0 0 0

22 18

SL
C

0H
O

ST
_S

LC
0_

TX
_O

VF
_I

N
T_

ST

0

17

SL
C

0H
O

ST
_S

LC
0_

RX
_U

D
F_

IN
T_

ST

0

16

(re
se

rv
ed

)

0 0 0 0 0 0 0 0

15 8

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

7_
IN

T_
ST

0

7

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

6_
IN

T_
ST

0

6

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

5_
IN

T_
ST

0

5

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

4_
IN

T_
ST

0

4

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

3_
IN

T_
ST

0

3

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

2_
IN

T_
ST

0

2

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

1_
IN

T_
ST

0

1

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

0_
IN

T_
ST

0

0

Reset

SLC0HOST_SLC0_RX_NEW_PACKET_INT_ST The masked interrupt status bit for the

SLC0HOST_SLC0_RX_NEW_PACKET_INT interrupt. (RO)

SLC0HOST_SLC0_TX_OVF_INT_ST The masked interrupt status bit for the

SLC0HOST_SLC0_TX_OVF_INT interrupt. (RO)

SLC0HOST_SLC0_RX_UDF_INT_ST The masked interrupt status bit for the

SLC0HOST_SLC0_RX_UDF_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT7_INT_ST The masked interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT7_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT6_INT_ST The masked interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT6_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT5_INT_ST The masked interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT5_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT4_INT_ST The masked interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT4_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT3_INT_ST The masked interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT3_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT2_INT_ST The masked interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT2_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT1_INT_ST The masked interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT1_INT interrupt. (RO)

SLC0HOST_SLC0_TOHOST_BIT0_INT_ST The masked interrupt status bit for the

SLC0HOST_SLC0_TOHOST_BIT0_INT interrupt. (RO)

Espressif Systems 174
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.17. SLCHOST_PKT_LEN_REG (0x60)

SLC
HOST_

HOSTR
EG_S

LC
0_

LE
N_C

HECK

0x000

31 20

SLC
HOST_

HOSTR
EG_S

LC
0_

LE
N

0x000

19 0

Reset

SLCHOST_HOSTREG_SLC0_LEN_CHECK Its value is HOSTREG_SLC0_LEN[9:0] plus

HOSTREG_SLC0_LEN[19:10]. (RO)

SLCHOST_HOSTREG_SLC0_LEN The accumulated value of the data length sent by the Slave. The

value gets updated only when the Host reads it.

Register 8.18. SLCHOST_CONF_W0_REG (0x6C)

SLC
HOST_

CONF3

0x000

31 24

SLC
HOST_

CONF2

0x000

23 16

SLC
HOST_

CONF1

0x000

15 8

SLC
HOST_

CONF0

0x000

7 0

Reset

SLCHOST_CONF3 The information interaction register between Host and Slave. Both Host and Slave

can access it. (R/W)

SLCHOST_CONF2 The information interaction register between Host and Slave. Both Host and Slave

can access it. (R/W)

SLCHOST_CONF1 The information interaction register between Host and Slave. Both Host and Slave

can access it. (R/W)

SLCHOST_CONF0 The information interaction register between Host and Slave. Both Host and Slave

can access it. (R/W)

Espressif Systems 175
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.19. SLCHOST_CONF_W1_REG (0x70)

SLC
HOST_

CONF7

0x000

31 24

SLC
HOST_

CONF6

0x000

23 16

SLC
HOST_

CONF5

0x000

15 8

SLC
HOST_

CONF4

0x000

7 0

Reset

SLCHOST_CONF7 The information interaction register between Host and Slave. Both Host and Slave

can access it. (R/W)

SLCHOST_CONF6 The information interaction register between Host and Slave. Both Host and Slave

can access it. (R/W)

SLCHOST_CONF5 The information interaction register between Host and Slave. Both Host and Slave

can access it. (R/W)

SLCHOST_CONF4 The information interaction register between Host and Slave. Both Host and Slave

can access it. (R/W)

Register 8.20. SLCHOST_CONF_W2_REG (0x74)

SLC
HOST_

CONF1
1

0x000

31 24

SLC
HOST_

CONF1
0

0x000

23 16

SLC
HOST_

CONF9

0x000

15 8

SLC
HOST_

CONF8

0x000

7 0

Reset

SLCHOST_CONF11 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF10 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF9 The information interaction register between Host and Slave. Both Host and Slave

can access it. (R/W)

SLCHOST_CONF8 The information interaction register between Host and Slave. Both Host and Slave

can access it. (R/W)

Espressif Systems 176
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.21. SLCHOST_CONF_W3_REG (0x78)

SLC
HOST_

CONF1
5

0x000

31 24

SLC
HOST_

CONF1
4

0x000

23 16

Reset

SLCHOST_CONF15 The information interaction register between Host and Slave. Both Host and

Slave can be read from and written to this. (R/W)

SLCHOST_CONF14 The information interaction register between Host and Slave. Both Host and

Slave can be read from and written to this. (R/W)

Register 8.22. SLCHOST_CONF_W4_REG (0x7C)

SLC
HOST_

CONF1
9

0x000

31 24

SLC
HOST_

CONF1
8

0x000

23 16

Reset

SLCHOST_CONF19 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF18 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

Espressif Systems 177
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.23. SLCHOST_CONF_W6_REG (0x88)

SLC
HOST_

CONF2
7

0x000

31 24

SLC
HOST_

CONF2
6

0x000

23 16

SLC
HOST_

CONF2
5

0x000

15 8

SLC
HOST_

CONF2
4

0x000

7 0

Reset

SLCHOST_CONF27 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF26 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF25 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF24 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

Register 8.24. SLCHOST_CONF_W7_REG (0x8C)

SLC
HOST_

CONF3
1

0 0 0 0 0 0 0 0

31 24

(re
se

rve
d)

0x000

23 16

SLC
HOST_

CONF2
9

0 0 0 0 0 0 0 0

15 8

(re
se

rve
d)

0x000

7 0

Reset

SLCHOST_CONF31 The interrupt vector used by Host to interrupt Slave. This bit will not be cleared

automatically. (WO)

SLCHOST_CONF29 The interrupt vector used by Host to interrupt Slave. This bit will not be cleared

automatically. (WO)

Espressif Systems 178
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.25. SLCHOST_CONF_W8_REG (0x9C)

SLC
HOST_

CONF3
5

0x000

31 24

SLC
HOST_

CONF3
4

0x000

23 16

SLC
HOST_

CONF3
3

0x000

15 8

SLC
HOST_

CONF3
2

0x000

7 0

Reset

SLCHOST_CONF35 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF34 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF33 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF32 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

Register 8.26. SLCHOST_CONF_W9_REG (0xA0)

SLC
HOST_

CONF3
9

0x000

31 24

SLC
HOST_

CONF3
8

0x000

23 16

SLC
HOST_

CONF3
7

0x000

15 8

SLC
HOST_

CONF3
6

0x000

7 0

Reset

SLCHOST_CONF39 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF38 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF37 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF36 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

Espressif Systems 179
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.27. SLCHOST_CONF_W10_REG (0xA4)

SLC
HOST_

CONF4
3

0x000

31 24

SLC
HOST_

CONF4
2

0x000

23 16

SLC
HOST_

CONF4
1

0x000

15 8

SLC
HOST_

CONF4
0

0x000

7 0

Reset

SLCHOST_CONF43 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF42 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF41 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF40 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

Register 8.28. SLCHOST_CONF_W11_REG (0xA8)

SLC
HOST_

CONF4
7

0x000

31 24

SLC
HOST_

CONF4
6

0x000

23 16

SLC
HOST_

CONF4
5

0x000

15 8

SLC
HOST_

CONF4
4

0x000

7 0

Reset

SLCHOST_CONF47 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF46 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF45 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF44 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

Espressif Systems 180
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.29. SLCHOST_CONF_W12_REG (0xAC)

SLC
HOST_

CONF5
1

0x000

31 24

SLC
HOST_

CONF5
0

0x000

23 16

SLC
HOST_

CONF4
9

0x000

15 8

SLC
HOST_

CONF4
8

0x000

7 0

Reset

SLCHOST_CONF51 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF50 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF49 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF48 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

Register 8.30. SLCHOST_CONF_W13_REG (0xB0)

SLC
HOST_

CONF5
5

0x000

31 24

SLC
HOST_

CONF5
4

0x000

23 16

SLC
HOST_

CONF5
3

0x000

15 8

SLC
HOST_

CONF5
2

0x000

7 0

Reset

SLCHOST_CONF55 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF54 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF53 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF52 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

Espressif Systems 181
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.31. SLCHOST_CONF_W14_REG (0xB4)

SLC
HOST_

CONF5
9

0x000

31 24

SLC
HOST_

CONF5
8

0x000

23 16

SLC
HOST_

CONF5
7

0x000

15 8

SLC
HOST_

CONF5
6

0x000

7 0

Reset

SLCHOST_CONF59 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF58 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF57 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF56 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

Register 8.32. SLCHOST_CONF_W15_REG (0xB8)

SLC
HOST_

CONF6
3

0x000

31 24

SLC
HOST_

CONF6
2

0x000

23 16

SLC
HOST_

CONF6
1

0x000

15 8

SLC
HOST_

CONF6
0

0x000

7 0

Reset

SLCHOST_CONF63 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF62 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF61 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

SLCHOST_CONF60 The information interaction register between Host and Slave. Both Host and

Slave can access it. (R/W)

Espressif Systems 182
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.33. SLC0HOST_INT_CLR_REG (0xD4)

(re
se

rv
ed

)

0x00

31 26

(re
se

rv
ed

)

0 0

25 24

SL
C

0H
O

ST
_S

LC
0_

RX
_N

EW
_P

AC
KE

T_
IN

T_
C

LR
0

23

(re
se

rv
ed

)

0 0 0 0 0

22 18

SL
C

0H
O

ST
_S

LC
0_

TX
_O

VF
_I

N
T_

C
LR

0

17

SL
C

0H
O

ST
_S

LC
0_

RX
_U

D
F_

IN
T_

C
LR

0

16

(re
se

rv
ed

)

0 0 0 0 0 0 0 0

15 8

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

7_
IN

T_
C

LR

0

7

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

6_
IN

T_
C

LR

0

6

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

5_
IN

T_
C

LR

0

5

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

4_
IN

T_
C

LR

0

4

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

3_
IN

T_
C

LR

0

3

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

2_
IN

T_
C

LR

0

2

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

1_
IN

T_
C

LR

0

1

SL
C

0H
O

ST
_S

LC
0_

TO
H

O
ST

_B
IT

0_
IN

T_
C

LR

0

0

Reset

SLC0HOST_SLC0_RX_NEW_PACKET_INT_CLR Set this bit to clear the

SLC0HOST_SLC0_RX_NEW_PACKET_INT interrupt. (WO)

SLC0HOST_SLC0_TX_OVF_INT_CLR Set this bit to clear the SLC0HOST_SLC0_TX_OVF_INT in-

terrupt. (WO)

SLC0HOST_SLC0_RX_UDF_INT_CLR Set this bit to clear the SLC0HOST_SLC0_RX_UDF_INT in-

terrupt. (WO)

SLC0HOST_SLC0_TOHOST_BIT7_INT_CLR Set this bit to clear the

SLC0HOST_SLC0_TOHOST_BIT7_INT interrupt. (WO)

SLC0HOST_SLC0_TOHOST_BIT6_INT_CLR Set this bit to clear the

SLC0HOST_SLC0_TOHOST_BIT6_INT interrupt. (WO)

SLC0HOST_SLC0_TOHOST_BIT5_INT_CLR Set this bit to clear the

SLC0HOST_SLC0_TOHOST_BIT5_INT interrupt. (WO)

SLC0HOST_SLC0_TOHOST_BIT4_INT_CLR Set this bit to clear the

SLC0HOST_SLC0_TOHOST_BIT4_INT interrupt. (WO)

SLC0HOST_SLC0_TOHOST_BIT3_INT_CLR Set this bit to clear the

SLC0HOST_SLC0_TOHOST_BIT3_INT interrupt. (WO)

SLC0HOST_SLC0_TOHOST_BIT2_INT_CLR Set this bit to clear the

SLC0HOST_SLC0_TOHOST_BIT2_INT interrupt. (WO)

SLC0HOST_SLC0_TOHOST_BIT1_INT_CLR Set this bit to clear the

SLC0HOST_SLC0_TOHOST_BIT1_INT interrupt. (WO)

SLC0HOST_SLC0_TOHOST_BIT0_INT_CLR Set this bit to clear the

SLC0HOST_SLC0_TOHOST_BIT0_INT interrupt. (WO)

Espressif Systems 183
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.34. SLC0HOST_FUNC1_INT_ENA_REG (0xDC)

(re
se

rv
ed

)

0x00

31 26

(re
se

rv
ed

)

0 0

25 24

SL
C

0H
O

ST
_F

N
1_

SL
C

0_
RX

_N
EW

_P
AC

KE
T_

IN
T_

EN
A

0

23

(re
se

rv
ed

)

0 0 0 0 0

22 18
SL

C
0H

O
ST

_F
N

1_
SL

C
0_

TX
_O

VF
_I

N
T_

EN
A

0

17

SL
C

0H
O

ST
_F

N
1_

SL
C

0_
RX

_U
D

F_
IN

T_
EN

A

0

16

(re
se

rv
ed

)

0 0 0 0 0 0 0 0

15 8

SL
C

0H
O

ST
_F

N
1_

SL
C

0_
TO

H
O

ST
_B

IT
7_

IN
T_

EN
A

0

7

SL
C

0H
O

ST
_F

N
1_

SL
C

0_
TO

H
O

ST
_B

IT
6_

IN
T_

EN
A

0

6

SL
C

0H
O

ST
_F

N
1_

SL
C

0_
TO

H
O

ST
_B

IT
5_

IN
T_

EN
A

0

5

SL
C

0H
O

ST
_F

N
1_

SL
C

0_
TO

H
O

ST
_B

IT
4_

IN
T_

EN
A

0

4

SL
C

0H
O

ST
_F

N
1_

SL
C

0_
TO

H
O

ST
_B

IT
3_

IN
T_

EN
A

0

3

SL
C

0H
O

ST
_F

N
1_

SL
C

0_
TO

H
O

ST
_B

IT
2_

IN
T_

EN
A

0

2

SL
C

0H
O

ST
_F

N
1_

SL
C

0_
TO

H
O

ST
_B

IT
1_

IN
T_

EN
A

0

1

SL
C

0H
O

ST
_F

N
1_

SL
C

0_
TO

H
O

ST
_B

IT
0_

IN
T_

EN
A

0

0

Reset

SLC0HOST_FN1_SLC0_RX_NEW_PACKET_INT_ENA The interrupt enable bit for the

SLC0HOST_FN1_SLC0_RX_NEW_PACKET_INT interrupt. (R/W)

SLC0HOST_FN1_SLC0_TX_OVF_INT_ENA The interrupt enable bit for the

SLC0HOST_FN1_SLC0_TX_OVF_INT interrupt. (R/W)

SLC0HOST_FN1_SLC0_RX_UDF_INT_ENA The interrupt enable bit for the

SLC0HOST_FN1_SLC0_RX_UDF_INT interrupt. (R/W)

SLC0HOST_FN1_SLC0_TOHOST_BIT7_INT_ENA The interrupt enable bit for the

SLC0HOST_FN1_SLC0_TOHOST_BIT7_INT interrupt. (R/W)

SLC0HOST_FN1_SLC0_TOHOST_BIT6_INT_ENA The interrupt enable bit for the

SLC0HOST_FN1_SLC0_TOHOST_BIT6_INT interrupt. (R/W)

SLC0HOST_FN1_SLC0_TOHOST_BIT5_INT_ENA The interrupt enable bit for the

SLC0HOST_FN1_SLC0_TOHOST_BIT5_INT interrupt. (R/W)

SLC0HOST_FN1_SLC0_TOHOST_BIT4_INT_ENA The interrupt enable bit for the

SLC0HOST_FN1_SLC0_TOHOST_BIT4_INT interrupt. (R/W)

SLC0HOST_FN1_SLC0_TOHOST_BIT3_INT_ENA The interrupt enable bit for the

SLC0HOST_FN1_SLC0_TOHOST_BIT3_INT interrupt. (R/W)

SLC0HOST_FN1_SLC0_TOHOST_BIT2_INT_ENA The interrupt enable bit for the

SLC0HOST_FN1_SLC0_TOHOST_BIT2_INT interrupt. (R/W)

SLC0HOST_FN1_SLC0_TOHOST_BIT1_INT_ENA The interrupt enable bit for the

SLC0HOST_FN1_SLC0_TOHOST_BIT1_INT interrupt. (R/W)

SLC0HOST_FN1_SLC0_TOHOST_BIT0_INT_ENA The interrupt enable bit for the

SLC0HOST_FN1_SLC0_TOHOST_BIT0_INT interrupt. (R/W)

Espressif Systems 184
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

8 SDIO Slave Controller

Register 8.35. SLCHOST_CONF_REG (0x1F0)

(re
se

rve
d)

0 0 0 0

31 28

SLC
HOST_

HSPEED_C
ON_E

N

0

27

(re
se

rve
d)

0 0 0 0 0 0 0

26 20

SLC
HOST_

FR
C_P

OS_S
AM

P

0 0 0 0 0

19 15

SLC
HOST_

FR
C_N

EG_S
AM

P

0 0 0 0 0

14 10

SLC
HOST_

FR
C_S

DIO
20

0 0 0 0 0

9 5

SLC
HOST_

FR
C_S

DIO
11

0 0 0 0 0

4 0

Reset

SLCHOST_HSPEED_CON_EN Set this bit and HINF_HIGHSPEED_ENABLE, then set the EHS (En-

able High-Speed) bit in CCCR at the Host side to output the corresponding signal at the rising

clock edge. (R/W)

SLCHOST_FRC_POS_SAMP Set this bit to sample the corresponding signal at the rising clock edge.

(R/W)

SLCHOST_FRC_NEG_SAMP Set this bit to sample the corresponding signal at the falling clock edge.

(R/W)

SLCHOST_FRC_SDIO20 Set this bit to output the corresponding signal at the rising clock edge.

(R/W)

SLCHOST_FRC_SDIO11 Set this bit to output the corresponding signal at the falling clock edge.

(R/W)

8.7 HINF Registers
The addresses in parenthesis besides register names are the register addresses relative to the SDIO Slave base

address (0x3FF4_B000) provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The

absolute register addresses are listed in Section 8.4 Register Summary.

Register 8.36. HINF_CFG_DATA1_REG (0x4)

(re
se

rve
d)

0 0

31 3

HIN
F_

HIG
HSPEED_E

NABLE

0

2

HIN
F_

SDIO
_IO

READY1

0

1

Reset

HINF_HIGHSPEED_ENABLE Please initialize to 1. Do not modify it. (R/W)

HINF_SDIO_IOREADY1 Please initialize to 1. Do not modify it. (R/W)

Espressif Systems 185
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

9 SD/MMC Host Controller

9.1 Overview
The ESP32 memory card interface controller provides a hardware interface between the Advanced Peripheral Bus

(APB) and an external memory device. The memory card interface allows the ESP32 to be connected to SDIO

memory cards, MMC cards and devices with a CE-ATA interface. It supports two external cards (Card0 and

Card1).

9.2 Features
This module has the following features:

• Two external cards

• Supports SD Memory Card standard: versions 3.0 and 3.01

• Supports MMC: versions 4.41, 4.5, and 4.51

• Supports CE-ATA: version 1.1

• Supports 1-bit, 4-bit, and 8-bit (Card0 only) modes

The SD/MMC controller topology is shown in Figure 9-1. The controller supports two peripherals which cannot be

functional at the same time.

Figure 91. SD/MMC Controller Topology

9.3 SD/MMC External Interface Signals
The primary external interface signals, which enable the SD/MMC controller to communicate with an external

device, are clock (clk), command (cmd) and data signals. Additional signals include the card interrupt, card detect,

and write-protect signals. The direction of each signal is shown in Figure 9-2. The direction and description of

each pin are listed in Table 9-1.

Espressif Systems 186
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Figure 92. SD/MMC Controller External Interface Signals

Table 91. SD/MMC Signal Description

Pin Direction Description

cclk_out Output Clock signals for slave device

ccmd Duplex Duplex command/response lines

cdata Duplex Duplex data read/write lines

card_detect_n Input Card detection input line

card_write_prt Input Card write protection status input

9.4 Functional Description
9.4.1 SD/MMC Host Controller Architecture
The SD/MMC host controller consists of two main functional blocks, as shown in Figure 9-3:

• Bus Interface Unit (BIU): It provides APB interfaces for registers, data read and write operation by FIFO and

DMA.

• Card Interface Unit (CIU): It handles external memory card interface protocols. It also provides clock control.

Figure 93. SDIO Host Block Diagram

Espressif Systems 187
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

9.4.1.1 BIU

The BIU provides the access to registers and FIFO data through the Host Interface Unit (HIU). Additionally, it provides

FIFO access to independent data through a DMA interface. The host interface can be configured as an APB

interface. Figure 9-3 illustrates the internal components of the BIU. The BIU provides the following functions:

• Host interface

• DMA interface

• Interrupt control

• Register access

• FIFO access

• Power/pull-up control and card detection

9.4.1.2 CIU

The CIU module implements the card-specific protocols. Within the CIU, the command path control unit and

data path control unit prompt the controller to interface with the command and data ports, respectively, of the

SD/MMC/CE-ATA cards. The CIU also provides clock control. Figure 9-3 illustrates the internal structure of the

CIU, which consists of the following primary functional blocks:

• Command path

• Data path

• SDIO interrupt control

• Clock control

• Mux/demux unit

9.4.2 Command Path
The command path performs the following functions:

• Configures clock parameters

• Configures card command parameters

• Sends commands to card bus (ccmd_out line)

• Receives responses from card bus (ccmd_in line)

• Sends responses to BIU

• Drives the P-bit on the command line

The command path State Machine is shown in Figure 9-4.

Espressif Systems 188
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Figure 94. Command Path State Machine

9.4.3 Data Path
The data path block pops FIFO data and transmits them on cdata_out during a write-data transfer, or it receives data

on cdata_in and pushes them into FIFO during a read-data transfer. The data path loads new data parameters, i.e.,

expected data, read/write data transfer, stream/block transfer, block size, byte count, card type, timeout registers,

etc., whenever a data transfer command is not in progress.

If the data_expected bit is set in the Command register, the new command is a data-transfer command and the

data path starts one of the following operations:

• Transmitting data if the read/write bit = 1

• Receiving data if read/write bit = 0

9.4.3.1 Data Transmit Operation

The data transmit state machine is illustrated in Figure 9-5. The module starts data transmission two clock cycles

after a response for the data-write command is received. This occurs even if the command path detects a response

error or a cyclic redundancy check (CRC) error in a response. If no response is received from the card until the

response timeout, no data are transmitted. Depending on the value of the transfer_mode bit in the Command

register, the data-transmit state machine adds data to the card’s data bus in a stream or in block(s). The data

transmit state machine is shown in Figure 9-5.

Figure 95. Data Transmit State Machine

Espressif Systems 189
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

9.4.3.2 Data Receive Operation

The data-receive state machine is illustrated in Figure 9-6. The module receives data two clock cycles after the end

bit of a data-read command, even if the command path detects a response error or a CRC error. If no response is

received from the card and a response timeout occurs, the BIU does not receive a signal about the completion of

the data transfer. If the command sent by the CIU is an illegal operation for the card, it would prevent the card from

starting a read-data transfer, and the BIU will not receive a signal about the completion of the data transfer.

If no data are received by the data timeout, the data path signals a data timeout to the BIU, which marks an end

to the data transfer. Based on the value of the transfer_mode bit in the Command register, the data-receive state

machine gets data from the card’s data bus in a stream or block(s). The data receive state machine is shown in

Figure 9-6.

Figure 96. Data Receive State Machine

9.5 Software Restrictions for Proper CIU Operation
• Only one card at a time can be selected to execute a command or data transfer. For example, when data are

being transferred to or from a card, a new command must not be issued to another card. A new command,

however, can be issued to the same card, allowing it to read the device status or stop the transfer.

• Only one command at a time can be issued for data transfers.

• During an open-ended card-write operation, if the card clock is stopped due to FIFO being empty, the

software must fill FIFO with data first, and then start the card clock. Only then can it issue a stop/abort

command to the card.

• During an SDIO/COMBO card transfer, if the card function is suspended and the software wants to resume

the suspended transfer, it must first reset FIFO, and then issue the resume command as if it were a new

data-transfer command.

• When issuing card reset commands (CMD0, CMD15 or CMD52_reset), while a card data transfer is in

progress, the software must set the stop_abort_cmd bit in the Command register, so that the CIU can

stop the data transfer after issuing the card reset command.

• When the data’s end bit error is set in the RINTSTS register, the CIU does not guarantee SDIO interrupts. In

such a case, the software ignores SDIO interrupts and issues a stop/abort command to the card, so that

the card stops sending read-data.

• If the card clock is stopped due to FIFO being full during a card read, the software will read at least two FIFO

locations to restart the card clock.

Espressif Systems 190
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

• Only one CE-ATA device at a time can be selected for a command or data transfer. For example, when data

are transferred from a CE-ATA device, a new command should not be sent to another CE-ATA device.

• If a CE-ATA device’s interrupts are enabled (nIEN=0), a new RW_BLK command should not be sent to the

same device if the execution of a RW_BLK command is already in progress (the RW_BLK command used in

this databook is the RW_MULTIPLE_BLOCK MMC command defined by the CE-ATA specifications). Only

the CCSD can be sent while waiting for the CCS.

• If, however, a CE-ATA device’s interrupts are disabled (nIEN=1), a new command can be issued to the same

device, allowing it to read status information.

• Open-ended transfers are not supported in CE-ATA devices.

• The send_auto_stop signal is not supported (software should not set the send_auto_stop bit) in CE-ATA

transfers.

After configuring the command start bit to 1, the values of the following registers cannot be changed before a

command has been issued:

• CMD - command

• CMDARG - command argument

• BYTCNT - byte count

• BLKSIZ - block size

• CLKDIV - clock divider

• CKLENA - clock enable

• CLKSRC - clock source

• TMOUT - timeout

• CTYPE - card type

9.6 RAM for Receiving and Sending Data
The submodule RAM is a buffer area for sending and receiving data. It can be divided into two units: the one is for

sending data, and the other is for receiving data. The process of sending and receiving data can also be achieved

by the CPU and DMA for reading and writing. The latter method is described in detail in Section 9.8.

9.6.1 Transmit RAM Module
There are two ways to enable a write operation: DMA and CPU read/write.

If SDIO-sending is enabled, data can be written to the transferred RAM module by APB interface or DMA. Data

will be written from register EMAC_FIFO to the CPU, directly, by an APB interface.

9.6.2 Receive RAM Module
There are two ways to enable a read operation: DMA and CPU read/write.

When a subunit of the data path receives data, the subdata will be written onto the receive-RAM. Then, these

subdata can be read either with the APB or the DMA method at the reading end. Register EMAC_FIFO can be

read by the APB directly.

Espressif Systems 191
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

9.7 Descriptor Chain
Each linked list module consists of two parts: the linked list itself and a data buffer. In other words, each mod-

ule points to a unique data buffer and the linked list that follows the module. Figure 9-7 shows the descriptor

chain.

Figure 97. Descriptor Chain

9.8 The Structure of a Linked List
Each linked list consists of four words. As is shown below, Figure 9-8 demonstrates the linked list’s structure, and

Table 9-2, Table 9-3, Table 9-4, Table 9-5 provide the descriptions of linked lists.

Figure 98. The Structure of a Linked List

The DES0 element contains control and status information.

Table 92. DES0

Bits Name Description

31 OWN

When set, this bit indicates that the descriptor is

owned by the DMAC. When reset, it indicates that the

descriptor is owned by the Host. The DMAC clears

this bit when it completes the data transfer.

Espressif Systems 192
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Bits Name Description

30 CES (Card Error Summary)

These error bits indicate the status of the transition to

or from the card.

The following bits are also present in RINTSTS, which

indicates their digital logic OR gate.

• EBE: End Bit Error

• RTO: Response Time out

• RCRC: Response CRC

• SBE: Start Bit Error

• DRTO: Data Read Timeout

• DCRC: Data CRC for Receive

• RE: Response Error

29:6 Reserved Reserved

5 ER (End of Ring)

When set, this bit indicates that the descriptor list has

reached its final descriptor. The DMAC then returns

to the base address of the list, creating a Descriptor

Ring.

4
CH

(Second Address Chained)

When set, this bit indicates that the second address in

the descriptor is the Next Descriptor address. When

this bit is set, BS2 (DES1[25:13]) should be all zeros.

3 FD (First Descriptor)

When set, this bit indicates that this descriptor con-

tains the first buffer of the data. If the size of the first

buffer is 0, the Next Descriptor contains the beginning

of the data.

2 LD (Last Descriptor)

This bit is associated with the last block of a DMA

transfer. When set, the bit indicates that the buffers

pointed by this descriptor are the last buffers of the

data. After this descriptor is completed, the remain-

ing byte count is 0. In other words, after the descriptor

with the LD bit set is completed, the remaining byte

count should be 0.

1
DIC (Disable Interrupt

on Completion)

When set, this bit will prevent the setting of the TI/RI

bit of the DMAC Status Register (IDSTS) for the data

that ends in the buffer pointed by this descriptor.

0 Reserved Reserved

The DES1 element contains the buffer size.

Table 93. DES1

Bits Name Description

31:26 Reserved Reserved

25:13 Reserved Reserved

Espressif Systems 193
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Bits Name Description

12:0 BS1 (Buffer 1 Size)

Indicates the data buffer byte size, which must be a

multiple of four. In the case where the buffer size is not

a multiple of four, the resulting behavior is undefined.

This field should not be zero.

The DES2 element contains the address pointer to the data buffer.

Table 94. DES2

Bits Name Description

31:0 Buffer Address Pointer 1
These bits indicate the physical address of the data

buffer.

The DES3 element contains the address pointer to the next descriptor if the present descriptor is not the last one

in a chained descriptor structure.

Table 95. DES3

Bits Name Description

31:0 Next Descriptor Address

If the Second Address Chained (DES0[4]) bit is set,

then this address contains the pointer to the physical

memory where the Next Descriptor is present.

If this is not the last descriptor, then the Next Descrip-

tor address pointer must be DES3[1:0] = 0.

9.9 Initialization
9.9.1 DMAC Initialization
The DMAC initialization should proceed as follows:

• Write to the DMAC Bus Mode Register (BMOD_REG) will set the Host bus’s access parameters.

• Write to the DMAC Interrupt Enable Register (IDINTEN) will mask any unnecessary interrupt causes.

• The software driver creates either the transmit or the receive descriptor list. Then, it writes to the DMAC

Descriptor List Base Address Register (DBADDR), providing the DMAC with the starting address of the list.

• The DMAC engine attempts to acquire descriptors from descriptor lists.

9.9.2 DMAC Transmission Initialization
The DMAC transmission occurs as follows:

1. The Host sets up the elements (DES0-DES3) for transmission, and sets the OWN bit (DES0[31]). The Host

also prepares the data buffer.

2. The Host programs the write-data command in the CMD register in BIU.

3. The Host also programs the required transmit threshold (TX_WMARK field in FIFOTH register).

Espressif Systems 194
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

4. The DMAC engine fetches the descriptor and checks the OWN bit. If the OWN bit is not set, it means that

the host owns the descriptor. In this case, the DMAC enters a suspend-state and asserts the Descriptor

Unable interrupt in the IDSTS register. In such a case, the host needs to release the DMAC by writing any

value to PLDMND_REG.

5. It then waits for the Command Done (CD) bit and no errors from BIU, which indicates that a transfer can be

done.

6. Subsequently, the DMAC engine waits for a DMA interface request (dw_dma_req) from BIU. This request will

be generated, based on the programmed transmit-threshold value. For the last bytes of data which cannot

be accessed using a burst, single transfers are performed on the AHB Master Interface.

7. The DMAC fetches the transmit data from the data buffer in the Host memory and transfers them to FIFO for

transmission to card.

8. When data span across multiple descriptors, the DMAC fetches the next descriptor and extends its operation

using the following descriptor. The last descriptor bit indicates whether the data span multiple descriptors

or not.

9. When data transmission is complete, the status information is updated in the IDSTS register by setting the

Transmit Interrupt, if it has already been enabled. Also, the OWN bit is cleared by the DMAC by performing

a write transaction to DES0.

9.9.3 DMAC Reception Initialization
The DMAC reception occurs as follows:

1. The Host sets up the element (DES0-DES3) for reception, and sets the OWN bit (DES0[31]).

2. The Host programs the read-data command in the CMD register in BIU.

3. Then, the Host programs the required level of the receive-threshold (RX_WMARK field in FIFOTH register).

4. The DMAC engine fetches the descriptor and checks the OWN bit. If the OWN bit is not set, it means that the

host owns the descriptor. In this case, the DMA enters a suspend-state and asserts the Descriptor Unable

interrupt in the IDSTS register. In such a case, the host needs to release the DMAC by writing any value to

PLDMND_REG.

5. It then waits for the Command Done (CD) bit and no errors from BIU, which indicates that a transfer can be

done.

6. The DMAC engine then waits for a DMA interface request (dw_dma_req) from BIU. This request will be

generated, based on the programmed receive-threshold value. For the last bytes of the data which cannot

be accessed using a burst, single transfers are performed on the AHB.

7. The DMAC fetches the data from FIFO and transfers them to the Host memory.

8. When data span across multiple descriptors, the DMAC will fetch the next descriptor and extend its operation

using the following descriptor. The last descriptor bit indicates whether the data span multiple descriptors

or not.

9. When data reception is complete, the status information is updated in the IDSTS register by setting Receive-

Interrupt, if it has already been enabled. Also, the OWN bit is cleared by the DMAC by performing a write-

transaction to DES0.

Espressif Systems 195
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

9.10 Clock Phase Selection
If the setup time requirements for the input or output data signal are not met, users can specify the clock phase,

as shown in the figure below.

Figure 99. Clock Phase Selection

Please find detailed information on the clock phase selection register CLK_EDGE_SEL in Section Registers.

9.11 Interrupt
Interrupts can be generated as a result of various events. The IDSTS register contains all the bits that might cause

an interrupt. The IDINTEN register contains an enable bit for each of the events that can cause an interrupt.

There are two groups of summary interrupts, ”Normal” ones (bit8 NIS) and ”Abnormal” ones (bit9 AIS), as outlined in

the IDSTS register. Interrupts are cleared by writing 1 to the position of the corresponding bit. When all the enabled

interrupts within a group are cleared, the corresponding summary bit is also cleared. When both summary bits are

cleared, the interrupt signal dmac_intr_o is de-asserted (stops signalling).

Interrupts are not queued up, and if a new interrupt-event occurs before the driver has responded to it, no addi-

tional interrupts are generated. For example, the Receive Interrupt IDSTS[1] indicates that one or more data were

transferred to the Host buffer.

An interrupt is generated only once for concurrent events. The driver must scan the IDSTS register for the interrupt

cause.

9.12 Register Summary
The addresses in this section are relative to the SD/MMC base address provided in Table 1-6 Peripheral Address

Mapping in Chapter 1 System and Memory.

Name Description Address Access

CTRL_REG Control register 0x0000 R/W

CLKDIV_REG Clock divider configuration register 0x0008 R/W

Espressif Systems 196
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Name Description Address Access

CLKSRC_REG Clock source selection register 0x000C R/W

CLKENA_REG Clock enable register 0x0010 R/W

TMOUT_REG Data and response timeout configuration register 0x0014 R/W

CTYPE_REG Card bus width configuration register 0x0018 R/W

BLKSIZ_REG Card data block size configuration register 0x001C R/W

BYTCNT_REG Data transfer length configuration register 0x0020 R/W

INTMASK_REG SDIO interrupt mask register 0x0024 R/W

CMDARG_REG Command argument data register 0x0028 R/W

CMD_REG Command and boot configuration register 0x002C R/W

RESP0_REG Response data register 0x0030 RO

RESP1_REG Long response data register 0x0034 RO

RESP2_REG Long response data register 0x0038 RO

RESP3_REG Long response data register 0x003C RO

MINTSTS_REG Masked interrupt status register 0x0040 RO

RINTSTS_REG Raw interrupt status register 0x0044 R/W

STATUS_REG SD/MMC status register 0x0048 RO

FIFOTH_REG FIFO configuration register 0x004C R/W

CDETECT_REG Card detect register 0x0050 RO

WRTPRT_REG Card write protection (WP) status register 0x0054 RO

TCBCNT_REG Transferred byte count register 0x005C RO

TBBCNT_REG Transferred byte count register 0x0060 RO

DEBNCE_REG Debounce filter time configuration register 0x0064 R/W

USRID_REG User ID (scratchpad) register 0x0068 R/W

RST_N_REG Card reset register 0x0078 R/W

BMOD_REG Burst mode transfer configuration register 0x0080 R/W

PLDMND_REG Poll demand configuration register 0x0084 WO

DBADDR_REG Descriptor base address register 0x0088 R/W

IDSTS_REG IDMAC status register 0x008C R/W

IDINTEN_REG IDMAC interrupt enable register 0x0090 R/W

DSCADDR_REG Host descriptor address pointer 0x0094 RO

BUFADDR_REG Host buffer address pointer register 0x0098 RO

CLK_EDGE_SEL Clock phase selection register 0x0800 R/W

9.13 Registers
SD/MMC controller registers can be accessed by the APB bus of the CPU.

The addresses in this section are relative to the SD/MMC base address provided in Table 1-6 Peripheral Address

Mapping in Chapter 1 System and Memory.

Espressif Systems 197
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.1. CTRL_REG (0x0000)

(re
se

rve
d)

0x00

31 25

(re
se

rve
d)

1

24

(re
se

rve
d)

0x00

23 12

CEAT
A_D

EVIC
E_IN

TE
RRUPT_

STA
TU

S

0

11

SEND_A
UTO

_S
TO

P_C
CSD

0

10

SEND_C
CSD

0

9

ABORT_
READ_D

AT
A

0

8

SEND_IR
Q_R

ESPONSE

0

7

READ_W
AIT

0

6

(re
se

rve
d)

0

5

IN
T_

ENABLE

0

4

(re
se

rve
d)

0

3

DM
A_R

ESET

0

2

FIF
O_R

ESET

0

1

CONTR
OLL

ER_R
ESET

0

0

Reset

CEATA_DEVICE_INTERRUPT_STATUS Software should appropriately write to this bit after the

power-on reset or any other reset to the CE-ATA device. After reset, the CE-ATA device’s interrupt

is usually disabled (nIEN = 1). If the host enables the CE-ATA device’s interrupt, then software

should set this bit. (R/W)

SEND_AUTO_STOP_CCSD Always set send_auto_stop_ccsd and send_ccsd bits together;

send_auto_stop_ccsd should not be set independently of send_ccsd. When set, SD/MMC au-

tomatically sends an internally-generated STOP command (CMD12) to the CE-ATA device. After

sending this internally-generated STOP command, the Auto Command Done (ACD) bit in RINTSTS

is set and an interrupt is generated for the host, in case the ACD interrupt is not masked. Af-

ter sending the Command Completion Signal Disable (CCSD), SD/MMC automatically clears the

send_auto_stop_ccsd bit. (R/W)

SEND_CCSD When set, SD/MMC sends CCSD to the CE-ATA device. Software sets this bit only

if the current command is expecting CCS (that is, RW_BLK), and if interrupts are enabled for the

CE-ATA device. Once the CCSD pattern is sent to the device, SD/MMC automatically clears the

send_ccsd bit. It also sets the Command Done (CD) bit in the RINTSTS register, and generates

an interrupt for the host, in case the Command Done interrupt is not masked. NOTE: Once the

send_ccsd bit is set, it takes two card clock cycles to drive the CCSD on the CMD line. Due to this,

within the boundary conditions the CCSD may be sent to the CE-ATA device, even if the device

has signalled CCS. (R/W)

ABORT_READ_DATA After a suspend-command is issued during a read-operation, software polls the

card to find when the suspend-event occurred. Once the suspend-event has occurred, software

sets the bit which will reset the data state machine that is waiting for the next block of data. This

bit is automatically cleared once the data state machine is reset to idle. (R/W)

SEND_IRQ_RESPONSE Bit automatically clears once response is sent. To wait for MMC card inter-

rupts, host issues CMD40 and waits for interrupt response from MMC card(s). In the meantime, if

host wants SD/MMC to exit waiting for interrupt state, it can set this bit, at which time SD/MMC

command state-machine sends CMD40 response on bus and returns to idle state. (R/W)

Continued on the next page...

Espressif Systems 198
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.1. CTRL_REG (0x0000)

Continued from the previous page...

READ_WAIT For sending read-wait to SDIO cards. (R/W)

INT_ENABLE Global interrupt enable/disable bit. 0: Disable; 1: Enable. (R/W)

DMA_RESET To reset DMA interface, firmware should set bit to 1. This bit is auto-cleared after two

AHB clocks. (R/W)

FIFO_RESET To reset FIFO, firmware should set bit to 1. This bit is auto-cleared after completion of

reset operation. Note: FIFO pointers will be out of reset after 2 cycles of system clocks in addition

to synchronization delay (2 cycles of card clock), after the fifo_reset is cleared. (R/W)

CONTROLLER_RESET To reset controller, firmware should set this bit. This bit is auto-cleared after

two AHB and two cclk_in clock cycles. (R/W)

Register 9.2. CLKDIV_REG (0x0008)

CLK
_D

IVID
ER3

0x000

31 24

CLK
_D

IVID
ER2

0x000

23 16

CLK
_D

IVID
ER1

0x000

15 8

CLK
_D

IVID
ER0

0x000

7 0

Reset

CLK_DIVIDER3 Clock divider-3 value. Clock division factor is 2*n, where n=0 bypasses the divider

(division factor of 1). For example, a value of 1 means divide by 2*1 = 2, a value of 0xFF means

divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented

because only one clock divider is supported. (R/W)

CLK_DIVIDER2 Clock divider-2 value. Clock division factor is 2*n, where n=0 bypasses the divider

(division factor of 1). For example, a value of 1 means divide by 2*1 = 2, a value of 0xFF means

divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented

because only one clock divider is supported. (R/W)

CLK_DIVIDER1 Clock divider-1 value. Clock division factor is 2*n, where n=0 bypasses the divider

(division factor of 1). For example, a value of 1 means divide by 2*1 = 2, a value of 0xFF means

divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented

because only one clock divider is supported. (R/W)

CLK_DIVIDER0 Clock divider-0 value. Clock division factor is 2*n, where n=0 bypasses the divider

(division factor of 1). For example, a value of 1 means divide by 2*1 = 2, a value of 0xFF means

divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented

because only one clock divider is supported. (R/W)

Espressif Systems 199
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.3. CLKSRC_REG (0x000C)

(re
se

rve
d)

0x000000

31 4

CLK
SRC_R

EG

0x0

3 0

Reset

CLKSRC_REG Clock divider source for two SD cards is supported. Each card has two bits assigned

to it. For example, bit[1:0] are assigned for card 0, bit[3:2] are assigned for card 1. Card 0 maps

and internally routes clock divider[0:3] outputs to cclk_out[1:0] pins, depending on bit value.

00 : Clock divider 0;

01 : Clock divider 1;

10 : Clock divider 2;

11 : Clock divider 3.

In MMC-Ver3.3-only controller, only one clock divider is supported. The cclk_out is always from

clock divider 0, and this register is not implemented. (R/W)

Register 9.4. CLKENA_REG (0x0010)

(re
se

rve
d)

0x00000

31 2

CCLK
_E

NABEL

0x00000

1 0

Reset

CCLK_ENABEL Clock-enable control for two SD card clocks and one MMC card clock is supported.

0: Clock disabled;

1: Clock enabled.

In MMC-Ver3.3-only mode, since there is only one cclk_out, only cclk_enable[0] is used. (R/W)

Espressif Systems 200
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.5. TMOUT_REG (0x0014)

DAT
A_T

IM
EOUT

0x0FFFFFF

31 8

RESPONSE_T
IM

EOUT

0x040

7 0

Reset

DATA_TIMEOUT Value for card data read timeout. This value is also used for data starvation by host

timeout. The timeout counter is started only after the card clock is stopped. This value is specified

in number of card output clocks, i.e. cclk_out of the selected card.

NOTE: The software timer should be used if the timeout value is in the order of 100 ms. In this

case, read data timeout interrupt needs to be disabled. (R/W)

RESPONSE_TIMEOUT Response timeout value. Value is specified in terms of number of card output

clocks, i.e., cclk_out. (R/W)

Register 9.6. CTYPE_REG (0x0018)

(re
se

rve
d)

0x00000

31 18

CARD_W
ID

TH
8

0x00000

17 16

(re
se

rve
d)

0x00000

15 2

CARD_W
ID

TH
4

0x00000

1 0

Reset

CARD_WIDTH8 One bit per card indicates if card is in 8-bit mode.

0: Non 8-bit mode;

1: 8-bit mode.

Bit[17:16] correspond to card[1:0] respectively. (R/W)

CARD_WIDTH4 One bit per card indicates if card is 1-bit or 4-bit mode.

0: 1-bit mode;

1: 4-bit mode.

Bit[1:0] correspond to card[1:0] respectively. Only NUM_CARDS*2 number of bits are imple-

mented. (R/W)

Register 9.7. BLKSIZ_REG (0x001C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

BLO
CK_S

IZE

0x00200

15 0

Reset

BLOCK_SIZE Block size. (R/W)

Espressif Systems 201
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.8. BYTCNT_REG (0x0020)

0x000000200

31 0

Reset

BYTCNT_REG Number of bytes to be transferred, should be an integral multiple of Block Size for

block transfers. For data transfers of undefined byte lengths, byte count should be set to 0. When

byte count is set to 0, it is the responsibility of host to explicitly send stop/abort command to

terminate data transfer. (R/W)

Register 9.9. INTMASK_REG (0x0024)

(re
se

rve
d)

0x00000

31 18

SDIO
_IN

T_
M

ASK

0x00000

17 16

IN
T_

M
ASK

0x00000

15 0

Reset

SDIO_INT_MASK SDIO interrupt mask, one bit for each card. Bit[17:16] correspond to card[15:0] re-

spectively. When masked, SDIO interrupt detection for that card is disabled. 0 masks an interrupt,

and 1 enables an interrupt. In MMC-Ver3.3-only mode, these bits are always 0. (R/W)

INT_MASK These bits used to mask unwanted interrupts. A value of 0 masks interrupt, and a value

of 1 enables the interrupt. (R/W)

Bit 15 (EBE): End-bit error, read/write (no CRC)

Bit 14 (ACD): Auto command done

Bit 13 (SBE/BCI): Start Bit Error/Busy Clear Interrupt

Bit 12 (HLE): Hardware locked write error

Bit 11 (FRUN): FIFO underrun/overrun error

Bit 10 (HTO): Data starvation-by-host timeout/Volt_switch_int

Bit 9 (DRTO): Data read timeout

Bit 8 (RTO): Response timeout

Bit 7 (DCRC): Data CRC error

Bit 6 (RCRC): Response CRC error

Bit 5 (RXDR): Receive FIFO data request

Bit 4 (TXDR): Transmit FIFO data request

Bit 3 (DTO): Data transfer over

Bit 2 (CD): Command done

Bit 1 (RE): Response error

Bit 0 (CD): Card detect

Espressif Systems 202
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.10. CMDARG_REG (0x0028)

0x000000000

31 0

Reset

CMDARG_REG Value indicates command argument to be passed to the card. (R/W)

Register 9.11. CMD_REG (0x002C)

STA
RT_

CM
D

0

31

(re
se

rve
d)

0

30

USE_H
OLE

1

29

(re
se

rve
d)

0

28

(re
se

rve
d)

0

27

(re
se

rve
d)

0

26

(re
se

rve
d)

0

25

(re
se

rve
d)

0

24

CCS_E
XP

ECTE
D

0

23

READ_C
EAT

A_D
EVIC

E

0

22

UPDAT
E_C

LO
CK_R

EGIS
TE

RS_O
NLY

0

21

CARD_N
UM

BER

0x00

20 16

SEND_IN
ITI

ALIZ
AT

IO
N

0

15

STO
P_A

BORT_
CM

D

0

14

W
AIT_

PRVDAT
A_C

OM
PLE

TE

0

13

SEND_A
UTO

_S
TO

P

0

12

TR
ANSFE

R_M
ODE

0

11

READ/W
RITE

0

10

DAT
A_E

XP
ECTE

D

0

9

CHECK_R
ESPONSE_C

RC

0

8

RESPONSE_L
ENGTH

0

7

RESPONSE_E
XP

ECT

0

6

CM
D_IN

DEX

0x00

5 0

Reset

START_CMD Start command. Once command is served by the CIU, this bit is automatically cleared.

When this bit is set, host should not attempt to write to any command registers. If a write is

attempted, hardware lock error is set in raw interrupt register. Once command is sent and a

response is received from SD_MMC_CEATA cards, Command Done bit is set in the raw interrupt

Register. (R/W)

USE_HOLE Use Hold Register. (R/W) 0: CMD and DATA sent to card bypassing HOLD Register; 1:

CMD and DATA sent to card through the HOLD Register.

CCS_EXPECTED Expected Command Completion Signal (CCS) configuration. (R/W)

0: Interrupts are not enabled in CE-ATA device (nIEN = 1 in ATA control register), or command

does not expect CCS from device.

1: Interrupts are enabled in CE-ATA device (nIEN = 0), and RW_BLK command expects command

completion signal from CE-ATA device.

If the command expects Command Completion Signal (CCS) from the CE-ATA device, the software

should set this control bit. SD/MMC sets Data Transfer Over (DTO) bit in RINTSTS register and

generates interrupt to host if Data Transfer Over interrupt is not masked.

READ_CEATA_DEVICE Read access flag. (R/W)

0: Host is not performing read access (RW_REG or RW_BLK)towards CE-ATA device

1: Host is performing read access (RW_REG or RW_BLK) towards CE-ATA device.

Software should set this bit to indicate that CE-ATA device is being accessed for read transfer.

This bit is used to disable read data timeout indication while performing CE-ATA read transfers.

Maximum value of I/O transmission delay can be no less than 10 seconds. SD/MMC should not

indicate read data timeout while waiting for data from CE-ATA device. (R/W)

Continued on the next page...

Espressif Systems 203
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.11. CMD_REG (0x002C)

Continued from the previous page...

UPDATE_CLOCK_REGISTERS_ONLY (R/W)

0: Normal command sequence.

1: Do not send commands, just update clock register value into card clock domain

Following register values are transferred into card clock domain: CLKDIV, CLRSRC, and CLKENA.

Changes card clocks (change frequency, truncate off or on, and set low-frequency mode). This

is provided in order to change clock frequency or stop clock without having to send command to

cards.

During normal command sequence, when update_clock_registers_only = 0, following control reg-

isters are transferred from BIU to CIU: CMD, CMDARG, TMOUT, CTYPE, BLKSIZ, and BYTCNT.

CIU uses new register values for new command sequence to card(s). When bit is set, there are no

Command Done interrupts because no command is sent to SD_MMC_CEATA cards.

CARD_NUMBER Card number in use. Represents physical slot number of card being accessed. In

MMC-Ver3.3-only mode, up to two cards are supported. In SD-only mode, up to two cards are

supported. (R/W)

SEND_INITIALIZATION (R/W)

0: Do not send initialization sequence (80 clocks of 1) before sending this command.

1: Send initialization sequence before sending this command.

After power on, 80 clocks must be sent to card for initialization before sending any commands to

card. Bit should be set while sending first command to card so that controller will initialize clocks

before sending command to card.

STOP_ABORT_CMD (R/W)

0: Neither stop nor abort command can stop current data transfer. If abort is sent to function-

number currently selected or not in data-transfer mode, then bit should be set to 0.

1: Stop or abort command intended to stop current data transfer in progress. When open-ended

or predefined data transfer is in progress, and host issues stop or abort command to stop data

transfer, bit should be set so that command/data state-machines of CIU can return correctly to idle

state.

WAIT_PRVDATA_COMPLETE (R/W)

0: Send command at once, even if previous data transfer has not completed;

1: Wait for previous data transfer to complete before sending Command.

The wait_prvdata_complete = 0 option is typically used to query status of card during data transfer

or to stop current data transfer. card_number should be same as in previous command.

SEND_AUTO_STOP (R/W)

0: No stop command is sent at the end of data transfer;

1: Send stop command at the end of data transfer.

Continued on the next page...

Espressif Systems 204
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.11. CMD_REG (0x002C)

Continued from the previous page ...

TRANSFER_MODE (R/W)

0: Block data transfer command;

1: Stream data transfer command. Don’t care if no data expected.

READ/WRITE (R/W)

0: Read from card;

1: Write to card.

Don’t care if no data is expected from card.

DATA_EXPECTED (R/W)

0: No data transfer expected.

1: Data transfer expected.

CHECK_RESPONSE_CRC (R/W)

0: Do not check;

1: Check response CRC.

Some of command responses do not return valid CRC bits. Software should disable CRC checks

for those commands in order to disable CRC checking by controller.

RESPONSE_LENGTH (R/W)

0: Short response expected from card;

1: Long response expected from card.

RESPONSE_EXPECT (R/W)

0: No response expected from card;

1: Response expected from card.

CMD_INDEX Command index. (R/W)

Register 9.12. RESP0_REG (0x0030)

0x000000000

31 0

Reset

RESP0_REG Bit[31:0] of response. (RO)

Register 9.13. RESP1_REG (0x0034)

0x000000000

31 0

Reset

RESP1_REG Bit[63:32] of long response. (RO)

Espressif Systems 205
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.14. RESP2_REG (0x0038)

0x000000000

31 0

Reset

RESP2_REG Bit[95:64] of long response. (RO)

Register 9.15. RESP3_REG (0x003C)

0x000000000

31 0

Reset

RESP3_REG Bit[127:96] of long response. (RO)

Register 9.16. MINTSTS_REG (0x0040)

(re
se

rve
d)

0

31 18

SDIO
_IN

TE
RRUPT_

M
SK

0x0

17 16

IN
T_

STA
TU

S_M
SK

0x00000

15 0

Reset

SDIO_INTERRUPT_MSK Interrupt from SDIO card, one bit for each card. Bit[17:16] correspond

to card1 and card0, respectively. SDIO interrupt for card is enabled only if corresponding

sdio_int_mask bit is set in Interrupt mask register (Setting mask bit enables interrupt). (RO)

INT_STATUS_MSK Interrupt enabled only if corresponding bit in interrupt mask register is set. (RO)

Bit 15 (EBE): End-bit error, read/write (no CRC)

Bit 14 (ACD): Auto command done

Bit 13 (SBE/BCI): Start Bit Error/Busy Clear Interrupt

Bit 12 (HLE): Hardware locked write error

Bit 11 (FRUN): FIFO underrun/overrun error

Bit 10 (HTO): Data starvation by host timeout (HTO)

Bit 9 (DTRO): Data read timeout

Bit 8 (RTO): Response timeout

Bit 7 (DCRC): Data CRC error

Bit 6 (RCRC): Response CRC error

Bit 5 (RXDR): Receive FIFO data request

Bit 4 (TXDR): Transmit FIFO data request

Bit 3 (DTO): Data transfer over

Bit 2 (CD): Command done

Bit 1 (RE): Response error

Bit 0 (CD): Card detect

Espressif Systems 206
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.17. RINTSTS_REG (0x0044)

(re
se

rve
d)

0x00000

31 18

SDIO
_IN

TE
RRUPT_

RAW

0x0

17 16

IN
T_

STA
TU

S_R
AW

0x00000

15 0

Reset

SDIO_INTERRUPT_RAW Interrupt from SDIO card, one bit for each card. Bit[17:16] correspond to

card1 and card0, respectively. Setting a bit clears the corresponding interrupt bit and writing 0 has

no effect. (R/W)

0: No SDIO interrupt from card;

1: SDIO interrupt from card.

In MMC-Ver3.3-only mode, these bits are always 0. Bits are logged regardless of interrupt-mask

status. (R/W)

INT_STATUS_RAW Setting a bit clears the corresponding interrupt and writing 0 has no effect. Bits

are logged regardless of interrupt mask status. (R/W)

Bit 15 (EBE): End-bit error, read/write (no CRC)

Bit 14 (ACD): Auto command done

Bit 13 (SBE/BCI): Start Bit Error/Busy Clear Interrupt

Bit 12 (HLE): Hardware locked write error

Bit 11 (FRUN): FIFO underrun/overrun error

Bit 10 (HTO): Data starvation by host timeout (HTO)

Bit 9 (DTRO): Data read timeout

Bit 8 (RTO): Response timeout

Bit 7 (DCRC): Data CRC error

Bit 6 (RCRC): Response CRC error

Bit 5 (RXDR): Receive FIFO data request

Bit 4 (TXDR): Transmit FIFO data request

Bit 3 (DTO): Data transfer over

Bit 2 (CD): Command done

Bit 1 (RE): Response error

Bit 0 (CD): Card detect

Espressif Systems 207
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.18. STATUS_REG (0x0048)

(re
se

rve
d)

0

31

(re
se

rve
d)

0

30

FIF
O_C

OUNT

0x000

29 17

RESPONSE_IN
DEX

0x00

16 11

DAT
A_S

TA
TE

_M
C_B

USY

1

10

DAT
A_B

USY

1

9

DAT
A_3

_S
TA

TU
S

1

8

COM
M

AND_F
SM

_S
TA

TE
S

0x01

7 4

FIF
O_F

ULL

0

3

FIF
O_E

M
PTY

1

2

FIF
O_T

X_
W

AT
ERM

ARK

1

1

FIF
O_R

X_
W

AT
ERM

ARK

0

0

Reset

FIFO_COUNT FIFO count, number of filled locations in FIFO. (RO)

RESPONSE_INDEX Index of previous response, including any auto-stop sent by core. (RO)

DATA_STATE_MC_BUSY Data transmit or receive state-machine is busy. (RO)

DATA_BUSY Inverted version of raw selected card_data[0]. (RO)

0: Card data not busy;

1: Card data busy.

DATA_3_STATUS Raw selected card_data[3], checks whether card is present. (RO)

0: card not present;

1: card present.

COMMAND_FSM_STATES Command FSM states. (RO)

0: Idle

1: Send init sequence

2: Send cmd start bit

3: Send cmd tx bit

4: Send cmd index + arg

5: Send cmd crc7

6: Send cmd end bit

7: Receive resp start bit

8: Receive resp IRQ response

9: Receive resp tx bit

10: Receive resp cmd idx

11: Receive resp data

12: Receive resp crc7

13: Receive resp end bit

14: Cmd path wait NCC

15: Wait, cmd-to-response turnaround

FIFO_FULL FIFO is full status. (RO)

FIFO_EMPTY FIFO is empty status. (RO)

FIFO_TX_WATERMARK FIFO reached Transmit watermark level, not qualified with data transfer. (RO)

FIFO_RX_WATERMARK FIFO reached Receive watermark level, not qualified with data transfer. (RO)

Espressif Systems 208
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.19. FIFOTH_REG (0x004C)

(re
se

rve
d)

0

31

DM
A_M

ULT
IP

LE
_T

RANSACTIO
N_S

IZE

0x0

30 28

(re
se

rve
d)

0

27

RX_
W

M
ARK

x x x x x x x x x x x

26 16

(re
se

rve
d)

0 0 0 0

15 12

TX
_W

M
ARK

0x0000

11 0

Reset

DMA_MULTIPLE_TRANSACTION_SIZE Burst size of multiple transaction, should be programmed

same as DMA controller multiple-transaction-size SRC/DEST_MSIZE. 000: 1-byte transfer; 001:

4-byte transfer; 010: 8-byte transfer; 011: 16-byte transfer; 100: 32-byte transfer; 101: 64-byte

transfer; 110: 128-byte transfer; 111: 256-byte transfer. (R/W)

RX_WMARK FIFO threshold watermark level when receiving data to card.When FIFO data count

reaches greater than this number (FIFO_RX_WATERMARK), DMA/FIFO request is raised. During

end of packet, request is generated regardless of threshold programming in order to complete any

remaining data.In non-DMA mode, when receiver FIFO threshold (RXDR) interrupt is enabled, then

interrupt is generated instead of DMA request.During end of packet, interrupt is not generated if

threshold programming is larger than any remaining data. It is responsibility of host to read remain-

ing bytes on seeing Data Transfer Done interrupt.In DMA mode, at end of packet, even if remaining

bytes are less than threshold, DMA request does single transfers to flush out any remaining bytes

before Data Transfer Done interrupt is set. (R/W)

TX_WMARK FIFO threshold watermark level when transmitting data to card. When FIFO data count

is less than or equal to this number (FIFO_TX_WATERMARK), DMA/FIFO request is raised. If In-

terrupt is enabled, then interrupt occurs. During end of packet, request or interrupt is generated,

regardless of threshold programming.In non-DMA mode, when transmit FIFO threshold (TXDR) in-

terrupt is enabled, then interrupt is generated instead of DMA request. During end of packet, on

last interrupt, host is responsible for filling FIFO with only required remaining bytes (not before FIFO

is full or after CIU completes data transfers, because FIFO may not be empty). In DMA mode, at

end of packet, if last transfer is less than burst size, DMA controller does single cycles until required

bytes are transferred. (R/W)

Espressif Systems 209
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.20. CDETECT_REG (0x0050)

(re
se

rve
d)

0x0

31 2

CARD_D
ETE

CT_
N

0x0

1 0

Reset

CARD_DETECT_N Value on card_detect_n input ports (1 bit per card), read-only bits.0 represents

presence of card. Only NUM_CARDS number of bits are implemented. (RO)

Register 9.21. WRTPRT_REG (0x0054)

(re
se

rve
d)

0x0

31 2

W
RITE

_P
ROTE

CT

0x0

1 0

Reset

WRITE_PROTECT Value on card_write_prt input ports (1 bit per card).1 represents write protection.

Only NUM_CARDS number of bits are implemented. (RO)

Register 9.22. TCBCNT_REG (0x005C)

0x000000000

31 0

Reset

TCBCNT_REG Number of bytes transferred by CIU unit to card. (RO)

Register 9.23. TBBCNT_REG (0x0060)

0x000000000

31 0

Reset

TBBCNT_REG Number of bytes transferred between Host/DMA memory and BIU FIFO. (RO)

Espressif Systems 210
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.24. DEBNCE_REG (0x0064)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

DEBOUNCE_C
OUNT

0x0000000

23 0

Reset

DEBOUNCE_COUNT Number of host clocks (clk) used by debounce filter logic. The typical de-

bounce time is 5 ~ 25 ms to prevent the card instability when the card is inserted or removed.

(R/W)

Register 9.25. USRID_REG (0x0068)

0x000000000

31 0

Reset

USRID_REG User identification register, value set by user. Default reset value can be picked by user

while configuring core before synthesis. Can also be used as a scratchpad register by user. (R/W)

Register 9.26. RST_N_REG (0x0078)

(re
se

rve
d)

0

31 2

RST_
CARD_R

ESET

0x1

1 0

Reset

RST_CARD_RESET Hardware reset.1: Active mode; 0: Reset. These bits cause the cards to enter

pre-idle state, which requires them to be re-initialized. CARD_RESET[0] should be set to 1’b0 to

reset card0, CARD_RESET[1] should be set to 1’b0 to reset card1.The number of bits implemented

is restricted to NUM_CARDS. (R/W)

Espressif Systems 211
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.27. BMOD_REG (0x0080)

(re
se

rve
d)

0 0

31 11

BM
OD_P

BL

0x0

10 8

BM
OD_D

E

0

7

(re
se

rve
d)

0x00

6 2

BM
OD_F

B

0

1

BM
OD_S

W
R

0

0

Reset

BMOD_PBL Programmable Burst Length. These bits indicate the maximum number of beats to be

performed in one IDMAC transaction. The IDMAC will always attempt to burst as specified in PBL

each time it starts a burst transfer on the host bus. The permissible values are 1, 4, 8, 16, 32, 64,

128 and 256. This value is the mirror of MSIZE of FIFOTH register. In order to change this value,

write the required value to FIFOTH register. This is an encode value as follows:

000: 1-byte transfer; 001: 4-byte transfer; 010: 8-byte transfer; 011: 16-byte transfer; 100: 32-

byte transfer; 101: 64-byte transfer; 110: 128-byte transfer; 111: 256-byte transfer.

PBL is a read-only value and is applicable only for data access, it does not apply to descriptor

access. (R/W)

BMOD_DE IDMAC Enable. When set, the IDMAC is enabled. (R/W)

BMOD_FB Fixed Burst. Controls whether the AHB Master interface performs fixed burst transfers or

not. When set, the AHB will use only SINGLE, INCR4, INCR8 or INCR16 during start of normal

burst transfers. When reset, the AHB will use SINGLE and INCR burst transfer operations. (R/W)

BMOD_SWR Software Reset. When set, the DMA Controller resets all its internal registers. It is

automatically cleared after one clock cycle. (R/W)

Register 9.28. PLDMND_REG (0x0080)

0x000000000

31 0

Reset

PLDMND_REG Poll Demand. If the OWN bit of a descriptor is not set, the FSM goes to the Suspend

state. The host needs to write any value into this register for the IDMAC FSM to resume normal

descriptor fetch operation. This is a write only register, PD bit is write-only. (WO)

Register 9.29. DBADDR_REG (0x0088)

0x000000000

31 0

Reset

DBADDR_REG Start of Descriptor List. Contains the base address of the First Descriptor. The LSB

bits [1:0] are ignored and taken as all-zero by the IDMAC internally. Hence these LSB bits may be

treated as read-only. (R/W)

Espressif Systems 212
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.30. IDSTS_REG (0x008C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

ID
STS

_F
SM

0x00

16 13

ID
STS

_F
BE_C

ODE

0x0

12 10

ID
STS

_A
IS

0

9

ID
STS

_N
IS

0

8

(re
se

rve
d)

0 0

7 6

ID
STS

_C
ES

0

5

ID
STS

_D
U

0

4

(re
se

rve
d)

0

3

ID
STS

_F
BE

0

2

ID
STS

_R
I

0

1

ID
STS

_T
I

0

0

Reset

IDSTS_FSM DMAC FSM present state: (RO)

0: DMA_IDLE; 1: DMA_SUSPEND; 2: DESC_RD; 3: DESC_CHK; 4: DMA_RD_REQ_WAIT

5: DMA_WR_REQ_WAIT; 6: DMA_RD; 7: DMA_WR; 8: DESC_CLOSE.

IDSTS_FBE_CODE Fatal Bus Error Code. Indicates the type of error that caused a Bus Error. Valid

only when the Fatal Bus Error bit IDSTS[2] is set. This field does not generate an interrupt. (RO)

3b001: Host Abort received during transmission;

3b010: Host Abort received during reception;

Others: Reserved.

IDSTS_AIS Abnormal Interrupt Summary. Logical OR of the following: IDSTS[2] : Fatal Bus Interrupt,

IDSTS[4] : DU bit Interrupt. Only unmasked bits affect this bit. This is a sticky bit and must be

cleared each time a corresponding bit that causes AIS to be set is cleared. Writing 1 clears this

bit. (R/W)

IDSTS_NIS Normal Interrupt Summary. Logical OR of the following: IDSTS[0] : Transmit Interrupt,

IDSTS[1] : Receive Interrupt. Only unmasked bits affect this bit. This is a sticky bit and must be

cleared each time a corresponding bit that causes NIS to be set is cleared. Writing 1 clears this

bit. (R/W)

IDSTS_CES Card Error Summary. Indicates the status of the transaction to/from the card, also

present in RINTSTS. Indicates the logical OR of the following bits: EBE : End Bit Error, RTO :

Response Timeout/Boot Ack Timeout, RCRC : Response CRC, SBE : Start Bit Error, DRTO : Data

Read Timeout/BDS timeout, DCRC : Data CRC for Receive, RE : Response Error.

Writing 1 clears this bit. The abort condition of the IDMAC depends on the setting of this CES bit.

If the CES bit is enabled, then the IDMAC aborts on a response error. (R/W)

IDSTS_DU Descriptor Unavailable Interrupt. This bit is set when the descriptor is unavailable due to

OWN bit = 0 (DES0[31] =0). Writing 1 clears this bit. (R/W)

IDSTS_FBE Fatal Bus Error Interrupt. Indicates that a Bus Error occurred (IDSTS[12:10]) . When this

bit is set, the DMA disables all its bus accesses. Writing 1 clears this bit. (R/W)

IDSTS_RI Receive Interrupt. Indicates the completion of data reception for a descriptor. Writing 1

clears this bit. (R/W)

IDSTS_TI Transmit Interrupt. Indicates that data transmission is finished for a descriptor. Writing 1

clears this bit. (R/W)

Espressif Systems 213
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.31. IDINTEN_REG (0x0090)

(re
se

rve
d)

0 0

31 10

ID
IN

TE
N_A

I

0

9

ID
IN

TE
N_N

I

0

8

(re
se

rve
d)

0 0

7 6

ID
IN

TE
N_C

ES

0

5

ID
IN

TE
N_D

U

0

4

(re
se

rve
d)

0

3

ID
IN

TE
N_F

BE

0

2

ID
IN

TE
N_R

I

0

1

ID
IN

TE
N_T

I

0

0

Reset

IDINTEN_AI Abnormal Interrupt Summary Enable. (R/W)

When set, an abnormal interrupt is enabled. This bit enables the following bits:

IDINTEN[2]: Fatal Bus Error Interrupt;

IDINTEN[4]: DU Interrupt.

IDINTEN_NI Normal Interrupt Summary Enable. (R/W)

When set, a normal interrupt is enabled. When reset, a normal interrupt is disabled. This bit enables

the following bits:

IDINTEN[0]: Transmit Interrupt;

IDINTEN[1]: Receive Interrupt.

IDINTEN_CES Card Error summary Interrupt Enable. When set, it enables the Card Interrupt sum-

mary. (R/W)

IDINTEN_DU Descriptor Unavailable Interrupt. When set along with Abnormal Interrupt Summary

Enable, the DU interrupt is enabled. (R/W)

IDINTEN_FBE Fatal Bus Error Enable. When set with Abnormal Interrupt Summary Enable, the Fatal

Bus Error Interrupt is enabled. When reset, Fatal Bus Error Enable Interrupt is disabled. (R/W)

IDINTEN_RI Receive Interrupt Enable. When set with Normal Interrupt Summary Enable, Receive

Interrupt is enabled. When reset, Receive Interrupt is disabled. (R/W)

IDINTEN_TI Transmit Interrupt Enable. When set with Normal Interrupt Summary Enable, Transmit

Interrupt is enabled. When reset, Transmit Interrupt is disabled. (R/W)

Register 9.32. DSCADDR_REG (0x0094)

0x000000000

31 0

Reset

DSCADDR_REG Host Descriptor Address Pointer, updated by IDMAC during operation and cleared

on reset. This register points to the start address of the current descriptor read by the IDMAC.

(RO)

Espressif Systems 214
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

9 SD/MMC Host Controller

Register 9.33. BUFADDR_REG (0x0098)

0x000000000

31 0

Reset

BUFADDR_REG Host Buffer Address Pointer, updated by IDMAC during operation and cleared on

reset. This register points to the current Data Buffer Address being accessed by the IDMAC. (RO)

Register 9.34. CLK_EDGE_SEL (0x0800)

(re
se

rve
d)

0x000

31 21

CCLK
IN

_E
DGE_N

0x1

20 17

CCLK
IN

_E
DGE_L

0x0

16 13

CCLK
IN

_E
DGE_H

0x1

12 9

CCLK
IN

_E
DGE_S

LF
_S

EL

0x0

8 6

CCLK
IN

_E
DGE_S

AM
_S

EL

0x0

5 3

CCLK
IN

_E
DGE_D

RV_S
EL

0x0

2 0

Reset

CCLKIN_EDGE_N This value should be equal to CCLKIN_EDGE_L. (R/W)

CCLKIN_EDGE_L The low level of the divider clock. The value should be larger than

CCLKIN_EDGE_H. (R/W)

CCLKIN_EDGE_H The high level of the divider clock. The value should be smaller than

CCLKIN_EDGE_L. (R/W)

CCLKIN_EDGE_SLF_SEL It is used to select the clock phase of the internal signal from phase90,

phase180, or phase270. (R/W)

CCLKIN_EDGE_SAM_SEL It is used to select the clock phase of the input signal from phase90,

phase180, or phase270. (R/W)

CCLKIN_EDGE_DRV_SEL It is used to select the clock phase of the output signal from phase90,

phase180, or phase270. (R/W)

Espressif Systems 215
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

10 Ethernet Media Access Controller (MAC)

10.1 Overview
Features of Ethernet

By using the external Ethernet PHY (physical layer), ESP32 can send and receive data via Ethernet MAC (Me-

dia Access Controller) according to the IEEE 802.3 standard, as Figure 10-1 shows. Ethernet is currently the

most commonly used network protocol that controls how data is transmitted over local- and wide-area networks,

abbreviated as LAN and WAN, respectively.

Figure 101. Ethernet MAC Functionality Overview

ESP32 MAC Ethernet complies with the following criteria:

• IEEE 802.3-2002 for Ethernet MAC

• IEEE 1588-2008 standard for specifying the accuracy of networked clock synchronization

• Two industry-standard interfaces conforming with IEEE 802.3-2002: Media-Independent Interface (MII) and

Reduced Media-Independent Interface (RMII).

Features of MAC Layer

• Support for a data transmission rate of 10 Mbit/s or 100 Mbit/s through an external PHY interface

• Communication with an external Fast Ethernet PHY through IEEE 802.3-compliant MII and RMII interfaces

• Support for:

– Carrier Sense Multiple Access / Collision Detection (CSMA/CD) protocol in half-duplex mode

– IEEE 802.3x flow control in full-duplex mode

– operations in full-duplex mode, forwarding the received pause-control frame to the user application

– backpressure flow control in half-duplex mode

– If the flow control input signal disappears during a full-duplex operation, a pause frame with zero pause

time value is automatically transmitted.

• The Preamble and the Start Frame Delimiter (SFD) are inserted in the Transmit path, and deleted in the

Receive path.

Espressif Systems 216
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

• Cyclic Redundancy Check (CRC) and Pad can be controlled on a per-frame basis.

• The Pad is generated automatically, if data is below the minimum frame length.

• Programmable frame length supporting jumbo frames of up to 16 KB

• Programmable Inter-frame Gap (IFG) (40-96 bit times in steps of 8)

• Support for a variety of flexible address filtering modes:

– Up to eight 48-bit perfect address filters to mask each byte

– Up to eight 48-bit SA address comparison checks to mask each byte

– All multicast address frames can be transmitted

– All frames in mixed mode can be transmitted without being filtered for network monitoring

– A status report is attached each time all incoming packets are transmitted and filtered

• Returning a 32-bit status for transmission and reception of packets respectively

• Separate transmission, reception, and control interfaces for the application

• Use of the Management Data Input/Output (MDIO) interface to configure and manage PHY devices

• Support for the offloading of received IPv4 and TCP packets encapsulated by an Ethernet frame in the

reception function

• Support for checking IPv4 header checksums, as well as TCP, UDP, or ICMP (Internet Control Message

Protocol) checksums encapsulated in IPv4/IPv6 packets in the enhanced reception function

• Support for Ethernet frame timestamps. (For details please refer to IEEE 1588-2008.) Each frame has a

64-bit timestamp when transmitted or received.

• Two sets of FIFOs: one 2 KB Tx FIFO with programmable threshold and one 2 KB Rx FIFO with configurable

threshold (64 bytes by default)

• When Rx FIFO stores multiple frames, the Receive Status Vector is inserted into the Rx FIFO after transmitting

an EOF (end of frame), so that the Rx FIFO does not need to store the Receive Status of these frames.

• In store-and-forward mode, all error frames can be filtered during reception, but not forwarded to the appli-

cation.

• Under-sized good frames can be forwarded.

• Support for data statistics by generating pulses for lost or corrupted frames in the Rx FIFO due to an overflow

• Support for store-and-forward mechanism when transmitting data to the MAC core

• Automatic re-transmission of collided frames during transmission (subject to certain conditions, see section

10.2.1.2)

• Discarding frames in cases of late collisions, excessive collisions, excessive deferrals, and under-run condi-

tions

• The Tx FIFO is flushed by software control.

• Calculating the IPv4 header checksum, as well as the TCP, UDP, or ICMP checksum, and then inserting them

into frames transmitted in store-and-forward mode.

Espressif Systems 217
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Figure 102. Ethernet Block Diagram

Ethernet Block Diagram

Figure 10-2 shows the block diagram of the Ethernet.

Ethernet MAC consists of the MAC-layer configuration register module and three layers: EMAC_CORE (MAC Core

Layer), EMAC_MTL (MAC Transition Layer), and EMAC_DMA (Direct Memory Access). Each of these three layers

has two directions: Tx and Rx. They are connected to the system through the Advanced High-Performance Bus

(AHB) and the Advanced Peripheral Bus (APB) on the chip. Off the chip, they communicate with the external PHY

through the MII and RMII interfaces to establish an Ethernet connection.

10.2 EMAC_CORE
The MAC supports many interfaces with the PHY chip. The PHY interface can be selected only once after reset.

The MAC communicates with the application side (DMA side), using the MAC Transmit Interface (MTI), MAC Receive

Interface (MRI) and the MAC Control Interface (MCI).

10.2.1 Transmit Operation
A transmit operation is initiated when the MTL Application pushes in data at the time a response signal is asserted.

When the SOF (start of frame) signal is detected, the MAC accepts the data and begins transmitting to the RMII

or MII. The time required to transmit the frame data to the RMII or MII, after the application initiates transmission,

varies, depending on delay factors like IFG delay, time to transmit Preamble or SFD (Start Frame Delimiter), and

any back-off delays in half-duplex mode. Until then, the MAC does not accept the data received from MTL by

de-asserting the ready signal.

After the EOF (end of frame) is transmitted to the MAC, the MAC completes the normal transmission and yields the

Transmit Status to the MTL. If a normal collision (in half-duplex mode) occurs during transmission, the MAC makes

valid the Transmit Status in the MTL. It then accepts and drops all further data until the next SOF is received. The

MTL block should retransmit the same frame from SOF upon observing a retry request (in the Status) from the

MAC.

The MAC issues an underflow status if the MTL is not able to provide the data continuously during transmission.

During the normal transmission of a frame from MTL, if the MAC receives an SOF without getting an EOF for the

previous frame, it ignores the SOF and considers the new frame as a continuation of the previous one.

Espressif Systems 218
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

10.2.1.1 Transmit Flow Control

In full-duplex mode, when the Transmit Flow Control Enable bit (TFE bit in the Flow Control Register) is set to 1,

the MAC will generate and send a pause frame, as needed. The pause frame is added and transmitted together

with the calculated CRC. The generation of pause frames can be initiated in two ways.

When the application sets the Flow Control Busy bit (FCB bit in the Flow Control Register) to 1, or when the Rx

FIFO is full, a pause frame is transmitted.

• If an application has requested flow control by setting the FCB bit in the Flow Control Register to 1, the MAC

will generate and send a single pause frame. The pause time value in the generated frame is the pause time

value programmed in the Flow Control Register. To extend or end the pause time before the time specified

in the previously transmitted pause frame, the application program must configure the pause time value in

the Flow Control Register to the appropriate value and, then, request another pause frame transmission.

• If the application has requested flow control when the Rx FIFO is full, the MAC will generate and transmit a

pause frame. The value of the pause time of the generated frame is the pause time value programmed in

the Flow Control Register. If the Rx FIFO remains full during the configurable interval, which is determined

by the Pause Low Threshold bit (PLT) in the Flow Control Register before the pause time expires, a second

pause frame will be transmitted. As long as the Rx FIFO remains full, the process repeats itself. If the FIFO

is no longer full before the sample time, the MAC will send a pause frame with zero pause time, indicating to

the remote end that the Rx buffer is ready to receive the new data frame.

10.2.1.2 Retransmission During a Collision

In half-duplex mode, a collision may occur on the MAC line interface when frames are transmitted to the MAC. The

MAC may even give a status to indicate a retry before the end of the frame is received. The retransmission is then

enabled and the frame is popped out from the FIFO. When more than 96 bytes are transmitted to the MAC core,

the FIFO controller frees the space in the FIFO, allowing the DMA to push more data into FIFO. This means that

data cannot be retransmitted after the threshold is exceeded or when the MAC core indicates that a late collision

has occurred.

The MAC transmitter may abort the transmission of a frame because of collision, Tx FIFO underflow, loss of carrier,

jabber timeout, no carrier, excessive deferral, and late collision. When frame transmission is aborted because of

collision, the MAC requests retransmission of the frame.

10.2.2 Receive Operation
A receive operation is initiated when the MAC detects an SFD on the RMII or MII. The MAC strips the Preamble

and SFD before processing the frame. The header fields are checked for the filtering and the FCS (Frame Check

Sequence) field used to verify the CRC for the frame. The received frame is stored in a shallow buffer until the

address filtering is performed. The frame is dropped in the MAC if it fails the address filtering.

The frame received by the MAC will be pushed into the Rx FIFO. Once the FIFO status exceeds the Receive

Threshold, configured by the Receive Threshold Control (RTC) bit in the Operation Mode register, the DMA can

initiate a preconfigured burst transmission to the AHB interface.

In the default pass-through mode, when the FIFO receives a complete packet or 64 bytes configured by the RTC

bit in the Operation Mode Register, the data pops up and its availability is notified to the DMA. After the DMA

initiates the transmission to the AHB interface, the data transmission continues from the FIFO until the complete

packet is transmitted. Upon completing transmitting the EOF, the status word will pop up and be transmitted to

Espressif Systems 219
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

the DMA controller.

In the Rx FIFO Store-and-Forward mode (configured through the RSF or Receive Store and Forward bit in the

Operation Mode Register), only the valid frames are read and forwarded to the application. In the passthrough

mode, error frames are not discarded because the error status is received at the end of the frame. The start of

frame will have been read from the FIFO at that point.

10.2.2.1 Reception Protocol

After the receive module receives the packets, the Preamble and SFD of the received frames are removed. When

the SFD is detected, the MAC starts sending Ethernet frame data to the Rx FIFO, starting at the first byte (destination

address) following the SFD. This timestamp is passed on to the application, unless the MAC filters out and drops

the frame.

If the received frame length/type is less than 0x600 and the automatic CRC/Pad removal option is programmed for

the MAC, the MAC will send frame data to the Rx FIFO (the amount of data does not exceed the number specified

in the length/type field). Then MAC begins discarding the remaining section, including the FCS field. If the frame

length/type is greater than, or equal to, 0x600, the MAC will send all received Ethernet frame data to the Rx FIFO,

regardless of the programmed value of the automatic CRC removal option. By default, the MAC watchdog timer

is enabled, meaning that frames, including DA, SA, LT, data, pad and FCS, which exceed 2048 bytes, are cut off.

This function can be disabled by programming the Watchdog Disable (WD) bit in the MAC Configuration Register.

However, even if the watchdog timer is disabled, frames longer than 16 KB will be cut off and the watchdog timeout

status will be given.

10.2.2.2 Receive Frame Controller

If the RA (Receive All) bit in the MAC Frame Filter Register is reset, the MAC will filter frames based on the destination

and source addresses. If the application decides not to receive any bad frames, such as runt frames and CRC

error frames, another level of filtering is needed. When a frame fails the filtering, the frame is discarded and is not

transmitted to the application. When the filter parameters are changed dynamically, if a frame fails the DA and SA

filterings, the remaining part of the frame is discarded and the Receive Status word is updated immediately and,

therefore, the zero frame length bit, CRC error bit, and runt frame error bit are set to 1. This indicates that the

frame has failed the filtering.

10.2.2.3 Receive Flow Control

The MAC will detect the received pause frame and pause transmission of frames for a specified delay within the

received pause frame (in full-duplex mode only). The Pause Frame Detect Function can be enabled or disabled

by the RFCE (Receive Flow Control Enable) bit in the Flow Control Register. When receive flow control is enabled,

it starts monitoring whether the destination address of the received frame matches the multicast address of the

control frame (0x0180 C200 0001). If a match is detected (i.e. the destination address of the received frame

matches the destination address of the reserved control frame), the MAC will determine whether to transmit the

received control frame to the application, according to the PCF (Pass Control Frames) bit in the Frame Filter

Register.

The MAC will also decode the type, the opcode, and the pause timer field of the Receive Control Frame. If the value

of the status byte counter is 64 bits and there are no CRC errors, the MAC transmitter will halt the transmission of

any data frame. The duration of the pause is the decoded pause time value multiplied by the interval (which is 64

Espressif Systems 220
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

bytes for both 10 Mbit/s and 100 Mb/s modes). At the same time, if another pause frame of zero pause time is

detected, the MAC will reset the pause time to manage the new pause request.

If the type field (0x8808), the opcode (0x00001), and the byte length (64 bytes) of the received control frame are not

0x8808, 0x00001, and 64 bytes, respectively, or if there is a CRC error, the MAC will not generate a pause.

If a pause frame has a multicast destination address, the MAC filters the frame, according to the address match-

ing.

For pause frames with a unicast destination address, the MAC checks whether the DA matches the content of the

EMACADDR0 Register, and whether the Unicast Pause Frame Detect (UPFD) bit in the Flow Control Register is

set to 1. The Pass Control Frames (PCF) bits in the Frame Filter Register [7:6] control the filtering of frames and

addresses.

10.2.2.4 Reception of Multiple Frames

Since the status is available immediately after the data is received. Frames can be stored there, as long as the

FIFO is not full.

10.2.2.5 Error Handling

If the Rx FIFO is full before receiving the EOF data from the MAC, an overflow will be generated and the entire

frame will be discarded. In fact, status bit RDES0[11] will indicate that this frame is partial due to an overflow, and

that it should be discarded.

If the function that corresponds to the Flush Transmit FIFO (FTF) bit and the Forward Undersized Good Frames

(FUGF) bit in the Operation Mode Register is enabled, the Rx FIFO can filter error frames and runt frames. If the re-

ceive FIFO is configured to operate in store-and-forward mode, all error frames will be filtered and discarded.

In passthrough mode, if a frame’s status and length are available when reading a SOF from the Rx FIFO, the entire

error frame can be discarded. DMA can clear the error frame being read from the FIFO by enabling the Receive

Frame Clear bit. The data transmission to the application (DMA) will then stop, and the remaining frames will be

read internally and discarded. If FIFO is available, the transmission of the next frame will be initiated.

10.2.2.6 Receive Status Word

After receiving the Ethernet frames, the MAC outputs the receive status to the application. The detailed description

of the receive status is the same as that which is configured by bit [31:0] in RDES0.

10.3 MAC Interrupt Controller
The MAC core can generate interrupts due to various events.

The interrupt register bits only indicate various interrupt events. To clear the interrupts, the corresponding status

register and other registers must be read. An Interrupt Status Register describes the events that prompt the MAC

core to generate interrupts. Each interrupt event can be prevented by setting the corresponding mask bit in the

Interrupt Mask Register to 1. For example, if bit3 of the interrupt register is set high, it indicates that a magic packet

or Wake-on-LAN frame has been received in Power-down mode. The PMT Control and Status register must be

read to clear this interrupt event.

Espressif Systems 221
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

10.4 MAC Address Filtering
Address filtering will check the destination and source addresses of all received frames and report the address

filtering status accordingly. For example, filtered frames can be identified either as multicast or broadcast.The

address check, then, is based on the parameters selected by the application (Frame Filter Registers).

Physical (MAC) addresses are used for address checking during address filtering.

10.4.1 Unicast Destination Address Filtering
The MAC supports up to 8 MAC addresses for perfect filtering of unicast addresses. If a perfect filtering is selected

(by resetting bit[1] in the Frame Filter Register), the MAC compares all 48 bits of the received unicast address with

the programmed MAC address to determine if there is a match. By default, EMACADDR0 is always enabled, and

the other addresses (EMACADDR0 ~ EMACADDR7) are selected by a separate enable bit. When the individual

bytes of the other addresses (EMACADDR0 ~ EMACADDR7) are compared with the DA bytes received, the latter

can be masked by setting the corresponding Mask Byte Control bit in the register to 1. This facilitates the DA

group address filtering.

10.4.2 Multicast Destination Address Filtering
The MAC can be programmed to pass all multicast frames by setting the Pass All Multicast (PAM) bit in the Frame

Filter Register to 1. If the PAM bit is reset, the MAC will filter multicast addresses, according to Bit[2] in the Frame

Filter Register.

In perfect filtering mode, the multicast address is compared with the programmed MAC Destination Address Reg-

isters (EMACADDR0 ~ EMACADDR7). Group address filtering is also supported.

10.4.3 Broadcast Address Filtering
The MAC does not filter any broadcast frames in the default mode. However, if the MAC is programmed to reject

all broadcast frames, which can happen by setting the Disable Broadcast Frames (DBF) bit in the Frame Filter

Register to 1, all broadcast frames will be discarded.

10.4.4 Unicast Source Address Filtering
The MAC may also perform a perfect filtering based on the source address field of the received frame. By default,

the Address Filtering Module (AFM) compares the Source Address (SA) field with the values programmed in the

SA register. By setting Bit[30] in the SA register to 1, the MAC Address Register (EMACADDR0 - EMACADDR7)

can be configured to contain SA, instead of Destination Address (DA), for filtering. Group filtering with SA is also

supported. If the Source Address Filter (SAF) enable bit in the Frame Filter Register is set to 1, the MAC discards

frames that do not pass the SA filtering. Otherwise, the result of SA filtering is given as a status bit in the Receive

Status word (Please refer to Table 10-11).

When the SAF enable bit is set to 1, the result of the SA filtering and DA filtering is AND’ed to determine whether

or not to forward the frame. Any frame that fails to pass will be discarded. Frames need to pass both filterings in

order to be forwarded to the application.

10.4.5 Inverse Filtering Operation
For both destination address (DA) and source address (SA) filtering, you can invert the results matched through the

filtering at the final output. The inverse filtering of DA and SA are controlled by the DAIF and SAIF bits, respectively,

in the Frame Filter Register. The DAIF bit applies to both unicast and multicast DA frames. When DAIF is set to 1,

the result of unicast or multicast destination address filtering will be inverted. Similarly, when the SAIF bit is set to

1, the result of unicast SA filtering is reversed.

Espressif Systems 222
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

The following two tables summarize the destination address and source address filtering, based on the type of the

frames received.

Table 101. Destination Address Filtering

Frame Type PM PF DAIF PAM DB DA Filter Result

Broadcast

1 X X X X Pass

0 X X X 0 Pass

0 X X X 1 Fail

Unicast

1 X X X X All frames pass.

0 X 0 X X Pass when results of perfect/group filtering match.

0 X 1 X X Fail when results of perfect/group filtering match.

0 1 0 X X Pass when results of perfect/group filtering match.

0 1 1 X X Fail when results of perfect/group filtering match.

Multicast

1 X X X X All frames pass.

X X X 1 X All frames pass.

0 X 0 0 X
Pass when results of perfect/group filtering match and

pause control frame is discarded, if PCF = 0x.

0 1 0 0 X
Pass when results of perfect/group filtering match and

pause control frame is discarded, if PCF = 0x.

0 X 1 0 X
Fail when results of perfect/group filtering match and

pause control frame is discarded, if PCF = 0x.

0 1 1 0 X
Fail when results of perfect/group filtering match and

pause control frame is discarded, if PCF = 0x.

The filtering parameters in the MAC Frame Filter Register described in Table 10-1 are as follows.

Parameter name: Parameter setting:

PM: Pass All Multicast 1: Set

PF: Perfect Filter 0: Cleared

DAIF: Destination Address Inverse Filtering

PAM: Pass All Multicast

DB: Disable Broadcast Frames

Table 102. Source Address Filtering

Frame Type PM SAIF SAF Source Address Filter Operation

Unicast

1 X X Pass all frames

0 0 0
Pass when results of perfect/group filtering match. Frames not passed are

not discarded.

0 1 0
Fail when results of perfect/group filtering match. Frames not passed are

not discarded.

0 0 1
Pass when results of perfect/group filtering match. Frames not passed are

discarded.

0 1 1
Fail when results of perfect/group filtering match. Frames not passed are

discarded.

The filtering parameters in the MAC Frame Filter Register described in Table 10-2 are as follows.

Espressif Systems 223
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Parameter name: Parameter setting:

PM: Pass All Multicast 1: Set

SAF: Source Address Filtering 0: Cleared

SAIF: Source Address Inverse Filtering X: Don’t care

10.4.6 Good Transmitted Frames and Received Frames
A frame successfully transmitted is considered a ”good frame”. In other words, a transmitted frame is considered

to be good, if the frame transmission is not aborted due to the following errors:

• Jabber timeout

• No carrier or loss of carrier

• Late collision

• Frame underflow

• Excessive deferral

• Excessive collision

The received frames are considered ”good frames”, if there are not any of the following errors:

• CRC error

• Runt frames (frames shorter than 64 bytes)

• Alignment error (in 10/100 Mbps modes only)

• Length error (non-type frames only)

• Frame size over the maximum size (for non-type frames over the maximum frame size only)�

• MII_RXER input error

The maximum frame size depends on the frame type:

• The maximum size of untagged frames = 1518 bytes

• The maximum size of VLAN frames = 1522 bytes

10.5 EMAC_MTL (MAC Transaction Layer)
The MAC Transaction Layer provides FIFO memory to buffer and regulates the frames between the application

system memory and the MAC. It also enables the data to be transmitted between the application clock domain

and the MAC clock domains. The MTL layer has two data paths, namely the Transmit path and the Receive path.

The data path for both directions is 32-bit wide and operates with a simple FIFO protocol.

10.6 PHY Interface
The DMA and the Host driver communicate through two data structures:

• Control and Status Registers (CSR)

• Descriptor lists and data buffers

For details please refer to Register Summary and Linked List Descriptors.

Espressif Systems 224
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

10.6.1 MII (Media Independent Interface)
Media Independent Interface (MII) defines the interconnection between MAC sublayers and PHYs at the data

transmission rate of 10 Mbit/s and 100 Mbit/s.

10.6.1.1 Interface Signals Between MII and PHY

Interface signals between MII and PHY are shown in Figure 10-3.

Figure 103. MII Interface

MII Interface Signal Description:

• MII_TX_CLK: TX clock signal. This signal provides the reference timing for TX data transmission. The fre-

quencies are divided into two types: 2.5 MHz at a data transmission rate of 10 Mbit/s, and 25 MHz at 100

Mbit/s.

• MII_TXD[3:0]: Transmit data signal in groups of four, syn-driven by the MAC sub-layer, and valid only when

the MII_TX_EN signal is valid. MII_TXD[0] is the lowest significant bit and MII_TXD[3] is the highest significant

bit. When the signal MII_TX_EN is pulled low, sending data does not have any effect on the PHY.

• MII_TX_EN: Transmit data enable signal. This signal indicates that the MAC is currently sending nibbles (4

bits) for the MII. This signal must be synchronized with the first nibble of the header (MII_TX_CLK) and must

be synchronized when all nibbles to be transmitted are sent to the MII.

• MII_RX_CLK: RX clock signal. This signal provides the reference timing for RX data transmission. The

frequencies are divided into two types: 2.5 MHz at the data transmission rate of 10 Mbit/s, and 25 MHz at

100 Mbit/s.

• MII_RXD[3:0]: Receive data signal in groups of four, syn-driven by the PHY, and valid only when MII_RX_DV

signal is valid. MII_RXD[0] is the lowest significant bit and MII_RXD[3] is the highest significant bit. When

MII_RX_DV is disabled and MII_RX_ER is enabled, the specific MII_RXD[3:0] value represents specific infor-

mation from the PHY.

• MII_RX_DV: Receive data valid signal. This signal indicates that the PHY is currently receiving the recovered

and decoded nibble that will be transmitted to the MII. This signal must be synchronized with the first nibble

of the recovered frame (MII_RX_CLK) and remain synchronized till the last nibble of the recovered frame. This

signal must be disabled before the first clock cycle following the last nibble. In order to receive the frame

Espressif Systems 225
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

correctly, the MII_RX_DV signal must cover the frame to be received over the time range, starting no later

than when the SFD field appears.

• MII_CRS: Carrier sense signal. When the transmitting or receiving medium is in the non-idle state, the signal

is enabled by the PHY. When the transmitting or receiving medium is in the idle state, the signal is disabled by

the PHY. The PHY must ensure that the MII_CRS signal remains valid under conflicting conditions. This signal

does not need to be synchronized with the TX and RX clocks. In full-duplex mode, this signal is insignificant.

• MII_COL: Collision detection signal. After a collision is detected on the medium, the PHY must immedi-

ately enable the collision detection signal, and the collision detection signal must remain active as long as a

condition for collision exists. This signal does not need to be synchronized with the TX and RX clocks. In

full-duplex mode, this signal is meaningless.

• MII_RX_ER: Receive error signal. The signal must remain for one or more cycles (MII_RX_CLK) to indicate to

the MAC sublayer that an error has been detected somewhere in the frame.

• MDIO and MDC: Management Data Input/Output and Management Data Clock. The two signals consti-

tute a serial bus defined for the Ethernet family of IEEE 802.3 standards, used to transfer control and data

information to the PHY, see section Station Management Agent (SMA) Interface.

10.6.1.2 MII Clock

In MII mode, there are two directions of clock, Tx and Rx clocks in the interface between MII and the PHY.

MII_TX_CLK is used to synchronize the TX data, and MII_RX_CLK is used to synchronize the RX data. The

MII_RX_CLK clock is provided by the PHY. The MII_TX_CLK is provided by the chip’s internal PLL or external

crystal oscillator. For details regarding Figure 10-4, please refer to the clock-related registers in Register Sum-

mary.

Figure 104. MII Clock

Espressif Systems 226
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

10.6.2 RMII (Reduced MediaIndependent Interface)
RMII interface signals are shown in figure 10-5.

Figure 105. RMII Interface

10.6.2.1 RMII Interface Signal Description

The Reduced Media-Independent Interface (RMII) specification reduces the number of pins between the microcon-

troller’s external peripherals and the external PHY at a data transmission rate of 10 Mbit/s or 100 Mbit/s. According

to the IEEE 802.3u standard, MII includes 16 pins that contain data and control signals. The RMII specification

reduces 62.5% of the pins to the number of seven.

RMII has the following features:

• Support for an operating rate of 10 Mbit/s or 100 Mbit/s

• The reference clock frequency must be 50 MHz.

• The same reference clock must be provided externally both to the MAC and the external Ethernet PHY. It

provides independent 2-bit-wide Tx and Rx data paths.

10.6.2.2 RMII Clock

The configuration of the RMII clock is as figure 10-6 shows.

Espressif Systems 227
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Figure 106. RMII Clock

10.6.3 Station Management Agent (SMA) Interface
As Figure 10-4 shows, the MAC uses MDC and MDIO signals to transfer control and data information to the PHY.

The maximum clock frequency is 2.5 MHz. The clock is generated from the application clock by a clock divider. The

PHY transmits register data during a write/read operation through the MDIO. This signal is driven synchronously

to the MDC clock.

Please refer to Register Summary for details about the EMII Address Register and the EMII Data Register.

10.6.4 RMII Timing
This section describes the RMII timing specifications.

Figure 107. RMII Timing Receiving Data

Table 103. Timing Parameters Receiving Data

Timing Parameters Description Min Typ Max Unit

tCY C Clock cycle 20 20 20 ns

tSU Setup time 4 – – ns

tH Hold time 1 – – ns

tID Input delay 3 5 8 ns

Espressif Systems 228
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Figure 108. RMII Timing – Transmitting Data

Table 104. Timing Parameters – Transmitting Data

Timing Parameters Description Min Typ Max Unit

tCY C Clock cycle 20 20 20 ns

tSU Setup time 4 – – ns

tH Hold time 1 – – ns

tOD Output delay 6 9 12 ns

10.7 Ethernet DMA Features
The DMA has independent Transmit and Receive engines, and a CSR (Control and Status Registers) space. The

Transmit engine transfers data from the system memory to the device port (MTL), while the Receive engine trans-

mits data from the device port to the system memory. The controller uses descriptors to efficiently move data

from source to destination with minimal Host CPU intervention. The DMA is designed for packet-oriented data

transmission, such as frames in Ethernet. The controller can be programmed to interrupt the Host CPU for normal

situations, such as the completion of frame transmission or reception, or when errors occur.

10.8 Linked List Descriptors
This section shows the structure of the linked lists and the descriptors. Every linked list consists of eight words.

10.8.1 Transmit Descriptors
The structure of the transmitter linked lists is shown in Figure 10-9. Table 10-5 to Table 10-10 show the description

of the linked lists.
031

O
W

N

Ctrl[30:26]

TT
S

E

Ctrl[24:18]

TT
S

S

Status[16:7] Ctrl/status
[6:3]

Status
[2:0]TDES0

Ctrl
[31:29] Reserved Transmit Buffer Size[12:0]TDES1

Buffer Address [31:0]TDES2

Next Descriptor Address[31:0]TDES3

ReservedTDES4

ReservedTDES5

Transmit Frame Timestamp Low[31:0]TDES6

Transmit Frame Timestamp High[31:0]TDES7

Figure 109. Transmit Descriptor

Espressif Systems 229
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Table 105. Transmit Descriptor 0 (TDES0)

Bits Name Description

[31] OWN: Own Bit

When set, this bit indicates that the descriptor is owned by the DMA.

When this bit is reset, it indicates that the descriptor is owned by the

Host. The DMA clears this bit, either when it completes the frame

transmission or when the buffers allocated to the descriptor are

empty. The ownership bit of the First Descriptor of the frame should

be set after all subsequent descriptors belonging to the same frame

have been set. This avoids a possible race condition between fetch-

ing a descriptor and the driver setting an ownership bit.

[30] IC: Interrupt on Completion

When set, this bit sets the Transmit Interrupt (Register 5[0]) after the

present frame has been transmitted. This bit is valid only when the

last segment bit (TDES0[29]) is set.

[29] LS: Last Segment

When set, this bit indicates that the buffer contains the last segment

of the frame. When this bit is set, the TBS1 or TBS2 field in TDES1

should have a non-zero value.

[28] FS: First Segment
When set, this bit indicates that the buffer contains the first segment

of a frame.

[27] DC: Disable CRC

When this bit is set, the MAC does not append a cyclic redundancy

check (CRC) to the end of the transmitted frame. This is valid only

when the first segment (TDES0[28]) is set.

[26] DP: Disable Pad

When set, the MAC does not automatically add padding to a frame

shorter than 64 bytes. When this bit is reset, the DMA automatically

adds padding and CRC to a frame shorter than 64 bytes, and the

CRC field is added despite the state of the DC (TDES0[27]) bit. This

is valid only when the first segment (TDES0[28]) is set.

[25]
TTSE: Transmit Timestamp

Enable

When set, this bit enables IEEE1588 hardware timestamping for the

transmit frame referenced by the descriptor. This field is valid only

when the First Segment control bit (TDES0[28]) is set.

[24]
CRCR: CRC Replacement

Control

When set, the MAC replaces the last four bytes of the transmitted

packet with recalculated CRC bytes. The host should ensure that

the CRC bytes are present in the frame being transmitted from the

Transmit Buffer. This bit is valid when the First Segment control bit

(TDES0[28]) is set. In addition, CRC replacement is done only when

Bit TDES0[27] is set to 1.

Espressif Systems 230
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Bits Name Description

[23:22]
CIC: Checksum Insertion

Control

These bits control the checksum calculation and insertion. The fol-

lowing list describes the bit encoding:

• 2’b00: Checksum insertion is disabled.

• 2’b01: Only IP header checksum calculation and insertion are

enabled.

• 2’b10: IP header checksum and payload checksum calcula-

tion and insertion are enabled, but pseudo-header checksum

is not calculated in hardware.

• 2’b11: IP Header checksum and payload checksum calcula-

tion and insertion are enabled, and pseudo-header checksum

is calculated in hardware.

This field is valid when the First Segment control bit (TDES0[28]) is

set.

[21] TER: Transmit End of Ring

When set, this bit indicates that the descriptor list reached its final

descriptor. The DMA returns to the base address of the list, creating

a Descriptor Ring.

[20]
TCH: Second Address

Chained

When set, this bit indicates that the second address in the descrip-

tor is the Next Descriptor address, rather than the second buffer

address. When TDES0[20] is set, TBS2 (TDES1[28:16]) is a “don’t

care” value. TDES0[21] takes precedence over TDES0[20]. This bit

should be set to 1.

[19:18]
VLIC: VLAN Insertion

Control

When set, these bits request the MAC to perform VLAN tagging or

untagging before transmitting the frames. If the frame is modified

for VLAN tags, the MAC automatically recalculates and replaces the

CRC bytes. The following list describes the values of these bits:

• 2’b00: Do not add a VLAN tag.

• 2’b01: Remove the VLAN tag from the frames before trans-

mission. This option should be used only with the VLAN

frames.

• 2’b10: Insert a VLAN tag with the tag value programmed in

VLAN Tag Inclusion or Replacement Register.

• 2’b1: Replace the VLAN tag in frames with the Tag value

programmed in VLAN Tag Inclusion or Replacement Regis-

ter. This option should be used only with the VLAN frames.

[17]
TTSS: Transmit

Timestamp Status

This field is used as a status bit to indicate that a timestamp was

captured for the described transmit frame. When this bit is set,

TDES2 and TDES3 have a timestamp value captured for the trans-

mit frame. This field is only valid when the descriptor’s Last Segment

control bit (TDES0[29]) is set.

Espressif Systems 231
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Bits Name Description

[16] IHE: IP Header Error

When set, this bit indicates that the MAC transmitter detected an

error in the IP datagram header. The transmitter checks the header

length in the IPv4 packet against the number of header bytes re-

ceived from the application, and indicates an error status if there

is a mismatch. For IPv6 frames, a header error is reported if the

main header length is not 40 bytes. Furthermore, the Ethernet

Length/Type field value for an IPv4 or IPv6 frame must match the IP

header version received with the packet. For IPv4 frames, an error

status is also indicated if the Header Length field has a value less

than 0x5.

[15] ES: Error Summary

Indicates the logical OR of the following bits:

• TDES0[14]: Jabber Timeout

• TDES0[13]: Frame Flush

• TDES0[11]: Loss of Carrier

• TDES0[10]: No Carrier

• TDES0[9]: Late Collision

• TDES0[8]: Excessive Collision

• TDES0[2]: Excessive Deferral

• TDES0[1]: Underflow Error

• TDES0[16]: IP Header Error

• TDES0[12]: IP Payload Error

[14] JT: Jabber Timeout

When set, this bit indicates the MAC transmitter has experienced a

jabber timeout. This bit is only set when EMACCONFIG_REG’s bit

EMACJABBER is not set.

[13] FF: Frame Flushed
When set, this bit indicates that the DMA or MTL flushed the frame

because of a software Flush command given by the CPU.

Espressif Systems 232
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Bits Name Description

[12] IPE: IP Payload Error

When set, this bit indicates that MAC transmitter detected an error

in the TCP, UDP, or ICMP IP datagram payload.

The transmitter checks the payload length received in the IPv4 or

IPv6 header against the actual number of TCP, UDP, or ICMP packet

bytes received from the application, and issues an error status in

case of a mismatch.

[11] LOC: Loss of Carrier

When set, this bit indicates that a loss of carrier occurred during

frame transmission (that is, the MII_CRS signal was inactive for one

or more transmit clock periods during frame transmission). This is

valid only for the frames transmitted without collision when the MAC

operates in the half-duplex mode.

[10] NC: No Carrier
When set, this bit indicates that the Carrier Sense signal from the

PHY was not asserted during transmission.

[9] LC: Late Collision

When set, this bit indicates that frame transmission is aborted be-

cause of a collision occurring after the collision window (64 byte-

times including Preamble in MII mode, and 512 byte-times including

Preamble and Carrier Extension). This bit is not valid if the Under-

flow Error bit is set.

[8] EC: Excessive Collision

When set, this bit indicates that the transmission was aborted after

16 successive collisions while attempting to transmit the current

frame. If bit EMACRETRY of EMACCONFIG_REG is set, this bit

is set after the first collision, and the transmission of the frame is

aborted.

[7] VF: VLAN Frame
When set, this bit indicates that the transmitted frame is a VLAN-

type frame.

[6:3] Ctrl/status

These status bits indicate the number of collisions that occurred

before the frame was transmitted. This count is not valid when the

Excessive Collisions bit (TDES0[8]) is set. The core updates this

status field only in the half-duplex mode.

[2] ED: Excessive Deferral

When set, this bit indicates that the transmission has ended be-

cause of excessive deferral of over 24,288 bit times (if Jumbo Frame

is enabled) if bit EMACDEFERRAL of EMACCONFIG_REG is set

high.

[1] UF: Underflow Error

When set, this bit indicates that the MAC aborted the frame be-

cause the data arrived late from the Host memory. Underflow Er-

ror indicates that the DMA encountered an empty transmit buffer

while transmitting the frame. The transmission process enters the

Suspended state and sets both Bit[5] in Transmit Underflow Regis-

ter (Status Register) and Bit[0] in Transmit Interrupt Register (Status

Register).

[0] DB: Deferred Bit

When set, this bit indicates that the MAC defers before transmission

because of the presence of a carrier. This bit is valid only in the half-

duplex mode.

Espressif Systems 233
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Table 106. Transmit Descriptor 1 (TDES1)

Bits Name Description

[31:29] SAIC: SA Insertion Control

These bits request the MAC to add or replace the Source Address

field in the Ethernet frame with the value given in the MAC Address

0 register. If the Source Address field is modified in a frame, the

MAC automatically recalculates and replaces the CRC bytes. The

Bit[31] specifies the MAC Address Register value (1 or 0) that is

used for Source Address insertion or replacement. The following

list describes the values of Bits[30:29]:

• 2’b00: Do not include the source address.

• 2’b01: Include or insert the source address. For reliable trans-

mission, the application must provide frames without source

addresses.

• 2’b10: Replace the source address. For reliable transmission,

the application must provide frames with source addresses.

• 2’b11: Reserved

These bits are valid when the First Segment control bit (TDES0[28])

is set.

[28:16] Reserved Reserved

[15:13] Reserved Reserved

[12:0]
TBS1: Transmit Buffer 1

Size

These bits indicate the data buffer byte size in bytes. If this field is 0,

the DMA ignores this buffer and uses Buffer 2 or the next descriptor.

Table 107. Transmit Descriptor 2 (TDES2)

Bits Name Description

[31:0] Buffer 1 Address Pointer These bits indicate the physical address of Buffer 1.

Table 108. Transmit Descriptor 3 (TDES3)

Bits Name Description

[31:0] Next Descriptor Address
This address contains the pointer to the physical memory where the

Next Descriptor is present.

Table 109. Transmit Descriptor 6 (TDES6)

Bits Name Description

[31:0]
TTSL: Transmit Frame

Timestamp Low

This field is updated by DMA with the least significant 32 bits of the

timestamp captured for the corresponding transmit frame. This field

has the timestamp only if the Last Segment (LS) bit in the descriptor

is set, and the Timestamp Status (TTSS) bit is set too.

Espressif Systems 234
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Table 1010. Transmit Descriptor 7 (TDES7)

Bits Name Description

[31:0]
TTSH: Transmit Frame

Timestamp High

This field is updated by DMA with the most significant 32 bits of the

timestamp captured for the corresponding receive frame. This field

has the timestamp only if the Last Segment (LS) bit in the descriptor

is set, and the Timestamp Status (TTSS) bit is set too.

10.8.2 Receive Descriptors
The structure of the receiver linked lists is shown in Figure 10-10. Table 10-11 to Table 10-17 provide the description

of the linked lists.
031

O
W

N

Status[30:0]RDES0

C
tr

l

Reserved[30:16] Ctrl
[15:14] R

es Receive Buffer 1 Size[12:0]RDES1

Buffer1 Address [31:0]RDES2

Next Descriptor Address[31:0]RDES3

Extended Status[31:0]RDES4

ReservedRDES5

Receive Frame Timestamp Low[31:0]RDES6

Receive Frame Timestamp High[31:0]RDES7

Figure 1010. Receive Descriptor

Table 1011. Receive Descriptor 0 (RDES0)

Bits Name Description

[31] OWN: Own Bit

When set, this bit indicates that the descriptor is owned by the DMA

of the DWC_gmac. When this bit is reset, it indicates that the de-

scriptor is owned by the Host. The DMA clears this bit either when

it completes the frame reception or when the buffers that are asso-

ciated with this descriptor are full.

[30]
AFM: Destination Address

Filter Fail

When set, this bit indicates a frame that failed in the DA Filter in the

MAC.

[29:16] FL: Frame Length

These bits indicate the byte length of the received frame that was

transmitted to host memory. This field is valid when Last Descrip-

tor (RDES0[8]) is set and either the Descriptor Error (RDES0[14]) or

Overflow Error bits is reset. The frame length also includes the two

bytes appended to the Ethernet frame when IP checksum calcula-

tion (Type 1) is enabled and the received frame is not a MAC control

frame.

Espressif Systems 235
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Bits Name Description

[15] ES: Error Summary

Indicates the logical OR of the following bits:

• RDES0[1]: CRC Error

• RDES0[3]: Receive Error

• RDES0[4]: Watchdog Timeout

• RDES0[6]: Late Collision

• RDES0[7]: Giant Frame

• RDES4[4:3]: IP Header or Payload Error

• RDES0[11]: Overflow Error

• RDES0[14]: Descriptor Error

This field is valid only when the Last Descriptor (RDES0[8]) is set.

[14] DE: Descriptor Error

When set, this bit indicates a frame truncation caused by a frame

that does not fit within the current descriptor buffers, and that the

DMA does not own the Next Descriptor. The frame is truncated.

This field is valid only when the Last Descriptor (RDES0[8]) is set.

[13]
SAF: Source Address Filter

Fail

When set, this bit indicates that the SA field of frame failed the SA

Filter in the MAC.

[12] LE: Length Error

When set, this bit indicates that the actual length of the frame re-

ceived and that the Length/Type field does not match. This bit is

valid only when the Frame Type (RDES0[5]) bit is reset.

[11] OE: Overflow Error
When set, this bit indicates that the received frame was damaged

because of buffer overflow in MTL.

[10] VLAN: VLAN Tag

When set, this bit indicates that the frame to which this descriptor

is pointing is a VLAN frame tagged by the MAC. The VLAN tagging

depends on checking the VLAN fields of the received frame based

on the Register (VLAN Tag Register) settings.

[9] FS: First Descriptor

When set, this bit indicates that this descriptor contains the first

buffer of the frame. If the size of the first buffer is 0, the second

buffer contains the beginning of the frame. If the size of the second

buffer is also 0, the next Descriptor contains the beginning of the

frame.

[8] LS: Last Descriptor
When set, this bit indicates that the buffers pointed to by this de-

scriptor are the last buffers of the frame.

Espressif Systems 236
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Bits Name Description

[7]

Timestamp Available,

IP Checksum Error (Type1),

or Giant Frame

When the Advanced Timestamp feature is present, and when this

bit set, it indicates that a snapshot of the Timestamp is written in

descriptor words 6 (RDES6) and 7 (RDES7). This is valid only when

the Last Descriptor bit (RDES0[8]) is set.

When IP Checksum Engine (Type 1) is selected, this bit, if set, indi-

cates one of the following:

• The 16-bit IPv4 header checksum calculated by the core did

not match the received checksum bytes.

• The header checksum checking is bypassed for non-IPv4

frames.

Otherwise, this bit, when set, indicates the Giant Frame Status. Gi-

ant frames are larger than 1,518 bytes (or 1,522 bytes for VLAN or

2,000 bytes when Bit[27] of the MAC Configuration register is set),

normal frames and larger-than-9,018-byte (9,022-byte for VLAN)

frames when Jumbo Frame processing is enabled.

[6] LC: Late Collision
When set, this bit indicates that a late collision has occurred while

receiving the frame in the half-duplex mode.

[5] FT: Frame Type

When set, this bit indicates that the Receive Frame is an Ethernet-

type frame (the LT field is greater than, or equal to, 1,536). When

this bit is reset, it indicates that the received frame is an IEEE 802.3

frame. This bit is not valid for Runt frames which are less than 14

bytes.

[4]
RWT: Receive

Watchdog Timeout

When set, this bit indicates that the Receive Watchdog Timer has

expired while receiving the current frame and the current frame is

truncated after the Watchdog Timeout.

[3] RE: Receive Error
When set, this bit indicates that the MII_RXER signal is asserted

while MII_RXDV is asserted during frame reception.

[2] DE: Dribble Bit Error

When set, this bit indicates that the received frame has a non-

integer multiple of bytes (odd nibbles). This bit is valid only in the

MII Mode.

[1] CE: CRC Error

When set, this bit indicates that a Cyclic Redundancy Check (CRC)

Error occurred on the received frame. This field is valid only when

the Last Descriptor (RDES0[8]) is set.

[0]
Extended Status Available/

Rx MAC Address

When either Advanced Timestamp or IP Checksum Offload (Type

2) is present, this bit, when set, indicates that the extended status

is available in descriptor word 4 (RDES4). This is valid only when

the Last Descriptor bit (RDES0[8]) is set. This bit is invalid when Bit

30 is set.

When IP Checksum Offload (Type 2) is present, this bit is set even

when the IP Checksum Offload engine bypasses the processing of

the received frame. The bypassing may be because of a non-IP

frame or an IP frame with a non-TCP/UDP/ICMP payload.

Espressif Systems 237
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Bits Name Description

When the Advance Timestamp Feature or the IPC Full Offload is not

selected, this bit indicates an Rx MAC Address status. When set,

this bit indicates that the Rx MAC Address registers value (1 to 15)

matched the frame’s DA field. When reset, this bit indicates that the

Rx MAC Address Register 0 value matched the DA field.

Table 1012. Receive Descriptor 1 (RDES1)

Bits Name Description

[31] Ctrl

When set, this bit prevents setting the Status Register’s RI bit

(CSR5[6]) for the received frame that ends in the buffer indicated

by this descriptor. This, in turn, disables the assertion of the inter-

rupt to Host because of the RI for that frame.

[30:29] Reserved Reserved

[28:16] Reserved Reserved

[15] RER: Receive End of Ring

When set, this bit indicates that the descriptor list reached its final

descriptor. The DMA returns to the base address of the list, creating

a Descriptor Ring.

[14]
RCH: Second Address

Chained

When set, this bit indicates that the second address in the descrip-

tor is the Next Descriptor address rather than the second buffer ad-

dress. When this bit is set, RBS2 (RDES1[28:16]) is a “don’t care”

value. RDES1[15] takes precedence over RDES1[14].

[13] Reserved Reserved

[12:0]
RBS1: Receive Buffer 1

Size

Indicates the first data buffer size in bytes. The buffer size must be a

multiple of 4, even if the value of RDES2 (buffer1 address pointer) is

not aligned to bus width. When the buffer size is not a multiple of 4,

the resulting behavior is undefined. If this field is 0, the DMA ignores

this buffer and uses Buffer 2 or the next descriptor depending on

the value of RCH (Bit[14]).

Table 1013. Receive Descriptor 2 (RDES2)

Bits Name Description

[31:0] Buffer 1 Address Pointer These bits indicate the physical address of Buffer 1.

Table 1014. Receive Descriptor 3 (RDES3)

Bits Name Description

[31:0] Next Descriptor Address
This address contains the pointer to the physical memory where the

Next Descriptor is present.

Espressif Systems 238
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Table 1015. Receive Descriptor 4 (RDES4)

Bits Name Description

[31:28] Reserved Reserved

[27:26] Reserved Reserved

[25] Reserved Reserved

[24] Reserved Reserved

[23:21] Reserved Reserved

[20:18] Reserved Reserved

[17] Reserved Reserved

[16] Reserved Reserved

[15] Reserved Reserved

[14] Timestamp Dropped
When set, this bit indicates that the timestamp was captured for this

frame but got dropped in the MTL Rx FIFO because of an overflow.

[13] PTP Version

When set, this bit indicates that the received PTP message is having

the IEEE 1588 version 2 format. When reset, it has the version 1

format.

[12] PTP Frame Type

When set, this bit indicates that the PTP message is sent directly

over the Ethernet. When this bit is not set and the message type is

non-zero, it indicates that the PTP message is sent over UDP-IPv4

or UDP-IPv6. The information about IPv4 or IPv6 can be obtained

from Bits 6 and 7.

[11:8] Message Type

These bits are encoded to give the type of the message received.

• 3’b0000: No PTP message received

• 3’b0001: SYNC (all clock types)

• 3’b0010: Follow_Up (all clock types)

• 3’b0011: Delay_Req (all clock types)

• 3’b0100: Delay_Resp (all clock types)

• 3’b0101: Pdelay_Req (in peer-to-peer transparent clock)

• 3’b0110: Pdelay_Resp (in peer-to-peer transparent clock)

• 3’b0111: Pdelay_Resp_Follow_Up (in peer-to-peer transpar-

ent clock)

• 3’b1000: Announce

• 3’b1001: Management

• 3’b1010: Signaling

• 3’b1011-3’b1110: Reserved

• 3’b1111: PTP packet with Reserved message type

[7] IPv6 Packet Received

When set, this bit indicates that the received packet is an IPv6

packet. This bit is updated only when Bit[10] (IPC) of Register (MAC

Configuration Register) is set.

[6] IPv4 Packet Received

When set, this bit indicates that the received packet is an IPv4

packet. This bit is updated only when Bit[10] (IPC) of Register (MAC

Configuration Register) is set.

[5] IP Checksum Bypassed
When set, this bit indicates that the checksum offload engine is

bypassed.

Espressif Systems 239
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Bits Name Description

[4] IP Payload Error

When set, this bit indicates that the 16-bit IP payload checksum

(that is, the TCP, UDP, or ICMP checksum) that the core calculated

does not match the corresponding checksum field in the received

segment. It is also set when the TCP, UDP, or ICMP segment length

does not match the payload length value in the IP Header field. This

bit is valid when either Bit 7 or Bit 6 is set.

[3] IP Header Error

When set, this bit indicates that either the 16-bit IPv4 header check-

sum calculated by the core does not match the received checksum

bytes, or the IP datagram version is not consistent with the Ethernet

Type value. This bit is valid when either Bit[7] or Bit[6] is set.

[2:0] IP Payload Type

These bits indicate the type of payload encapsulated in the IP data-

gram processed by the Receive Checksum Offload Engine (COE).

The COE also sets these bits to 2’b00 if it does not process the IP

datagram’s payload due to an IP header error or fragmented IP.

• 3’b000: Unknown or did not process IP payload

• 3’b001: UDP

• 3’b010: TCP

• 3’b011: ICMP

• 3’b1xx: Reserved

This bit is valid when either Bit[7] or Bit[6] is set.

Table 1016. Receive Descriptor 6 (RDES6)

Bits Name Description

[31:0]
RTSH: Receive Frame

Timestamp Low

This field is updated by DMA with the least significant 32 bits of the

timestamp captured for the corresponding receive frame. This field

is updated by DMA only for the last descriptor of the receive frame

which is indicated by the Last Descriptor status bit (RDES0[8]).

Table 1017. Receive Descriptor 7 (RDES7)

Bits Name Description

[31:0]
RTSH: Receive Frame

Timestamp High

This field is updated by DMA with the most significant 32 bits of the

timestamp captured for the corresponding receive frame. This field

is updated by DMA only for the last descriptor of the receive frame

which is indicated by the Last Descriptor status bit (RDES0[8]).

10.9 Register Summary
Note that specific fields or bits of a given register may have different access attributes. Below is the list of all

attributes together with the abbreviations used in register descriptions.

• Read Only (RO)

• Write Only (WO)

Espressif Systems 240
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

• Read and Write (R/W)

• Read, Write, and Self Clear (R/W/SC)

• Read, Self Set, and Write Clear (R/SS/WC)

• Read, Write Set, and Self Clear (R/WS/SC)

• Read, Self Set, and Self Clear or Write Clear (R/SS/SC/WC)

• Read Only and Write Trigger (RO/WT)

• Read, Self Set, and Read Clear (R/SS/RC)

• Read, Write, and Self Update (R/W/SU)

• Latched-low (LL)

• Latched-high (LH)

Name Description Address Access

DMA configuration and control registers

DMABUSMODE_REG Bus mode configuration 0x3FF69000 R/WS/SC

DMATXPOLLDEMAND_REG Pull demand for data transmit 0x3FF69004 RO/WT

DMARXPOLLDEMAND_REG Pull demand for data receive 0x3FF69008 RO/WT

DMARXBASEADDR_REG
Base address of the first receive descrip-

tor
0x3FF6900C R/W

DMATXBASEADDR_REG
Base address of the first transmit de-

scriptor
0x3FF69010 R/W

DMASTATUS_REG
State of interrupts, errors and other

events
0x3FF69014 R/SS/WC

DMAOPERATION_MODE_REG
Receive and Transmit operating modes

and command
0x3FF69018 R/SS/WC

DMAIN_EN_REG Enable / disable interrupts 0x3FF6901C R/W

DMAMISSEDFR_REG
Missed Frame and Buffer Overflow

Counter Register
0x3FF69020 R/W

DMARINTWDTIMER_REG Watchdog timer count on receive 0x3FF69024 R/W

DMATXCURRDESC_REG Pointer to current transmit descriptor 0x3FF69048 RO

DMARXCURRDESC_REG Pointer to current receive descriptor 0x3FF6904C RO

DMATXCURRADDR_BUF_REG Pointer to current transmit buffer 0x3FF69050 RO

DMARXCURRADDR_BUF_REG Pointer to current receive buffer 0x3FF69054 RO

MAC configuration and control registers

EMACCONFIG_REG MAC configuration 0x3FF6A000 R/W

EMACFF_REG Frame filter settings 0x3FF6A004 R/W

EMACGMIIADDR_REG PHY configuration access 0x3FF6A010 R/WS/SC

EMACMIIDATA_REG PHY data read write 0x3FF6A014 R/W

EMACFC_REG frame flow control 0x3FF6A018
R/WS/SC(FCB)

R/W(BPA)

EMACDEBUG_REG Status debugging bits 0x3FF6A024 RO

PMT_RWUFFR_REG Remote Wake-Up Frame Filter 0x3FF6A028 RO

PMT_CSR_REG PMT Control and Status 0x3FF6A02C RO

Espressif Systems 241
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Name Description Address Access

EMACLPI_CSR_REG LPI Control and Status 0x3FF6A030 RO

EMACLPITIMERSCONTROL_REG LPI Timers Control 0x3FF6A034 RO

EMACINTS_REG Interrupt status 0x3FF6A038 RO

EMACINTMASK_REG Interrupt mask 0x3FF6A03C R/W

EMACADDR0HIGH_REG
Upper 16 bits of the first 6-byte MAC ad-

dress
0x3FF6A040 R/W

EMACADDR0LOW_REG
Lower 32 bits of the first 6-byte MAC ad-

dress
0x3FF6A044 R/W

EMACADDR1HIGH_REG
MAC address filtering and upper 16 bits

of the second 6-byte MAC address
0x3FF6A048 R/W

EMACADDR1LOW_REG
Lower 32 bits of the second 6-byte MAC

address
0x3FF6A04C R/W

EMACADDR2HIGH_REG
MAC address filtering and upper 16 bits

of the third 6-byte MAC address
0x3FF6A050 R/W

EMACADDR2LOW_REG
Lower 32 bits of the third 6-byte MAC

address
0x3FF6A054 R/W

EMACADDR3HIGH_REG
MAC address filtering and upper 16 bits

of the fourth 6-byte MAC address
0x3FF6A058 R/W

EMACADDR3LOW_REG
Lower 32 bits of the fourth 6-byte MAC

address
0x3FF6A05C R/W

EMACADDR4HIGH_REG
MAC address filtering and upper 16 bits

of the fifth 6-byte MAC address
0x3FF6A060 R/W

EMACADDR4LOW_REG
Lower 32 bits of the fifth 6-byte MAC ad-

dress
0x3FF6A064 R/W

EMACADDR5HIGH_REG
MAC address filtering and upper 16 bits

of the sixth 6-byte MAC address
0x3FF6A068 R/W

EMACADDR5LOW_REG
Lower 32 bits of the sixth 6-byte MAC

address
0x3FF6A06C R/W

EMACADDR6HIGH_REG
MAC address filtering and upper 16 bits

of the seventh 6-byte MAC address
0x3FF6A070 R/W

EMACADDR6LOW_REG
Lower 32 bits of the seventh 6-byte

MAC address
0x3FF6A074 R/W

EMACADDR7HIGH_REG
MAC address filtering and upper 16 bits

of the eighth 6-byte MAC address
0x3FF6A078 R/W

EMACADDR7LOW_REG
Lower 32 bits of the eighth 6-byte MAC

address
0x3FF6A07C R/W

EMACCSTATUS_REG Link communication status 0x3FF6A0D8 RO

EMACWDOGTO_REG Watchdog timeout control 0x3FF6A0DC R/W

Clock configuration registers

EMAC_EX_CLKOUT_CONF_REG RMII clock divider setting 0x3FF69800 R/W

EMAC_EX_OSCCLK_CONF_REG
RMII clock half and whole divider set-

tings
0x3FF69804 R/W

EMAC_EX_CLK_CTRL_REG
Clock enable and external / internal

clock selection
0x3FF69808 R/W

Espressif Systems 242
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Name Description Address Access

PHY type and SRAM configuration registers

EMAC_EX_PHYINF_CONF_REG Selection of MII / RMII phy 0x3FF6980C R/W

EMAC_PD_SEL_REG Ethernet RAM power-down enable 0x3FF69810 R/W

10.10 Registers
The addresses in parenthesis besides register names are the register addresses relative to the EMAC base ad-

dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 10.9 Register Summary.

Note: The value of all reset registers must be set to the reset value.

Espressif Systems 243
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.1. DMABUSMODE_REG (0x0000)

(re
se

rve
d)

0 0 0 0 0

31 27

DM
AM

IXE
DBURST

0

26

DM
AADDRALIB

EA

0

25

PBLX
8_

M
ODE

0

24

USE_S
EP_P

BL

0

23

RX_
DM

A_P
BL

0x01

22 17

FIX
ED_B

URST

0

16

PRI_R
AT

IO

0x0

15 14

PROG_B
URST_

LE
N

0x01

13 8

ALT
_D

ESC_S
IZE

0

7

DESC_S
KIP

_L
EN

0x00

6 2

DM
A_A

RB_S
CH

0

1

SW
_R

ST

1

0

Reset

DMAMIXEDBURST When this bit is set high and the FB(FIXES_BURST) bit is low, the AHB master

interface starts all bursts of a length more than 16 with INCR (undefined burst), whereas it reverts

to fixed burst transfers (INCRx and SINGLE) for burst length of 16 and less. (R/W)

DMAADDRALIBEA When this bit is set high and the FB bit is 1, the AHB interface generates all bursts

aligned to the start address LS bits. If the FB bit is 0, the first burst (accessing the start address of

data buffer) is not aligned, but subsequent bursts are aligned to the address. (R/W)

PBLX8_MODE When set high, this bit multiplies the programmed PBL(PROG_BURST_LEN) value

(Bits[22:17] and Bits[13:8]) eight times. Therefore, the DMA transfers the data in 8, 16, 32, 64,

128, and 256 beats depending on the PBL value. (R/W)

USE_SEP_PBL When set high, this bit configures the Rx DMA to use the value configured in

Bits[22:17] as PBL. The PBL value in Bits[13:8] is applicable only to the Tx DMA operations. When

reset to low, the PBL value in Bits[13:8] is applicable for both DMA engines. (R/W)

RX_DMA_PBL This field indicates the maximum number of beats to be transferred in one Rx DMA

transaction. This is the maximum value that is used in a single block Read or Write.The Rx DMA

always attempts to burst as specified in the RPBL(RX_DMA_PBL) bit each time it starts a burst

transfer on the host bus. You can program RPBL with values of 1, 2, 4, 8, 16, and 32. Any other

value results in undefined behavior. This field is valid and applicable only when USP(USE_SEP_PBL)

is set high. (R/W)

FIXED_BURST This bit controls whether the AHB master interface performs fixed burst transfers or

not. When set, the AHB interface uses only SINGLE, INCR4, INCR8, or INCR16 during start of

the normal burst transfers. When reset, the AHB interface uses SINGLE and INCR burst transfer

operations. (R/W)

PRI_RATIO These bits control the priority ratio in the weighted round-robin arbitration between the

Rx DMA and Tx DMA. These bits are valid only when Bit 1 (DA) is reset. The priority ratio Rx:Tx

represented by each bit: (R/W)

• 2’b00 — 1: 1

• 2’b01 — 2: 0

• 2’b10 — 3: 1

• 2’b11 — 4: 1

Continued on the next page...

Espressif Systems 244
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.1. DMABUSMODE_REG (0x0000)

Continued from the previous page...

PROG_BURST_LEN These bits indicate the maximum number of beats to be transferred in one DMA

transaction. If the number of beats to be transferred is more than 32, then perform the following

steps: 1. Set the PBLx8 mode; 2. Set the PBL. (R/W)

ALT_DESC_SIZE When set, the size of the alternate descriptor increases to 32 bytes. (R/W)

DESC_SKIP_LEN This bit specifies the number of Word to skip between two unchained descriptors.

The address skipping starts from the end of current descriptor to the start of next descriptor. When

the DSL(DESC_SKIP_LEN) value is equal to zero, the descriptor table is taken as contiguous by

the DMA in Ring mode. (R/W)

DMA_ARB_SCH This bit specifies the arbitration scheme between the transmit and receive paths.

1’b0: weighted round-robin with RX: TX or TX: RX, priority specified in PR (bit[15:14]); 1’b1 Fixed

priority (Rx priority to Tx). (R/W)

SW_RST When this bit is set, the MAC DMA Controller resets the logic and all internal registers of the

MAC. It is cleared automatically after the reset operation is complete in all of the ETH_MAC clock

domains. Before reprogramming any register of the ETH_MAC, you should read a zero (0) value in

this bit. (R/WS/SC)

Register 10.2. DMATXPOLLDEMAND_REG (0x0004)

0x000000000

31 0

Reset

TRANS_POLL_DEMAND When these bits are written with any value, the DMA reads the current

descriptor to which the Register (Current Host Transmit Descriptor Register) is pointing. If that

descriptor is not available (owned by the Host), the transmission returns to the suspend state and

Bit[2] (TU) of Status Register is asserted. If the descriptor is available, the transmission resumes.

(RO/WT)

Register 10.3. DMARXPOLLDEMAND_REG (0x0008)

0x000000000

31 0

Reset

RECV_POLL_DEMAND When these bits are written with any value, the DMA reads the current de-

scriptor to which the Current Host Receive Descriptor Register is pointing. If that descriptor is

not available (owned by the Host), the reception returns to the Suspended state and Bit[7] (RU) of

Status Register is asserted. If the descriptor is available, the Rx DMA returns to the active state.

(RO/WT)

Espressif Systems 245
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.4. DMARXBASEADDR_REG (0x000C)

0x000000000

31 0

Reset

START_RECV_LIST This field contains the base address of the first descriptor in the Receive De-

scriptor list. The LSB Bits[1:0] are ignored and internally taken as all-zero by the DMA. Therefore,

these LSB bits are read-only. (R/W)

Register 10.5. DMATXBASEADDR_REG (0x0010)

0x000000000

31 0

Reset

START_TRANS_LIST This field contains the base address of the first descriptor in the Transmit De-

scriptor list. The LSB Bits[1:0] are ignored and are internally taken as all-zero by the DMA. Therefore,

these LSB bits are read-only. (R/W)

Register 10.6. DMASTATUS_REG (0x0014)

(re
se

rve
d)

0 0

31 30

TS
_T

RI_I
NT

0

29

EM
AC_P

M
T_

IN
T

0

28

(re
se

rve
d)

0 0

27 26

ERROR_B
ITS

0x0

25 23

TR
ANS_P

ROC_S
TA

TE

0x0

22 20

RECV_P
ROC_S

TA
TE

0x0

19 17

NORM
_IN

T_
SUM

M

0

16

ABN_IN
T_

SUM
M

0

15

EARLY
_R

ECV_IN
T

0

14

FA
TA

L_
BUS_E

RR_IN
T

0

13

(re
se

rve
d)

0 0

12 11

EARLY
_T

RANS_IN
T

0

10

RECV_W
DT_

TO

0

9

RECV_P
ROC_S

TO
P

0

8

RECV_B
UF_

UNAV
AIL

0

7

RECV_IN
T

0

6

TR
ANS_U

NDFL
OW

0

5

RECV_O
VFL

OW

0

4

TR
ANS_J

ABBER_T
O

0

3

TR
ANS_B

UF_
UNAV

AIL

0

2

TR
ANS_P

ROC_S
TO

P

0

1

TR
ANS_IN

T

0

0

Reset

TS_TRI_INT This bit indicates an interrupt event in the Timestamp Generator block of the ETH_MAC.

The software must read the corresponding registers in the ETH_MAC to get the exact cause of the

interrupt and clear its source to reset this bit to 1’b0. (RO)

EMAC_PMT_INT This bit indicates an interrupt event in the PMT module of the ETH_MAC. The soft-

ware must read the PMT Control and Status Register in the MAC to get the exact cause of interrupt

and clear its source to reset this bit to 1’b0. (RO)

Continued on the next page...

Espressif Systems 246
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.6. DMASTATUS_REG (0x0014)

Continued from the previous page...

ERROR_BITS This field indicates the type of error that caused a Bus Error, for example, error response

on the AHB interface. This field is valid only when Bit[13] (FBI) is set. This field does not generate

an interrupt. (RO)

• 3’b000: Error during Rx DMA Write Data Transfer.

• 3’b011: Error during Tx DMA Read Data Transfer.

• 3’b100: Error during Rx DMA Descriptor Write Access.

• 3’b101: Error during Tx DMA Descriptor Write Access.

• 3’b110: Error during Rx DMA Descriptor Read Access.

• 3’b111: Error during Tx DMA Descriptor Read Access.

TRANS_PROC_STATE This field indicates the Transmit DMA FSM state. This field does not generate

an interrupt. (RO)

• 3’b000: Stopped. Reset or Stop Transmit Command issued.

• 3’b001: Running. Fetching Transmit Transfer Descriptor.

• 3’b010: Reserved for future use.

• 3’b011: Running. Waiting for TX packets.

• 3’b100: Suspended. Receive Descriptor Unavailable.

• 3’b101: Running. Closing Transmit Descriptor.

• 3’b110: TIME_STAMP write state.

• 3’b111: Running. Transferring the TX packets data from transmit buffer to host memory.

RECV_PROC_STATE This field indicates the Receive DMA FSM state. This field does not generate

an interrupt. (RO)

• 3’b000: Stopped. Reset or Stop Receive Command issued.

• 3’b001: Running. Fetching Receive Transfer Descriptor.

• 3’b010: Reserved for future use.

• 3’b011: Running. Waiting for RX packets.

• 3’b100: Suspended. Receive Descriptor Unavailable.

• 3’b101: Running. Closing Receive Descriptor.

• 3’b110: TIME_STAMP write state.

• 3’b111: Running. Transferring the TX packets data from receive buffer to host memory.

Continued on the next page...

Espressif Systems 247
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.6. DMASTATUS_REG (0x0014)

Continued from the previous page...

NORM_INT_SUMM Normal Interrupt Summary bit value is the logical OR of the following bits when

the corresponding interrupt bits are enabled in Interrupt Enable Register:(R/SS/WC)

• Bit[0]: Transmit Interrupt.

• Bit[2]: Transmit Buffer Unavailable.

• Bit[6]: Receive Interrupt.

• Bit[14]: Early Receive Interrupt. Only unmasked bits affect the Normal Interrupt Summary bit.

This is a sticky bit and must be cleared (by writing 1 to this bit) each time a corresponding bit,

which causes NIS to be set, is cleared.

ABN_INT_SUMM Abnormal Interrupt Summary bit value is the logical OR of the following when the

corresponding interrupt bits are enabled in Interrupt Enable Register: (R/SS/WC)

• Bit[1]: Transmit Process Stopped.

• Bit[3]: Transmit Jabber Timeout.

• Bit[4]: Receive FIFO Overflow.

• Bit[5]: Transmit Underflow.

• Bit[7]: Receive Buffer Unavailable. Bit[8]: Receive Process Stopped.

• Bit[9]: Receive Watchdog Timeout.

• Bit[10]: Early Transmit Interrupt.

• Bit[13]: Fatal Bus Error. Only unmasked bits affect the Abnormal Interrupt Summary bit. This

is a sticky bit and must be cleared (by writing 1 to this bit) each time a corresponding bit,

which causes AIS to be set, is cleared.

EARLY_RECV_INT This bit indicates that the DMA filled the first data buffer of the packet. This bit is

cleared when the software writes 1 to this bit or when Bit[6] (RI) of this register is set (whichever

occurs earlier). (R/SS/WC)

FATAL_BUS_ERR_INT This bit indicates that a bus error occurred, as described in Bits [25:23]. When

this bit is set, the corresponding DMA engine disables all of its bus accesses. (R/SS/WC)

EARLY_TRANS_INT This bit indicates that the frame to be transmitted is fully transferred to the MTL

Transmit FIFO. (R/SS/WC)

RECV_WDT_TO When set, this bit indicates that the Receive Watchdog Timer expired while receiving

the current frame and the current frame is truncated after the watchdog timeout. (R/SS/WC)

Continued on the next page...

Espressif Systems 248
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.6. DMASTATUS_REG (0x0014)

Continued from the previous page...

RECV_PROC_STOP This bit is asserted when the Receive Process enters the Stopped state.

(R/SS/WC)

RECV_BUF_UNAVAIL This bit indicates that the host owns the Next Descriptor in the Receive List and

the DMA cannot acquire it. The Receive Process is suspended. To resume processing Receive

descriptors, the host should change the ownership of the descriptor and issue a Receive Poll

Demand command. If no Receive Poll Demand is issued, the Receive Process resumes when

the next recognized incoming frame is received. This bit is set only when the previous Receive

Descriptor is owned by the DMA. (R/SS/WC)

RECV_INT This bit indicates that the frame reception is complete. When reception is complete, the

Bit[31] of RDES1 (Disable Interrupt on Completion) is reset in the last Descriptor, and the specific

frame status information is updated in the descriptor. The reception remains in the Running state.

(R/SS/WC)

TRANS_UNDFLOW This bit indicates that the Transmit Buffer had an Underflow during frame trans-

mission. Transmission is suspended and an Underflow Error TDES0[1] is set. (R/SS/WC)

RECV_OVFLOW This bit indicates that the Receive Buffer had an Overflow during frame recep-

tion. If the partial frame is transferred to the application, the overflow status is set in RDES0[11].

(R/SS/WC)

TRANS_JABBER_TO This bit indicates that the Transmit Jabber Timer expired, which happens when

the frame size exceeds 2,048 (10,240 bytes when the Jumbo frame is enabled). When the Jabber

Timeout occurs, the transmission process is aborted and placed in the Stopped state. This causes

the Transmit Jabber Timeout TDES0[14] flag to assert. (R/SS/WC)

TRANS_BUF_UNAVAIL This bit indicates that the host owns the Next Descriptor in the Transmit

List and the DMA cannot acquire it. Transmission is suspended. Bits[22:20] explain the Transmit

Process state transitions. To resume processing Transmit descriptors, the host should change

the ownership of the descriptor by setting TDES0[31] and then issue a Transmit Poll Demand

command. (R/SS/WC)

TRANS_PROC_STOP This bit is set when the transmission is stopped. (R/SS/WC)

TRANS_INT This bit indicates that the frame transmission is complete. When transmission is com-

plete, Bit[31] (OWN) of TDES0 is reset, and the specific frame status information is updated in the

descriptor. (R/SS/WC)

Espressif Systems 249
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.7. DMAOPERATION_MODE_REG (0x0018)

(re
se

rve
d)

0 0 0 0 0

31 27

DIS
_D

ROP_T
CPIP

_E
RR_F

RAM

0

26

RX_
STO

RE_F
ORW

ARD

0

25

DIS
_F

LU
SH_R

ECV_F
RAM

ES

0

24

(re
se

rve
d)

0

23

(re
se

rve
d)

0

22

TX
_S

TR
_F

W
D

0

21

FL
USH_T

X_
FIF

O

0

20

(re
se

rve
d)

0

19 17

TX
_T

HRESH_C
TR

L

0

16 14

STA
RT_

STO
P_T

RANSM
IS

SIO
N_C

OM
M

AND

0

13

(re
se

rve
d)

0

12 11

(re
se

rve
d)

0

10 9

(re
se

rve
d)

0

8

FW
D_E

RR_F
RAM

E

0

7

FW
D_U

NDER_G
F

0

6

DROP_G
FR

M

0

5

RX_
TH

RESH_C
TR

L

0

4 3

OPT_
SECOND_F

RAM
E

0

2

STA
RT_

STO
P_R

X

0

1

(re
se

rve
d)

0

0

Reset

DIS_DROP_TCPIP_ERR_FRAM When this bit is set, the MAC does not drop the frames which only

have errors detected by the Receive Checksum engine.When this bit is reset, all error frames are

dropped if the Fwd_Err_Frame bit is reset. (R/W)

RX_STORE_FORWARD When this bit is set, the MTL reads a frame from the Rx FIFO only after the

complete frame has been written to it. (R/W)

DIS_FLUSH_RECV_FRAMES When this bit is set, the Rx DMA does not flush any frames because

of the unavailability of receive descriptors or buffers. (R/W)

TX_STR_FWD When this bit is set, transmission starts when a full frame resides in the MTL Trans-

mit FIFO. When this bit is set, the TX_THRESH_CTRL values specified in TX_THRESH_CTRL are

ignored. (R/W)

FLUSH_TX_FIFO When this bit is set, the transmit FIFO controller logic is reset to its default values

and thus all data in the Tx FIFO is lost or flushed. This bit is cleared internally when the flushing

operation is complete. (R/WS/SC)

TX_THRESH_CTRL These bits control the threshold level of the MTL Transmit FIFO. Transmission

starts when the frame size within the MTL Transmit FIFO is larger than the threshold. In addition,

full frames with a length less than the threshold are also transmitted. These bits are used only

when TX_STR_FWD is reset. 3’b000: 64, 3’b001: 128, 3’b010: 192, 3’b011: 256, 3’b100: 40,

3’b101: 32, 3’b110: 24, 3’b111: 16. (R/W)

START_STOP_TRANSMISSION_COMMAND When this bit is set, transmission is placed in the Run-

ning state, and the DMA checks the Transmit List at the current position for a frame to be transmit-

ted. When this bit is reset, the transmission process is placed in the Stopped state after completing

the transmission of the current frame. (R/W)

FWD_ERR_FRAME When this bit is reset, the Rx FIFO drops frames with error status (CRC error,

collision error, giant frame, watchdog timeout, or overflow). (R/W)

FWD_UNDER_GF When set, the Rx FIFO forwards Undersized frames (that is, frames with no Error

and length less than 64 bytes) including pad-bytes and CRC.

DROP_GFRM When set, the MAC drops the received giant frames in the Rx FIFO, that is, frames that

are larger than the computed giant frame limit. (R/W)

Continued on the next page...

Espressif Systems 250
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.7. DMAOPERATION_MODE_REG (0x0018)

Continued from the previous page...

RX_THRESH_CTRL These two bits control the threshold level of the MTL Receive FIFO. Transfer (re-

quest) to DMA starts when the frame size within the MTL Receive FIFO is larger than the threshold.

2’b00: 64; 2’b01: 32; 2’b10: 96; 2’b11: 128. (R/W)

OPT_SECOND_FRAME When this bit is set, it instructs the DMA to process the second frame of the

Transmit data even before the status for the first frame is obtained. (R/W)

START_STOP_RX When this bit is set, the Receive process is placed in the Running state. The DMA

attempts to acquire the descriptor from the Receive list and processes the incoming frames.When

this bit is cleared, the Rx DMA operation is stopped after the transfer of the current frame. (R/W)

Espressif Systems 251
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.8. DMAIN_EN_REG (0x001C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

DM
AIN

_N
IS

E

0

16

DM
AIN

_A
IS

E

0

15

DM
AIN

_E
RIE

0

14

DM
AIN

_F
BEE

0

13

(re
se

rve
d)

0 0

12 11

DM
AIN

_E
TIE

0

10

DM
AIN

_R
W

TE

0

9

DM
AIN

_R
SE

0

8

DM
AIN

_R
BUE

0

7

DM
AIN

_R
IE

0

6

DM
AIN

_U
IE

0

5

DM
AIN

_O
IE

0

4

DM
AIN

_T
JT

E

0

3

DM
AIN

_T
BUE

0

2

DM
AIN

_T
SE

0

1

DM
AIN

_T
IE

0

0

Reset

DMAIN_NISE When this bit is set, normal interrupt summary is enabled. When this bit is reset, normal

interrupt summary is disabled. This bit enables the following interrupts in Status Register: (R/W)

• Bit[0]: Transmit Interrupt.

• Bit[2]: Transmit Buffer Unavailable.

• Bit[6]: Receive Interrupt.

• Bit[14]: Early Receive Interrupt.

DMAIN_AISE When this bit is set, abnormal interrupt summary is enabled. When this bit is reset,

the abnormal interrupt summary is disabled. This bit enables the following interrupts in Status

Register:(R/W)

• Bit[1]: Transmit Process Stopped.

• Bit[3]: Transmit Jabber Timeout.

• Bit[4]: Receive Overflow.

• Bit[5]: Transmit Underflow.

• Bit[7]: Receive Buffer Unavailable.

• Bit[8]: Receive Process Stopped.

• Bit[9]: Receive Watchdog Timeout.

• Bit[10]: Early Transmit Interrupt.

• Bit[13]: Fatal Bus Error.

DMAIN_ERIE When this bit is set with Normal Interrupt Summary Enable (Bit[16]), the Early Receive

Interrupt is enabled. When this bit is reset, the Early Receive Interrupt is disabled. (R/W)

Continued on the next page...

Espressif Systems 252
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.8. DMAIN_EN_REG (0x001C)

Continued from the previous page...

DMAIN_FBEE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Fatal Bus

Error Interrupt is enabled. When this bit is reset, the Fatal Bus Error Enable Interrupt is disabled.

(R/W)

DMAIN_ETIE When this bit is set with an Abnormal Interrupt Summary Enable (Bit[15]), the Early

Transmit Interrupt is enabled. When this bit is reset, the Early Transmit Interrupt is disabled. (R/W)

DMAIN_RWTE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Receive

Watchdog Timeout Interrupt is enabled. When this bit is reset, the Receive Watchdog Timeout

Interrupt is disabled. (R/W)

DMAIN_RSE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Receive

Stopped Interrupt is enabled. When this bit is reset, the Receive Stopped Interrupt is disabled.

(R/W)

DMAIN_RBUE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Receive

Buffer Unavailable Interrupt is enabled. When this bit is reset, the Receive Buffer Unavailable Inter-

rupt is disabled. (R/W)

DMAIN_RIE When this bit is set with Normal Interrupt Summary Enable (Bit[16]), the Receive Interrupt

is enabled. When this bit is reset, the Receive Interrupt is disabled. (R/W)

DMAIN_UIE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Transmit Un-

derflow Interrupt is enabled. When this bit is reset, the Underflow Interrupt is disabled. (R/W)

DMAIN_OIE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Receive Over-

flow Interrupt is enabled. When this bit is reset, the Overflow Interrupt is disabled. (R/W)

DMAIN_TJTE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Transmit

Jabber Timeout Interrupt is enabled. When this bit is reset, the Transmit Jabber Timeout Interrupt

is disabled. (R/W)

DMAIN_TBUE When this bit is set with Normal Interrupt Summary Enable (Bit 16), the Transmit Buffer

Unavailable Interrupt is enabled. When this bit is reset, the Transmit Buffer Unavailable Interrupt is

disabled. (R/W)

DMAIN_TSE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Transmission

Stopped Interrupt is enabled. When this bit is reset, the Transmission Stopped Interrupt is disabled.

(R/W)

DMAIN_TIE When this bit is set with Normal Interrupt Summary Enable (Bit[16]), the Transmit Interrupt

is enabled. When this bit is reset, the Transmit Interrupt is disabled. (R/W)

Espressif Systems 253
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.9. DMAMISSEDFR_REG (0x0020)

(re
se

rve
d)

0 0

30 29

Ove
rflo

w_B
FO

C

0x0

28

Ove
rflo

w_F
C

0x0

27 17

Ove
rflo

w_B
M

FC

0x0

16

M
iss

ed
_F

C

0x0

10 0

Reset

Overflow_BFOC This bit is set every time the Overflow Frame Counter (Bits[27:17]) overflows, that

is, the Rx FIFO overflows with the overflow frame counter at maximum value. In such a scenario,

the overflow frame counter is reset to all-zeros and this bit indicates that the rollover happened.

(R/SS/RC)

Overflow_FC This field indicates the number of frames missed by the application. This counter is

incremented each time the MTL FIFO overflows. The counter is cleared when this register is read.

(R/SS/RC)

Overflow_BMFC This bit is set every time Missed Frame Counter (Bits[15:0]) overflows, that is, the

DMA discards an incoming frame because of the Host Receive Buffer being unavailable with the

missed frame counter at maximum value. In such a scenario, the Missed frame counter is reset to

all-zeros and this bit indicates that the rollover happened. (R/SS/RC)

Missed_FC This field indicates the number of frames missed by the controller because of the Host

Receive Buffer being unavailable. This counter is incremented each time the DMA discards an

incoming frame. The counter is cleared when this register is read. (R/SS/RC)

Register 10.10. DMARINTWDTIMER_REG (0x0024)

(re
se

rve
d)

0 0

31 8

RIW
TC

0x000

7 0

Reset

RIWTC This bit indicates the number of system clock cycles multiplied by 256 for which the watchdog

timer is set. The watchdog timer gets triggered with the programmed value after the Rx DMA

completes the transfer of a frame for which the RI (RECV_INT) status bit is not set because of the

setting in the corresponding descriptor RDES1[31]. When the watchdog timer runs out, the RI bit

is set and the timer is stopped. The watchdog timer is reset when the RI bit is set high because of

automatic setting of RI as per RDES1[31] of any received frame. (R/W)

Espressif Systems 254
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.11. DMATXCURRDESC_REG (0x0048)

0x000000000

31 0

Reset

TRANS_DSCR_ADDR_PTR The address of the current receive descriptor list. Cleared on Reset.

Pointer updated by the DMA during operation. (RO)

Register 10.12. DMARXCURRDESC_REG (0x004C)

0x000000000

31 0

Reset

RECV_DSCR_ADDR_PTR The address of the current receive descriptor list. Cleared on Reset.

Pointer updated by the DMA during operation. (RO)

Register 10.13. DMATXCURRADDR_BUF_REG (0x0050)

0x000000000

31 0

Reset

TRANS_BUFF_ADDR_PTR The address of the current receive descriptor list. Cleared on Reset.

Pointer updated by the DMA during operation. (RO)

Register 10.14. DMARXCURRADDR_BUF_REG (0x0054)

0x000000000

31 0

Reset

RECV_BUFF_ADDR_PTR The address of the current receive descriptor list. Cleared on Reset.

Pointer updated by the DMA during operation. (RO)

Espressif Systems 255
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.15. EMACCONFIG_REG (0x1000)

(re
se

rve
d)

0

31

SAIR
C

0x0

30 28

ASS2K
P

0

27

(re
se

rve
d)

0 0 0

26 24

EM
ACW

AT
CHDOG

0

23

EM
ACJA

BBER

0

22

(re
se

rve
d)

0

21

EM
ACJU

M
BOFR

AM
E

0

20

EM
ACIN

TE
RFR

AM
EGAP

0

19 17

EM
ACDIS

ABLE
CRS

0

16

EM
ACM

II

0

15

EM
ACFE

SPEED

0

14

EM
ACRXO

W
N

0

13

EM
ACLO

OPBACK

0

12

EM
ACDUPLE

X

0

11

EM
ACRXIP

COFF
LO

AD

0

10

EM
ACRETR

Y

0

9

(re
se

rve
d)

0

8

EM
ACPA

DCRCSTR
IP

0

7

EM
ACBACKOFF

LIM
IT

0x0

6 5

EM
ACDEFE

RRALC
HECK

0

4

EM
ACTX

0

3

EM
ACRX

0

2

PLT
F

0x0

1 0

Reset

SAIRC This field controls the source address insertion or replacement for all transmitted frames.

Bit[30] specifies which MAC Address register (0 or 1) is used for source address insertion or re-

placement based on the values of Bits [29:28]: (R/W)

• 2’b0x: The input signals mti_sa_ctrl_i and ati_sa_ctrl_i control the SA field generation.

• 2’b10: If Bit[30] is set to 0, the MAC inserts the content of the MAC Address 0 registers in

the SA field of all transmitted frames. If Bit[30] is set to 1 the MAC inserts the content of the

MAC Address 1 registers in the SA field of all transmitted frames.

• 2’b11: If Bit[30] is set to 0, the MAC replaces the content of the MAC Address 0 registers in

the SA field of all transmitted frames. If Bit[30] is set to 1, the MAC replaces the content of

the MAC Address 1 registers in the SA field of all transmitted frames.

ASS2KP When set, the MAC considers all frames, with up to 2,000 bytes length, as normal packets.

When Bit[20] (JE) is not set, the MAC considers all received frames of size more than 2K bytes

as Giant frames. When this bit is reset and Bit[20] (JE) is not set, the MAC considers all received

frames of size more than 1,518 bytes (1,522 bytes for tagged) as Giant frames. When Bit[20] is

set, setting this bit has no effect on Giant Frame status. (R/W)

EMACWATCHDOG When this bit is set, the MAC disables the watchdog timer on the receiver. The

MAC can receive frames of up to 16,383 bytes. When this bit is reset, the MAC does not allow a

receive frame which more than 2,048 bytes (10,240 if JE is set high) or the value programmed in

Register (Watchdog Timeout Register). The MAC cuts off any bytes received after the watchdog

limit number of bytes. (R/W)

EMACJABBER When this bit is set, the MAC disables the jabber timer on the transmitter. The MAC

can transfer frames of up to 16,383 bytes. When this bit is reset, the MAC cuts off the trans-

mitter if the application sends out more than 2,048 bytes of data (10,240 if JE is set high) during

transmission. (R/W)

EMACJUMBOFRAME When this bit is set, the MAC allows Jumbo frames of 9,018 bytes (9,022

bytes for VLAN tagged frames) without reporting a giant frame error in the receive frame status.

(R/W)

Continued on the next page...

Espressif Systems 256
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.15. EMACCONFIG_REG (0x1000)

Continued from the previous page...

EMACINTERFRAMEGAP These bits control the minimum IFG between frames during transmission.

(R/W)

• 3’b000: 96 bit times.

• 3’b001: 88 bit times.

• 3’b010: 80 bit times.

• 3’b111: 40 bit times. In the half-duplex mode, the minimum IFG can be configured only for

64 bit times (IFG = 100). Lower values are not considered.

EMACDISABLECRS When set high, this bit makes the MAC transmitter ignore the MII CRS signal

during frame transmission in the half-duplex mode. This request results in no errors generated

because of Loss of Carrier or No Carrier during such transmission. When this bit is low, the MAC

transmitter generates such errors because of Carrier Sense and can even abort the transmissions.

(R/W)

EMACMII This bit selects the Ethernet line speed. It should be set to 1 for 10 or 100 Mbps operations.

In 10 or 100 Mbps operations, this bit, along with FES(EMACFESPEED) bit, it selects the exact

linespeed. In the 10/100 Mbps-only operations, the bit is always 1. (R/W)

EMACFESPEED This bit selects the speed in the MII, RMII interface. 0: 10 Mbps; 1: 100 Mbps.

(R/W)

EMACRXOWN When this bit is set, the MAC disables the reception of frames when the TX_EN is

asserted in the half-duplex mode. When this bit is reset, the MAC receives all packets that are

given by the PHY while transmitting. This bit is not applicable if the MAC is operating in the full-

duplex mode. (R/W)

EMACLOOPBACK When this bit is set, the MAC operates in the loopback mode MII. The MII Receive

clock input (CLK_RX) is required for the loopback to work properly, because the transmit clock is

not looped-back internally. (R/W)

EMACDUPLEX When this bit is set, the MAC operates in the full-duplex mode where it can transmit

and receive simultaneously. This bit is read only with default value of 1’b1 in the full-duplex-mode.

(R/W)

EMACRXIPCOFFLOAD When this bit is set, the MAC calculates the 16-bit one’s complement of the

one’s complement sum of all received Ethernet frame payloads. It also checks whether the IPv4

Header checksum (assumed to be bytes 25/26 or 29/30 (VLAN-tagged) of the received Ethernet

frame) is correct for the received frame and gives the status in the receive status word. The MAC

also appends the 16-bit checksum calculated for the IP header datagram payload (bytes after the

IPv4 header) and appends it to the Ethernet frame transferred to the application (when Type 2 COE

is deselected). When this bit is reset, this function is disabled. (R/W)

Continued on the next page...

Espressif Systems 257
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.15. EMACCONFIG_REG (0x1000)

Continued from the previous page...

EMACRETRY When this bit is set, the MAC attempts only one transmission. When a collision occurs

on the MII interface, the MAC ignores the current frame transmission and reports a Frame Abort

with excessive collision error in the transmit frame status. When this bit is reset, the MAC attempts

retries based on the settings of the BL field (Bits [6:5]). This bit is applicable only in the half-duplex

mode. (R/W)

EMACPADCRCSTRIP When this bit is set, the MAC strips the Pad or FCS field on the incoming

frames only if the value of the length field is less than 1,536 bytes. All received frames with length

field greater than or equal to 1,536 bytes are passed to the application without stripping the Pad

or FCS field. When this bit is reset, the MAC passes all incoming frames, without modifying them,

to the Host. (R/W)

EMACBACKOFFLIMIT The Back-Off limit determines the random integer number (r) of slot time de-

lays (512 bit times for 10/100 Mbps) for which the MAC waits before rescheduling a transmission

attempt during retries after a collision. This bit is applicable only in the half-duplex mode.

• 00: k= min (n, 10).

• 01: k = min (n, 8).

• 10: k = min (n, 4).

• 11: k = min (n, 1), n = retransmission attempt. The random integer r takes the value in the

range 0 ~ 2000.

EMACDEFERRALCHECK Deferral Check. (R/W)

EMACTX When this bit is set, the transmit state machine of the MAC is enabled for transmission on

the MII. When this bit is reset, the MAC transmit state machine is disabled after the completion of

the transmission of the current frame, and does not transmit any further frames. (R/W)

EMACRX When this bit is set, the receiver state machine of the MAC is enabled for receiving frames

from the MII. When this bit is reset, the MAC receive state machine is disabled after the completion

of the reception of the current frame, and does not receive any further frames from the MII. (R/W)

PLTF These bits control the number of preamble bytes that are added to the beginning of every Trans-

mit frame. The preamble reduction occurs only when the MAC is operating in the full-duplex mode.

2’b00: 7 bytes of preamble. 2’b01: 5 bytes of preamble. 2’b10: 3 bytes of preamble. (R/W)

Espressif Systems 258
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.16. EMACFF_REG (0x1004)

RECEIVE_A
LL

0

31

(re
se

rve
d)

0 0

30 10

SAFE

0

9

SAIF

0

8

PCF

0x0

7 6

DBF

0

5

PA
M

0

4

DAIF

0

3

(re
se

rve
d)

0 0

2 1

PM
ODE

0

0

Reset

RECEIVE_ALL When this bit is set, the MAC Receiver module passes all received frames, irrespective

of whether they pass the address filter or not, to the Application. The result of the SA or DA filtering

is updated (pass or fail) in the corresponding bits in the Receive Status Word. When this bit is reset,

the Receiver module passes only those frames to the Application that pass the SA or DA address

filter. (R/W)

SAFE When this bit is set, the MAC compares the SA field of the received frames with the values

programmed in the enabled SA registers. If the comparison fails, the MAC drops the frame. When

this bit is reset, the MAC forwards the received frame to the application with updated SAF bit of

the Rx Status depending on the SA address comparison. (R/W)

SAIF When this bit is set, the Address Check block operates in inverse filtering mode for the SA

address comparison. The frames whose SA matches the SA registers are marked as failing the

SA Address filter. When this bit is reset, frames whose SA does not match the SA registers are

marked as failing the SA Address filter. (R/W)

PCF These bits control the forwarding of all control frames (including unicast and multicast Pause

frames). (R/W)

• 2’b00: MAC filters all control frames from reaching the application.

• 2’b01: MAC forwards all control frames except Pause frames to application even if they fail

the Address filter.

• 2’b10: MAC forwards all control frames to application even if they fail the Address Filter.

• 2’b11: MAC forwards control frames that pass the Address Filter.

The following conditions should be true for the Pause frames processing:

• Condition 1: The MAC is in the full-duplex mode and flow control is enabled by setting Bit 2

(RFE) of Register (Flow Control Register) to 1.

• Condition 2: The destination address (DA) of the received frame matches the special multicast

address or the MAC Address 0 when Bit 3 (UP) of the Register(Flow Control Register) is set.

• Condition 3: The Type field of the received frame is 0x8808 and the OPCODE field is 0x0001.

DBF When this bit is set, the AFM(Address Filtering Module) module blocks all incoming broadcast

frames. In addition, it overrides all other filter settings. When this bit is reset, the AFM module

passes all received broadcast frames. (R/W)

PAM When set, this bit indicates that all received frames with a multicast destination address (first bit

in the destination address field is ’1’) are passed. (R/W)

Continued on the next page...

Espressif Systems 259
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.16. EMACFF_REG (0x1004)

Continued from the previous page...

DAIF When this bit is set, the Address Check block operates in inverse filtering mode for the DA

address comparison for both unicast and multicast frames. When reset, normal filtering of frames

is performed. (R/W)

PMODE When this bit is set, the Address Filter module passes all incoming frames irrespective of the

destination or source address. The SA or DA Filter Fails status bits of the Receive Status Word are

always cleared when PR(PRT_RATIO) is set. (R/W)

Register 10.17. EMACGMIIADDR_REG (0x1010)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

M
IID

EV

0x00

15 11

M
IIR

EG

0x00

10 6

M
IIC

SRCLK

0x00

5 2

M
IIW

RITE

0

1

M
IIB

USY

0

0

Reset

MIIDEV This field indicates which of the 32 possible PHY devices are being accessed. (R/W)

MIIREG This field selects the desired MII register in the selected PHY device. (R/W)

MIICSRCLK This field selects the APB clock frequency. It has the following two values. Other values

are reserved.

• 4’b0000: The APB clock frequency is 80 MHz. The MDC clock frequency is APB_CLK/42.

• 4’b0011: The APB clock frequency is 40 MHz. The MDC clock frequency is APB_CLK/26.

(R/W)

MIIWRITE When set, this field indicates to the PHY that this is a Write operation using MII_DATA. If

this field is not set, it indicates that this is a Read operation, that is, placing the data in MII_DATA.

(R/W)

MIIBUSY This field is used in combination with MIIREG and MII_DATA.

Before writing to MIIREG and MII_DATA, this field should read logic 0 (idle state by default).

To read or write to MIIREG and MII_DATA, software (the user) should set this field to 1.

MII_DATA should be kept valid (data remains unchanged) when it is accessed until this field is

cleared by hardware (the MAC).

Note that ESP32 MAC does not receive ACK from PHY during a read or write access to MIIREG

and MII_DATA. (R/WS/SC)

Espressif Systems 260
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.18. EMACMIIDATA_REG (0x1014)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

M
II_

DAT
A

0x00000

15 0

Reset

MII_DATA This field contains the 16-bit data value read from the PHY after a Management Read

operation or the 16-bit data value to be written to the PHY before a Management Write operation.

(R/W)

Espressif Systems 261
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.19. EMACFC_REG (0x1018)

PA
USE_T

IM
E

0x00000

31 16

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

15 6

PLT

0x0

5 4

UPFD

0

3

RFC
E

0

2

TF
CE

0

1

FC
BBA

0

0

Reset

PAUSE_TIME This field holds the value to be used in the Pause Time field in the transmit control

frame. If the Pause Time bits is configured to be double-synchronized to the MII clock domain,

then consecutive writes to this register should be performed only after at least four clock cycles in

the destination clock domain. (R/W)

PLT This field configures the threshold of the Pause timer automatic retransmission of the Pause frame.

The threshold values should be always less than the Pause Time configured in Bits[31:16]. For

example, if PT = 100H (256 slot-times), and PLT = 01, then a second Pause frame is automatically

transmitted at 228 (256-28) slot times after the first Pause frame is transmitted. The following list

provides the threshold values for different values: (R/W)

• 2’b00: The threshold is Pause time minus 4 slot times (PT-4 slot times).

• 2’b01: The threshold is Pause time minus 28 slot times (PT-28 slot times).

• 2’b10: The threshold is Pause time minus 144 slot times (PT-144 slot times).

• 2’b11: The threshold is Pause time minus 256 slot times (PT-256 slot times). The slot time is

defined as the time taken to transmit 512 bits (64 bytes) on the MII interface.

UPFD A pause frame is processed when it has the unique multicast address specified in the IEEE

Std 802.3. When this bit is set, the MAC can also detect Pause frames with unicast address of

the station. This unicast address should be as specified in the EMACADDR0 High Register and

EMACADDR0 Low Register. When this bit is reset, the MAC only detects Pause frames with unique

multicast address. (R/W)

RFCE When this bit is set, the MAC decodes the received Pause frame and disables its transmitter for

a specified (Pause) time. When this bit is reset, the decode function of the Pause frame is disabled.

(R/W)

TFCE In the full-duplex mode, when this bit is set, the MAC enables the flow control operation to

transmit Pause frames. When this bit is reset, the flow control operation in the MAC is disabled,

and the MAC does not transmit any Pause frames. In the half-duplex mode, when this bit is set,

the MAC enables the backpressure operation. When this bit is reset, the backpressure feature is

disabled. (R/W)

Continued on the next page...

Espressif Systems 262
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.19. EMACFC_REG (0x1018)

Continued from the previous page...

FCBBA This bit initiates a Pause frame in the full-duplex mode and activates the backpressure function

in the half-duplex mode if the TFCE bit is set. In the full-duplex mode, this bit should be read as

1’b0 before writing to the Flow Control register. To initiate a Pause frame, the Application must set

this bit to 1’b1. During a transfer of the Control Frame, this bit continues to be set to signify that

a frame transmission is in progress. After the completion of Pause frame transmission, the MAC

resets this bit to 1’b0. The Flow Control register should not be written to until this bit is cleared. In

the half-duplex mode, when this bit is set (and TFCE is set), then backpressure is asserted by the

MAC. During backpressure, when the MAC receives a new frame, the transmitter starts sending

a JAM pattern resulting in a collision. When the MAC is configured for the full-duplex mode, the

BPA is automatically disabled. (R/WS/SC)(FCB)/(R/W)(BPA(backpressure activate))

Espressif Systems 263
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.20. EMACDEBUG_REG (0x1024)

(re
se

rve
d)

0 0 0 0 0 0

31 26

M
TL

TS
FF

S

0

25

M
TL

TF
NES

0

24

(re
se

rve
d)

0

23

M
TL

TF
W

CS

0

22

M
TL

TF
RCS

0x0

21 20

M
ACTP

0

19

M
ACTF

CS

0x0

18 17

M
ACTP

ES

0

16

(re
se

rve
d)

0 0 0 0 0 0

15 10

M
TL

RFF
LS

0x0

9 8

(re
se

rve
d)

0

7

M
TL

RFR
CS

0x0

6 5

M
TL

RFW
CAS

0

4

(re
se

rve
d)

0

3

M
ACRFF

CS

0x0

2 1

M
ACRPES

0

0

Reset

MTLTSFFS When high, this bit indicates that the MTL TxStatus FIFO is full. Therefore, the MTL cannot

accept any more frames for transmission. (RO)

MTLTFNES When high, this bit indicates that the MTL Tx FIFO is not empty and some data is left for

transmission. (RO)

MTLTFWCS When high, this bit indicates that the MTL Tx FIFO Write Controller is active and is trans-

ferring data to the Tx FIFO. (RO)

MTLTFRCS This field indicates the state of the Tx FIFO Read Controller: (RO)

• 2’b00: IDLE state.

• 2’b01: READ state (transferring data to the MAC transmitter).

• 2’b10: Waiting for TxStatus from the MAC transmitter.

• 2’b11: Writing the received TxStatus or flushing the Tx FIFO.

MACTP When high, this bit indicates that the MAC transmitter is in the Pause condition (in the full-

duplex-mode) and hence does not schedule any frame for transmission. (RO)

MACTFCS This field indicates the state of the MAC Transmit Frame Controller module: (RO)

• 2’b00: IDLE state.

• 2’b01: Waiting for status of previous frame or IFG or backoff period to be over.

• 2’b10: Generating and transmitting a Pause frame (in the full-duplex mode).

• 2’b11: Transferring input frame for transmission.

MACTPES When high, this bit indicates that the MAC MII transmit protocol engine is actively trans-

mitting data and is not in the IDLE state. (RO)

MTLRFFLS This field gives the status of the fill-level of the Rx FIFO: (RO)

• 2’b00: Rx FIFO Empty.

• 2’b01: Rx FIFO fill-level below flow-control deactivate threshold.

• 2’b10: Rx FIFO fill-level above flow-control activate threshold.

• 2’b11: Rx FIFO Full.

Continued on the next page...

Espressif Systems 264
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.20. EMACDEBUG_REG (0x1024)

Continued from the previous page...

MTLRFRCS This field gives the state of the Rx FIFO read Controller: (RO)

2’b00: IDLE state.

2’b01: Reading frame data.

2’b10: Reading frame status (or timestamp).

2’b11: Flushing the frame data and status.

MTLRFWCAS When high, this bit indicates that the MTL Rx FIFO Write Controller is active and is

transferring a received frame to the FIFO. (RO)

MACRFFCS When high, this field indicates the active state of the FIFO Read and Write controllers

of the MAC Receive Frame Controller Module. MACRFFCS[1] represents the status of FIFO Read

controller. MACRFFCS[0] represents the status of small FIFO Write controller. (RO)

MACRPES When high, this bit indicates that the MAC MII receive protocol engine is actively receiving

data and not in IDLE state. (RO)

Espressif Systems 265
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.21. PMT_RWUFFR_REG (0x1028)

PM
T_

RW
UFF

R

0 0

31 0

Reset

WKUPPKTFILTER The MSB (31st bit) must be zero. Bit j[30:0] is the byte mask. If Bit 1/2/3/4

(byte number) of the byte mask is set, the CRC block processes the filter 0/1/2/3 Offset + j of the

incoming packet (RWKPTR is 0/1/2/3). (R/W)

• RWKPTR is 0:Filter 0 Byte Mask;

• RWKPTR is 1: Filter 1 Byte Mask;

• RWKPTR is 2: Filter 2 Byte Mask;

• RWKPTR is 3: Filter 3 Byte Mask;

• RWKPTR is 4: Bit 3/11/19/27 specifies the address type, defining the destination address

type of the pattern. When the bit is set, the pattern applies to only multicast packets; when

the bit is reset, the pattern applies only to unicast packet for filter 0/1/2/3. Bit 0/8/16/24 is

the enable bit for filter 0/1/2/3;

• RWKPTR is 5: This filter 0/1/2/3 offset register defines the offset (within the packet) from

which the filter 0/1/2/3 examines the packets;

• RWKPTR is 6: This filter 0 (bit[15:0])/1 (bit[31:16]) CRC16 register contains the CRC16 value

calculated from the pattern and also the byte mask programmed to the wake-up filter register

block; The polynomial:

G(x) = x16 + x15 + x2 + 1.

• RWKPTR is 7: This filter 2 bit[15:0])/3(bit[31:16]) CRC16 register contains the CRC16 value

calculated from the pattern and also the byte mask programmed to the wake-up filter register

block. The polynomial:

G(x) = x16 + x15 + x2 + 1.

Espressif Systems 266
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.22. PMT_CSR_REG (0x102C)

RW
KFIL

TR
ST

0

31

(re
se

rve
d)

0 0

30 29

RW
KPTR

0 0 0 0 0

28 24

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 10

GLB
LU

CAST

00

9

(re
se

rve
d)

0 0

8 7

RW
KPRCVD

0

6

M
GKPRCVD

0

5

(re
se

rve
d)

0 0

4 3

RW
KPKTE

N

0

2

M
GKPKTE

N

0

1

PW
RDW

N

0

0

Reset

RWKFILTRST When this bit is set, it resets the remote RWKPTR register to 3’b000. (R/WS/SC)

RWKPTR The maximum value of the pointer is 7 ,the detail information ,please refer to PMT_RWUFFR.

(RO)

GLBLUCAST When set, enables any unicast packet filtered by the MAC (DAFilter) address recognition

to be a remote wake-up frame. (R/W)

RWKPRCVD When set, this bit indicates the power management event is generated because of the

reception of a remote wake-up frame. This bit is cleared by a Read into this register. (R/SS/RC)

MGKPRCVD When set, this bit indicates that the power management event is generated because of

the reception of a magic packet. This bit is cleared by a Read into this register. (R/SS/RC)

RWKPKTEN hen set, enables generation of a power management event because of remote wake-up

frame reception. (R/W)

MGKPKTEN When set, enables generation of a power management event because of magic packet

reception. (R/W)

PWRDWN hen set, the MAC receiver drops all received frames until it receives the expected magic

packet or remote wake-up frame. This bit must only be set when MGKPKTEN, GLBLUCAST, or

RWKPKTEN bit is set high. (R/WS/SC)

Espressif Systems 267
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.23. EMACLPI_CSR_REG (0x1030)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 20

LP
ITX

A

0

19

(re
se

rve
d)

0

18

PLS

0

17

LP
IEN

0

16

(re
se

rve
d)

0 0 0 0 0 0

15 10

RLP
IS

T

0

9

TL
PIS

T

0

8

(re
se

rve
d)

0

7 4

RLP
IEX

0

3

RLP
IEN

0

2

TL
PIEX

0

1

TL
PIEN

0

0

Reset

LPITXA This bit controls the behavior of the MAC when it is entering or coming out of the LPI mode on

the transmit side.If the LPITXA and LPIEN bits are set to 1, the MAC enters the LPI mode only after

all outstanding frames and pending frames have been transmitted. The MAC comes out of the

LPI mode when the application sends any frame.When this bit is 0, the LPIEN bit directly controls

behavior of the MAC when it is entering or coming out of the LPI mode. (R/W)

PLS This bit indicates the link status of the PHY. When set, the link is considered to be okay (up) and

when reset, the link is considered to be down. (R/W)

LPIEN When set, this bit instructs the MAC Transmitter to enter the LPI state. When reset, this bit

instructs the MAC to exit the LPI state and resume normal transmission.This bit is cleared when

the LPITXA bit is set and the MAC exits the LPI state because of the arrival of a new packet for

transmission. (R/W/SC)

RLPIST When set, this bit indicates that the MAC is receiving the LPI pattern on the MII interface.

(R/W)

TLPIST When set, this bit indicates that the MAC is receiving the LPI pattern on the MII interface.

(R/W)

RLPIEX When set, this bit indicates that the MAC Receiver has stopped receiving the LPI pattern on

the MII interface, exited the LPI state, and resumed the normal reception. This bit is cleared by a

read into this register. (R/SS/RC)

RLPIEN When set, this bit indicates that the MAC Receiver has received an LPI pattern and entered

the LPI state. This bit is cleared by a read into this register. (R/SS/RC)

TLPIEX When set, this bit indicates that the MAC transmitter has exited the LPI state after the user

has cleared the LPIEN bit and the LPI_TW_Timer has expired.This bit is cleared by a read into this

register. (R/SS/RC)

TLPIEN When set, this bit indicates that the MAC Transmitter has entered the LPI state because of

the setting of the LPIEN bit. This bit is cleared by a read into this register. (R/SS/RC)

Espressif Systems 268
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.24. EMACLPITIMERSCONTROL_REG (0x1034)

(re
se

rve
d)

0 0 0 0 0 0

31 26

LP
I_L

S_T
IM

ER

0 x 3 E 8

25 16

LP
I_T

W
_T

IM
ER

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

LPI_LS_TIMER This field specifies the minimum time (in milliseconds) for which the link status from

the PHY should be up (OKAY) before the LPI pattern can be transmitted to the PHY. The MAC

does not transmit the LPI pattern even when the LPIEN bit is set unless the LPI_LS_Timer reaches

the programmed terminal count. The default value of the LPI_LS_Timer is 1000 (1 sec) as defined

in the IEEE standard.(R/W)

LPI_TW_TIMER This field specifies the minimum time (in microseconds) for which the MAC waits after

it stops transmitting the LPI pattern to the PHY and before it resumes the normal transmission. The

TLPIEX status bit is set after the expiry of this timer.(R/W)

Register 10.25. EMACINTS_REG (0x1038)

(re
se

rve
d)

0 0

31 11

LP
IIN

TS

0

10

(re
se

rve
d)

0

9

(re
se

rve
d)

0 0 0 0 0

8 4

PM
TIN

TS

0

3

(re
se

rve
d)

0 0 0

2 0

Reset

LPIINTS When the Energy Efficient Ethernet feature is enabled, this bit is set for any LPI state entry or

exit in the MAC Transmitter or Receiver. This bit is cleared on reading Bit[0] of Register (LPI Control

and Status Register). (RO)

PMTINTS This bit is set when a magic packet or remote wake-up frame is received in the power-down

mode (see Bit[5] and Bit[6] in the PMT Control and Status Register). This bit is cleared when both

Bits[6:5] are cleared because of a read operation to the PMT Control and Status register. This bit

is valid only when you select the optional PMT module during core configuration. (RO)

Espressif Systems 269
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.26. EMACINTMASK_REG (0x103C)

(re
se

rve
d)

0 0

31 11

LP
IIN

TM
ASK

0

10

(re
se

rve
d)

0

9

(re
se

rve
d)

0 0 0 0 0

8 4

PM
TIN

TM
ASK

0

3

(re
se

rve
d)

0 0 0

2 0

Reset

LPIINTMASK When set, this bit disables the assertion of the interrupt signal because of the setting

of the LPI Interrupt Status bit in Register (Interrupt Status Register). (R/W)

PMTINTMASK When set, this bit disables the assertion of the interrupt signal because of the setting

of PMT Interrupt Status bit in Register (Interrupt Status Register). (R/W)

Register 10.27. EMACADDR0HIGH_REG (0x1040)

ADDRESS_E
NABLE

0

0

31

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 16

M
AC_A

DDRESS0_
HI

0x0FFFF

15 0

Reset

ADDRESS_ENABLE0 This bit is always set to 1. (RO)

MAC_ADDRESS0_HI This field contains the upper 16 bits (47:32) of the first 6-byte MAC address.

The MAC uses this field for filtering the received frames and inserting the MAC address in the

Transmit Flow Control (Pause) Frames. (R/W)

Register 10.28. EMACADDR0LOW_REG (0x1044)

0x0FFFFFFFF

31 0

Reset

EMACADDR0LOW_REG This field contains the lower 32 bits of the first 6-byte MAC address. This

is used by the MAC for filtering the received frames and inserting the MAC address in the Transmit

Flow Control (Pause) Frames. (R/W)

Espressif Systems 270
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.29. EMACADDR1HIGH_REG (0x1048)

ADDRESS_E
NABLE

1

0

31

SOURCE_A
DDRESS

0

30

M
ASK_B

YTE
_C

ONTR
OL

0x00

29 24

(re
se

rve
d)

0 0 0 0 0 0 0 0

23 16

M
AC_A

DDRESS1_
HI

0x0FFFF

15 0

Reset

ADDRESS_ENABLE1 When this bit is set, the address filter module uses the second MAC address

for perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.

(R/W)

SOURCE_ADDRESS When this bit is set, the EMACADDR1[47:0] is used to compare with the SA

fields of the received frame. When this bit is reset, the EMACADDR1[47:0] is used to compare with

the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL These bits are mask control bits for comparison of each of the

EMACADDR1 bytes. When set high, the MAC does not compare the corresponding byte of re-

ceived DA or SA with the contents of EMACADDR1 registers. Each bit controls the masking of the

bytes as follows:

• Bit[29]: EMACADDR1 High [15:8].

• Bit[28]: EMACADDR1 High [7:0].

• Bit[27]: EMACADDR1 Low [31:24].

• Bit[24]: EMACADDR1 Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more

bytes of the address. (R/W)

MAC_ADDRESS1_HI This field contains the upper 16 bits, Bits[47:32] of the second 6-byte MAC

address. (R/W)

Register 10.30. EMACADDR1LOW_REG (0x104C)

0x0FFFFFFFF

31 0

Reset

EMACADDR1LOW_REG This field contains the lower 32 bits of the second 6-byte MAC address.

The content of this field is undefined, so the register needs to be configured after the initialization

process. (R/W)

Espressif Systems 271
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.31. EMACADDR2HIGH_REG (0x1050)

ADDRESS_E
NABLE

2

0

31

SOURCE_A
DDRESS2

0

30

M
ASK_B

YTE
_C

ONTR
OL2

0x00

29 24

(re
se

rve
d)

0 0 0 0 0 0 0 0

23 16

M
AC_A

DDRESS2_
HI

0x0FFFF

15 0

Reset

ADDRESS_ENABLE2 When this bit is set, the address filter module uses the third MAC address for

perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.

(R/W)

SOURCE_ADDRESS2 When this bit is set, the EMACADDR2[47:0] is used to compare with the SA

fields of the received frame. When this bit is reset, the EMACADDR2[47:0] is used to compare with

the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL2 These bits are mask control bits for comparison of each of the

EMACADDR2 bytes. When set high, the MAC does not compare the corresponding byte of re-

ceived DA or SA with the contents of EMACADDR2 registers. Each bit controls the masking of the

bytes as follows:

• Bit[29]: EMACADDR2 High [15:8].

• Bit[28]: EMACADDR2 High [7:0].

• Bit[27]: EMACADDR2 Low [31:24].

• Bit[24]: EMACADDR2 Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more

bytes of the address. (R/W)

MAC_ADDRESS2_HI This field contains the upper 16 bits, Bits[47:32] of the third 6-byte MAC ad-

dress. (R/W)

Register 10.32. EMACADDR2LOW_REG (0x1054)

0x0FFFFFFFF

31 0

Reset

EMACADDR2LOW_REG This field contains the lower 32 bits of the third 6-byte MAC address. The

content of this field is undefined, so the register needs to be configured after the initialization pro-

cess. (R/W)

Espressif Systems 272
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.33. EMACADDR3HIGH_REG (0x1058)

ADDRESS_E
NABLE

3

0

31

SOURCE_A
DDRESS3

0

30

M
ASK_B

YTE
_C

ONTR
OL3

0x00

29 24

(re
se

rve
d)

0 0 0 0 0 0 0 0

23 16

M
AC_A

DDRESS3_
HI

0x0FFFF

15 0

Reset

ADDRESS_ENABLE3 When this bit is set, the address filter module uses the fourth MAC address for

perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.

(R/W)

SOURCE_ADDRESS3 When this bit is set, the EMACADDR3[47:0] is used to compare with the SA

fields of the received frame. When this bit is reset, the EMACADDR3[47:0] is used to compare with

the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL3 These bits are mask control bits for comparison of each of the

EMACADDR3 bytes. When set high, the MAC does not compare the corresponding byte of re-

ceived DA or SA with the contents of EMACADDR3 registers. Each bit controls the masking of the

bytes as follows:

• Bit[29]: EMACADDR3 High [15:8].

• Bit[28]: EMACADDR3 High [7:0].

• Bit[27]: EMACADDR3 Low [31:24].

• Bit[24]: EMACADDR3 Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more

bytes of the address. (R/W)

MAC_ADDRESS3_HI This field contains the upper 16 bits, Bits[47:32] of the fourth 6-byte MAC ad-

dress. (R/W)

Register 10.34. EMACADDR3LOW_REG (0x105C)

0x0FFFFFFFF

31 0

Reset

EMACADDR3LOW_REG This field contains the lower 32 bits of the fourth 6-byte MAC address.

The content of this field is undefined, so the register needs to be configured after the initialization

process. (R/W)

Espressif Systems 273
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.35. EMACADDR4HIGH_REG (0x1060)

ADDRESS_E
NABLE

4

0

31

SOURCE_A
DDRESS4

0

30

M
ASK_B

YTE
_C

ONTR
OL4

0x00

29 24

(re
se

rve
d)

0 0 0 0 0 0 0 0

23 16

M
AC_A

DDRESS4_
HI

0x0FFFF

15 0

Reset

ADDRESS_ENABLE4 When this bit is set, the address filter module uses the fifth MAC address for

perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.

(R/W)

SOURCE_ADDRESS4 When this bit is set, the EMACADDR4[47:0] is used to compare with the SA

fields of the received frame. When this bit is reset, the EMACADDR4[47:0] is used to compare with

the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL4 These bits are mask control bits for comparison of each of the

EMACADDR4 bytes. When set high, the MAC does not compare the corresponding byte of re-

ceived DA or SA with the contents of EMACADDR4 registers. Each bit controls the masking of the

bytes as follows:

• Bit[29]: EMACADDR4 High [15:8].

• Bit[28]: EMACADDR4 High [7:0].

• Bit[27]: EMACADDR4 Low [31:24].

• Bit[24]: EMACADDR4 Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more

bytes of the address. (R/W)

MAC_ADDRESS4_HI This field contains the upper 16 bits, Bits[47:32] of the fifth 6-byte MAC ad-

dress. (R/W)

Register 10.36. EMACADDR4LOW_REG (0x1064)

0x0FFFFFFFF

31 0

Reset

EMACADDR4LOW_REG This field contains the lower 32 bits of the fifth 6-byte MAC address. The

content of this field is undefined, so the register needs to be configured after the initialization pro-

cess. (R/W)

Espressif Systems 274
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.37. EMACADDR5HIGH_REG (0x1068)

ADDRESS_E
NABLE

5

0

31

SOURCE_A
DDRESS5

0

30

M
ASK_B

YTE
_C

ONTR
OL5

0x00

29 24

(re
se

rve
d)

0 0 0 0 0 0 0 0

23 16

M
AC_A

DDRESS5_
HI

0x0FFFF

15 0

Reset

ADDRESS_ENABLE5 When this bit is set, the address filter module uses the sixth MAC address for

perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.

(R/W)

SOURCE_ADDRESS5 When this bit is set, the EMACADDR5[47:0] is used to compare with the SA

fields of the received frame. When this bit is reset, the EMACADDR5[47:0] is used to compare with

the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL5 These bits are mask control bits for comparison of each of the

EMACADDR5 bytes. When set high, the MAC does not compare the corresponding byte of re-

ceived DA or SA with the contents of EMACADDR5 registers. Each bit controls the masking of the

bytes as follows:

• Bit[29]: EMACADDR5 High [15:8].

• Bit[28]: EMACADDR5 High [7:0].

• Bit[27]: EMACADDR5 Low [31:24].

• Bit[24]: EMACADDR5 Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more

bytes of the address. (R/W)

MAC_ADDRESS5_HI This field contains the upper 16 bits, Bits[47:32] of the sixth 6-byte MAC ad-

dress. (R/W)

Register 10.38. EMACADDR5LOW_REG (0x106C)

0x0FFFFFFFF

31 0

Reset

EMACADDR5LOW_REG This field contains the lower 32 bits of the sixth 6-byte MAC address. The

content of this field is undefined, so the register needs to be configured after the initialization pro-

cess. (R/W)

Espressif Systems 275
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.39. EMACADDR6HIGH_REG (0x1070)

ADDRESS_E
NABLE

6

0

31

SOURCE_A
DDRESS6

0

30

M
ASK_B

YTE
_C

ONTR
OL6

0x00

29 24

(re
se

rve
d)

0 0 0 0 0 0 0 0

23 16

M
AC_A

DDRESS6_
HI

0x0FFFF

15 0

Reset

ADDRESS_ENABLE6 When this bit is set, the address filter module uses the seventh MAC address

for perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.

(R/W)

SOURCE_ADDRESS6 When this bit is set, the EMACADDR6[47:0] is used to compare with the SA

fields of the received frame. When this bit is reset, the EMACADDR6[47:0] is used to compare with

the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL6 These bits are mask control bits for comparison of each of the

EMACADDR6 bytes. When set high, the MAC does not compare the corresponding byte of re-

ceived DA or SA with the contents of EMACADDR6 registers. Each bit controls the masking of the

bytes as follows:

• Bit[29]: EMACADDR6 High [15:8].

• Bit[28]: EMACADDR6 High [7:0].

• Bit[27]: EMACADDR6 Low [31:24].

• Bit[24]: EMACADDR6 Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more

bytes of the address. (R/W)

MAC_ADDRESS6_HI This field contains the upper 16 bits, Bits[47:32] of the seventh 6-byte MAC

address. (R/W)

Register 10.40. EMACADDR6LOW_REG (0x1074)

0x0FFFFFFFF

31 0

Reset

EMACADDR6LOW_REG This field contains the lower 32 bits of the seventh 6-byte MAC address.

The content of this field is undefined, so the register needs to be configured after the initialization

process. (R/W)

Espressif Systems 276
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.41. EMACADDR7HIGH_REG (0x1078)

ADDRESS_E
NABLE

7

0

31

SOURCE_A
DDRESS7

0

30

M
ASK_B

YTE
_C

ONTR
OL7

0x00

29 24

(re
se

rve
d)

0 0 0 0 0 0 0 0

23 16

M
AC_A

DDRESS7_
HI

0x0FFFF

15 0

Reset

ADDRESS_ENABLE7 When this bit is set, the address filter module uses the eighth MAC address

for perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.

(R/W)

SOURCE_ADDRESS7 When this bit is set, the EMACADDR7[47:0] is used to compare with the SA

fields of the received frame. When this bit is reset, the EMACADDR7[47:0] is used to compare with

the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL7 These bits are mask control bits for comparison of each of the

EMACADDR7 bytes. When set high, the MAC does not compare the corresponding byte of re-

ceived DA or SA with the contents of EMACADDR7 registers. Each bit controls the masking of the

bytes as follows:

• Bit[29]: EMACADDR7 High [15:8].

• Bit[28]: EMACADDR7 High [7:0].

• Bit[27]: EMACADDR7 Low [31:24].

• Bit[24]: EMACADDR7 Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more

bytes of the address. (R/W)

MAC_ADDRESS7_HI This field contains the upper 16 bits, Bits[47:32] of the eighth 6-byte MAC

address. (R/W)

Register 10.42. EMACADDR7LOW_REG (0x107C)

0x0FFFFFFFF

31 0

Reset

EMACADDR7LOW_REG This field contains the lower 32 bits of the eighth 6-byte MAC address.

The content of this field is undefined, so the register needs to be configured after the initialization

process. (R/W)

Espressif Systems 277
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.43. EMACCSTATUS_REG (0x10D8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

SM
ID

RXS

0

16

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0

15 5

(JA
BBER_T

IM
EOUT)

0

4

(re
se

rve
d)

0

3

LIN
K_S

PEED

0

2 1

LIN
K_M

ODE

0

0

Reset

JABBER_TIMEOUT This bit indicates whether there is jabber timeout error (1’b1) in the received

frame. (RO)

LINK_SPEED This bit indicates the current speed of the link: (RO)

• 2’b00: 2.5 MHz.

• 2’b01: 25 MHz.

• 2’b10: 125 MHz.

LINK_MODE This bit indicates the current mode of operation of the link: (RO)

• 1’b0: Half-duplex mode.

• 1’b1: Full-duplex mode.

Register 10.44. EMACWDOGTO_REG (0x10DC)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

PW
DOGEN

0

16

(re
se

rve
d)

0 0

15 14

W
DOGTO

0x0000

13 0

Reset

PWDOGEN When this bit is set and Bit[23] (WD) of EMACCONFIG_REG is reset, the WTO field

(Bits[13:0]) is used as watchdog timeout for a received frame. When this bit is cleared, the watch-

dog timeout for a received frame is controlled by the setting of Bit[23] (WD) and Bit[20] (JE) in

EMACCONFIG_REG. (R/W)

WDOGTO When Bit[16] (PWE) is set and Bit[23] (WD) of EMACCONFIG_REG is reset, this field is used

as watchdog timeout for a received frame. If the length of a received frame exceeds the value of

this field, such frame is terminated and declared as an error frame. (R/W)

Espressif Systems 278
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.45. EMAC_EX_CLKOUT_CONF_REG (0x0000)

(re
se

rve
d)

0 0

31 8

EM
AC_C

LK
_O

UT_
H_D

IV_N
UM

0x02

7 4

EM
AC_C

LK
_O

UT_
DIV_N

UM

0x04

3 0

Reset

EMAC_CLK_OUT_H_DIV_NUM RMII CLK using internal APLL CLK, the half divider number, when

using RMII PHY. (R/W)

EMAC_CLK_OUT_DIV_NUM RMII CLK using internal APLL CLK, the whole divider number, when

using RMII PHY. (R/W)

Register 10.46. EMAC_EX_OSCCLK_CONF_REG (0x0004)

(re
se

rve
d)

0 0 0 0 0 0 0

31 25

EM
AC_O

SC_C
LK

_S
EL

0

24

EM
AC_O

SC_H
_D

IV_N
UM

_1
00

M

0

23 18

EM
AC_O

SC_D
IV_N

UM
_1

00
M

1

17 12

EM
AC_O

SC_H
_D

IV_N
UM

_1
0M

9

11 6

EM
AC_O

SC_D
IV_N

UM
_1

0M

19

5 0

Reset

EMAC_OSC_CLK_SEL Ethernet work using external PHY output clock or not for RMII CLK, when

using RMII PHY. When this bit is set to 1, external PHY CLK is used. When this bit is set to 0, APLL

CLK is used. (R/W)

EMAC_OSC_H_DIV_NUM_100M RMII/MII half-integer divider, when register

EMAC_EX_CLKOUT_CONF clock divider’s speed is 100M. (R/W)

EMAC_OSC_DIV_NUM_100M RMII/MII whole-integer divider, when register

EMAC_EX_CLKOUT_CONF clock divider’s speed is 100M. (R/W)

EMAC_OSC_H_DIV_NUM_10M RMII/MII half-integer divider, when register

EMAC_EX_CLKOUT_CONF clock divider’s speed is 10M. (R/W)

EMAC_OSC_DIV_NUM_10M RMII/MII whole-integer divider, when register

EMAC_EX_CLKOUT_CONF clock divider’s speed is 10M. (R/W)

Espressif Systems 279
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

10 Ethernet Media Access Controller (MAC)

Register 10.47. EMAC_EX_CLK_CTRL_REG (0x0008)

(re
se

rve
d)

0 0

31 6

(re
se

rve
d)

0

5

EM
AC_M

II_
CLK

_R
X_

EN

0

4

EM
AC_M

II_
CLK

_T
X_

EN

0

3

(re
se

rve
d)

0

2

EM
AC_IN

T_
OSC_E

N

0

1

EM
AC_E

XT
_O

SC_E
N

0

0

Reset

EMAC_MII_CLK_RX_EN Enable Ethernet RX CLK. (R/W)

EMAC_MII_CLK_TX_EN Enable Ethernet TX CLK. (R/W)

EMAC_INT_OSC_EN Using internal APLL CLK in RMII PHY mode. (R/W)

EMAC_EXT_OSC_EN Using external APLL CLK in RMII PHY mode. (R/W)

Register 10.48. EMAC_EX_PHYINF_CONF_REG (0x000C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

EM
AC_P

HY_IN
TF

_S
EL

0 0 0

15 13

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

12 0

Reset

EMAC_PHY_INTF_SEL The PHY interface selected. 0x0: PHY MII, 0x4: PHY RMII. (R/W)

Register 10.49. EMAC_PD_SEL_REG (0x0010)

(re
se

rve
d)

0 0

31 2

EM
AC_R

AM
_P

D_E
N

0

1 0

Reset

EMAC_RAM_PD_EN Ethernet RAM power-down enable signal. Bit[0]: TX SRAM; Bit[1]: RX SRAM.

Setting the bit to 1 powers down the RAM. (R/W)

Espressif Systems 280
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

11 I2C Controller (I2C)

11.1 Overview
An I2C (Inter-Integrated Circuit) bus can be used for communication with several external devices connected to the

same bus as ESP32. The ESP32 has dedicated hardware to communicate with peripherals on the I2C bus.

11.2 Features
The I2C controller has the following features:

• Supports both master mode and slave mode

• Supports multi-master and multi-slave communication

• Supports standard mode (100 kbit/s)

• Supports fast mode (400 kbit/s)

• Supports 7-bit addressing and 10-bit addressing

• Supports continuous data transmission with disabled Serial Clock Line (SCL)

• Supports programmable digital noise filter

11.3 Functional Description
11.3.1 Introduction
I2C is a two-wire bus, consisting of an SDA and an SCL line. These lines are configured to open the drain output.

The lines are shared by two or more devices: usually one or more masters and one or more slaves.

Communication starts when a master sends out a start condition: it will pull the SDA line low, and will then pull

the SCL line high. It will send out nine clock pulses over the SCL line. The first eight pulses are used to shift out a

byte consisting of a 7-bit address and a read/write bit. If a slave with this address is active on the bus, the slave

can answer by pulling the SDA low on the ninth clock pulse. The master can then send out more 9-bit clock pulse

clusters and, depending on the read/write bit sent, the device or the master will shift out data on the SDA line, with

the other side acknowledging the transfer by pulling the SDA low on the ninth clock pulse. During data transfer,

the SDA line changes only when the SCL line is low. When the master has finished the communication, it will send

a stop condition on the bus by raising SDA, while SCL will already be high.

The ESP32 I2C peripheral can handle the I2C protocol, freeing up the processor cores for other tasks.

Espressif Systems 281
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

11.3.2 Architecture
An I2C controller can operate either in master mode or slave mode. The I2C_MS_MODE register is used to

select the mode. Figure 11-1 shows the I2C Master architecture, while Figure 11-2 shows the I2C Slave architec-

ture.

Figure 111. I2C Master Architecture

Figure 112. I2C Slave Architecture

The I2C controller contains the following units:

• RAM, the size of which is 32 x 8 bits, and it is directly mapped onto the address space of the CPU cores,

starting at address REG_I2C_BASE+0x100. Each byte of I2C data is stored in a 32-bit word of memory (so,

the first byte is at +0x100, the second byte at +0x104, the third byte at +0x108, etc.) Users need to set

register I2C_NONFIFO_EN.

• A CMD_Controller and 16 command registers (cmd0 ~ cmd15), which are used by the I2C Master to control

data transmission. One command at a time is executed by the I2C controller.

• SCL_FSM: A state machine that controls the SCL clock. The I2C_SCL_HIGH_PERIOD_REG and I2C_SCL_

LOW_PERIOD_REG registers are used to configure the frequency and duty cycle of the signal on the SCL

line.

• SDA_FSM: A state machine that controls the SDA data line.

Espressif Systems 282
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

• DATA_Shifter which converts the byte data to an outgoing bitstream, or converts an incoming bitstream to

byte data. I2C_RX_LSB_FIRST and I2C_TX_LSB_FIRST can be used for configuring whether the LSB or

MSB is stored or transmitted first.

• SCL_Filter and SDA_Filter: Input noise filter for the I2C_Slave. The filter can be enabled or disabled by

configuring I2C_SCL_FILTER_EN and I2C_SDA_FILTER_EN. The filter can remove line glitches with pulse

width less than I2C_SCL_FILTER_THRES and I2C_SDA_FILTER_THRES ABP clock cycles.

11.3.3 I2C Bus Timing

Figure 113. I2C Sequence Chart

Figure 11-3 is an I2C sequence chart. When the I2C controller works in master mode, SCL is an output signal.

In contrast, when the I2C controller works in slave mode, the SCL becomes an input signal. The values assigned

to I2C_SDA_HOLD_REG and I2C_SDA_SAMPLE_REG are still valid in slave mode. Users need to configure the

values of I2C_SDA_HOLD_TIME and I2C_SDA_SAMPLE_TIME, according to the host characteristics, for the I2C

slave to receive data properly. Table 11-1 shows available settings of SCL low and high level cycles when SCL is

configured to direct output mode. The settings determine the SCL output frequency fscl.

Table 111. SCL Frequency Configuration

I2C_SCL_FILTER_EN I2C_SCL_FILTER_THRES SCL_Low_Level_Cycles SCL_High_Level_Cycles

0 Don’t care I2C_SCL_HIGH_PERIOD+7

1
[0,2] I2C_SCL_LOW_PERIOD+1 I2C_SCL_HIGH_PERIOD+8

[3,7] I2C_SCL_HIGH_PERIOD+6+I2C_SCL_FILTER_THRES

fscl =
80 MHz

SCL_Low_Level_Cycles + SCL_High_Level_Cycles

According to the I2C protocol, each transmission of data begins with a START condition and ends with a STOP

condition. Data is transmitted by one byte at a time, and each byte has an ACK bit. The receiver informs the

transmitter to continue transmission by pulling down SDA, which indicates an ACK. The receiver can also indicate

it wants to stop further transmission by pulling up the SDA line, thereby not indicating an ACK.

Figure 11-3 also shows the registers that can configure the START bit, STOP bit, SDA hold time, and SDA sample

time.

Notice: If the I2C pads are configured in open-drain mode, it will take longer for the signal lines to transition from

a low level to a high level. The transition duration is determined together by the pull-up resistor and capacitor. The

output frequency of SCL is relatively low in open-drain mode.

Espressif Systems 283
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

11.3.4 I2C cmd Structure

Figure 114. Structure of The I2C Command Register

The Command register is active only in I2C master mode, with its internal structure shown in Figure 11-4.

CMD_DONE: The CMD_DONE bit of every command can be read by software to tell if the command has been

handled by hardware.

op_code: op_code is used to indicate the command. The I2C controller supports four commands:

• RSTART: op_code = 0 is the RSTART command to control the transmission of a START or RESTART I2C

condition.

• WRITE: op_code = 1 is the WRITE command for the I2C Master to transmit data.

• READ: op_code = 2 is the READ command for the I2C Master to receive data.

• STOP: op_code = 3 is the STOP command to control the transmission of a STOP I2C condition.

• END: op_code = 4 is the END command for continuous data transmission. When the END command is

given, SCL is temporarily disabled to allow software to reload the command and data registers for subsequent

events before resuming. Transmission will then continue seamlessly.

A complete data transmission process begins with an RSTART command, and ends with a STOP command.

ack_value: When receiving data, this bit is used to indicate whether the receiver will send an ACK after this byte

has been received.

ack_exp: This bit is to set an expected ACK value for the transmitter.

ack_check_en: When transmitting a byte, this bit enables checking the ACK value received against the ack_exp

value. Checking is enabled by 1, while 0 disables it.

byte_num: This register specifies the length of data (in bytes) to be read or written. The maximum length is 255,

while the minimum is 1. When the op_code is RSTART, STOP or END, this value is meaningless.

Espressif Systems 284
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

11.3.5 I2C Master Writes to Slave

Figure 115. I2C Master Writes to Slave with 7bit Address

In all subsequent figures that illustrate I2C transactions and behavior, both the I2C Master and Slave devices are

assumed to be ESP32 I2C peripheral controllers for ease of demonstration.

Figure 11-5 shows the I2C Master writing N bytes of data to an I2C Slave. According to the I2C protocol, the

first byte is the Slave address. As shown in the diagram, the first byte of the RAM unit has been populated with

the Slave’s 7-bit address plus the 1-bit read/write flag. In this case, the flag is zero, indicating a write operation.

The rest of the RAM unit holds N bytes of data ready for transmission. The cmd unit has been populated with the

sequence of commands for the operation.

For the I2C master to begin an operation, the bus must not be busy, i.e. the SCL line must not be pulled low by

another device on the I2C bus. The I2C operation can only begin when the SCL line is released (made high) to

indicate that the I2C bus is free. After the cmd unit and data are prepared, I2C_TRANS_START bit in I2C_CTR_REG

must be set to begin the configured I2C Master operation. The I2C Master then initiates a START condition on the

bus and progresses to the WRITE command which will fetch N+1 bytes from RAM and send them to the Slave.

The first of these bytes is the address byte.

When the transmitted data size exceeds I2C_NONFIFO_TX_THRES, an I2C_TX_SEND_EMPTY_INT interrupt will

be generated. After detecting the interrupt, software can read TXFIFO_END_ADDR in register RXFIFO_ST_REG,

get the last address of the data in the RAM and refresh the old data in the RAM. TXFIFO_END_ADDR will be

refreshed each time interrupt I2C_TX_SEND_EMPTY_INT or I2C_TRANS_COMPLETE_INT occurs.

When ack_check_en is set to 1, the Master will check the ACK value each time it sends a data byte. If the ACK

value received does not match ack_exp (the expected ACK value) in the WRITE command, then the Master will

generate an I2C_ACK_ERR_INT interrupt and stop the transmission.

During transmission, when the SCL is high, if the input value and output value of SDA do not match, then the

Master will generate an I2C_ARBITRATION_LOST_INT interrupt. When the transmission is finished, the Master will

generate an I2C_TRANS_COMPLETE_INT interrupt.

After detecting the START bit sent from the Master, the Slave will start receiving the address and comparing it

to its own. If the address does not match I2C_SLAVE_ADDR, then the Slave will ignore the rest of the transmis-

sion. If they do match, the Slave will store the rest of the data into RAM in the receiving order. When the data

size exceeds I2C_NONFIFO_RX_THRES, an I2C_RX_REC_FULL_INT interrupt is generated. After detecting the

Espressif Systems 285
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

interrupt, software will get the starting and ending addresses in the RAM by reading RXFIFO_START_ADDR and

RXFIFO_END_ADDR bits in register RXFIFO_ST_REG, and fetch the data for further processing. Register RX-

FIFO_START_ADDR is refreshed only once during each transmission, while RXFIFO_END_ADDR gets refreshed

every time when either I2C_RX_REC_FULL_INT or I2C_TRANS_COMPLETE_INT interrupt is generated.

When the END command is not used, the I2C master can transmit up to (14*255-1) bytes of valid data, and the

cmd unit is populated with RSTART + 14 WRITE + 1 STOP.

There are several special cases to be noted:

• If the Master fails to send a STOP bit, because the SDA is pulled low by other devices, then the Master needs

to be reset.

• If the Master fails to send a START bit, because the SDA or SCL is pulled low by other devices, then the

Master needs to be reset. It is recommended that the software uses a timeout period to implement the reset.

• If the SDA is pulled low by the Slave during transmission, the Master can simply release it by sending it nine

SCL clock signals at the most.

It is important to note that the behaviour of another I2C master or slave device on the bus may not always be similar

to that of the ESP32 I2C peripheral in the master- or slave-mode operation described above. Please consult the

datasheets of the respective I2C devices to ensure proper operation under all bus conditions.

The ESP32 I2C controller uses 7-bit addressing by default. However, 10-bit addressing can also be used. In

the master, this is done by sending a second I2C address byte after the first address byte. In the slave, the

I2C_SLAVE_ADDR_10BIT_EN bit in I2C_SLAVE_ADDR_REG can be set to activate a 10-bit addressing mode.

I2C_SLAVE_ADDR is used to configure the I2C Slave address, as per usual. Figure 11-6 shows the equivalent of

I2C Master operation writing N-bytes of data to an I2C Slave with a 10-bit address. Since 10-bit Slave addresses

require an extra address byte, both the byte_num field of the WRITE command and the number of total bytes in

RAM increase by one.

Figure 116. I2C Master Writes to Slave with 10bit Address

When the END command is not used, the I2C master can transmit up to (14*255-2) bytes of valid data to Slave

with 10-bit address.

One way many I2C Slave devices are designed is by exposing a register block containing various settings. The

I2C Master can write one or more of these registers by sending the Slave a register address. The ESP32 I2C Slave

controller has hardware support for such a scheme.

Espressif Systems 286
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

Specifically, on the Slave, I2C_FIFO_ADDR_CFG_EN can be set so that the I2C Master can write to a specified

register address inside the I2C Slave memory block. Figure 11-7 shows the Master writing N-bytes of data byte0 ~
byte(N-1) from the RAM unit to register address M (determined by addrM in RAM unit) with the Slave. In this mode,

Slave can receive up to 32 bytes of valid data. When Master needs to transmit extra amount of data, segmented

transmission can be enabled.

Figure 117. I2C Master Writes to addrM in RAM of Slave with 7bit Address

If the data size exceeds the capacity of a 14-byte read/write cmd, the END command can be called to enable

segmented transmission. Figure 11-8 shows the Master writing data to the Slave, in three segments. The first

segment shows the configuration of the Master’s commands and the preparation of data in the RAM unit. When the

I2C_TRANS_START bit is enabled, the Master starts transmission. After executing the END command, the Master

will turn off the SCL clock and pull the SCL low to reserve the bus and prevent any other device from transacting

on the bus. The controller will generate an I2C_END_DETECT_INT interrupt to notify the software.

Espressif Systems 287
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

Figure 118. Master Writes to Slave with 7bit Address in Three Segments

After detecting an I2C_END_DETECT_INT interrupt, the software can refresh the contents of the cmd and RAM

blocks, as shown in the second segment. Subsequently, it should clear the I2C_END_DETECT_INT interrupt and

resume the transaction by setting the I2C_TRANS_START bit. To stop the transaction, it should configure the cmd,

as the third segment shows, and enable the I2C_TRANS_START bit to generate a STOP bit, after detecting the

I2C_END_DETECT_INT interrupt.

Please note that the other masters on the bus will be starved of bus time between two segments. The bus is only

released after a STOP signal is sent.

Note: When there are more than three segments, the address of an END command in the cmd should not be

altered into another command by the next segment.

Espressif Systems 288
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

11.3.6 Master Reads from Slave

Figure 119. Master Reads from Slave with 7bit Address

Figure 11-9 shows the Master reading N-bytes of data from an Slave with a 7-bit address. At first, the Master

needs to send the address of the Slave, so cmd1 is a WRITE command. The byte that this command sends is

the slave address plus the R/W flag, which in this case is 1 and, therefore, indicates that this is going to be a

read operation. The Slave starts to send data to the Master if the addresses match. The Master will return ACK,

according to the ack_value in the READ command, upon receiving every byte. As can be seen from Figure 11-9,

READ is divided into two segments. The Master replies ACK to N-1 bytes in cmd2 and does not reply ACK to the

single byte READ command in cmd3, i.e., the last transmitted data. Users can configure it as they wish.

When storing the received data, Master will start from the first address in RAM. Byte0 (Slave address + 1-bit R/W

marker bit) will be overwritten.

When the END command is not used, the Master can receive up to (13*255) bytes of valid data. The cmd unit is

populated with RSTART + 1 WRITE + 13 READ + 1 STOP.

Figure 11-10 shows the Master reading data from a slave with a 10-bit address. This mode can be enabled

by setting I2C_SLAVE_ADDR_10BIT_EN bit and preparing data to be sent in the slave RAM. In the Master, two

bytes of RAM are used for a 10-bit address. Finally, the I2C _TRANS_START bit must be set to enable one

transaction.

Espressif Systems 289
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

Figure 1110. Master Reads from Slave with 10bit Address

Figure 11-11 shows the Master reading data from a specified address in the Slave. This mode can be enabled

by setting I2C_FIFO_ADDR_CFG_EN and preparing the data to be read by the master in the Slave RAM block.

Subsequently, the address of the Slave and the address of the specified register (that is, M) have to be determined

by the master. Finally, the I2C_TRANS_START bit must be set in the Master to initiate the read operation, following

which the Slave will fetch N bytes of data from RAM and send them to the Master.

Figure 1111. Master Reads N Bytes of Data from addrM in Slave with 7bit Address

Figure 11-12 shows the Master reading N+M bytes of data in three segments from the Slave. The first segment

shows the configuration of the cmd and the preparation of data in the Slave RAM. When the I2C_TRANS_START

bit is enabled, the Master starts the operation. The Master will refresh the cmd after executing the END com-

mand. It will clear the I2C_END_DETECT_INT interrupt, set the I2C_TRANS_START bit and resume the transac-

tion. To stop the transaction, the Master will configure the cmd, as the third segment shows, after detecting the

I2C_END_DETECT_INT interrupt. After setting the I2C_TRANS_START bit, Master will send a STOP bit to stop

the transaction.

Espressif Systems 290
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

Figure 1112. Master Reads from Slave with 7bit Address in Three Segments

11.3.7 Interrupts
• I2C_TX_SEND_EMPTY_INT: Triggered when the Master or Slave has sent nonfifo_tx_thres bytes of data.

• I2C_RX_REC_FULL_INT: Triggered when the Master or Slave has received nonfifo_rx_thres bytes of data.

• I2C_ACK_ERR_INT: Triggered when the Master receives an ACK that is not as expected, or when the Slave

receives an ACK whose value is 1.

• I2C_TRANS_START_INT: Triggered when the Master or Slave sends the START bit.

• I2C_TIME_OUT_INT: Triggered when the SCL stays high or low for more than I2C_TIME_OUT clocks.

• I2C_TRANS_COMPLETE_INT: Triggered when the Master or Slave detects a STOP bit.

• I2C_MASTER_TRAN_COMP_INT: Triggered when the Master sends or receives a byte.

• I2C_ARBITRATION_LOST_INT: Triggered when the Master’s SCL is high, while the output value and input

value of the SDA do not match.

• I2C_END_DETECT_INT: Triggered when the Master deals with the END command.

Espressif Systems 291
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

11.4 Register Summary

Name Description I2C0 I2C1 Acc

Configuration registers

I2C_SLAVE_ADDR_REG Configures the I2C slave address 0x3FF53010 0x3FF67010 R/W

I2C_RXFIFO_ST_REG FIFO status register 0x3FF53014 0x3FF67014 RO

I2C_FIFO_CONF_REG FIFO configuration register 0x3FF53018 0x3FF67018 R/W

Timing registers

I2C_SDA_HOLD_REG
Configures the hold time after a negative

SCL edge
0x3FF53030 0x3FF67030 R/W

I2C_SDA_SAMPLE_REG
Configures the sample time after a positive

SCL edge
0x3FF53034 0x3FF67034 R/W

I2C_SCL_LOW_PERIOD_REG
Configures the low level width of the SCL

clock
0x3FF53000 0x3FF67000 R/W

I2C_SCL_HIGH_PERIOD_REG
Configures the high level width of the SCL

clock
0x3FF53038 0x3FF67038 R/W

I2C_SCL_START_HOLD_REG
Configures the delay between the SDA and

SCL negative edge for a start condition
0x3FF53040 0x3FF67040 R/W

I2C_SCL_RSTART_SETUP_REG
Configures the delay between the positive

edge of SCL and the negative edge of SDA
0x3FF53044 0x3FF67044 R/W

I2C_SCL_STOP_HOLD_REG
Configures the delay after the SCL clock

edge for a stop condition
0x3FF53048 0x3FF67048 R/W

I2C_SCL_STOP_SETUP_REG
Configures the delay between the SDA and

SCL positive edge for a stop condition
0x3FF5304C 0x3FF6704C R/W

Filter registers

I2C_SCL_FILTER_CFG_REG SCL filter configuration register 0x3FF53050 0x3FF67050 R/W

I2C_SDA_FILTER_CFG_REG SDA filter configuration register 0x3FF53054 0x3FF67054 R/W

Interrupt registers

I2C_INT_RAW_REG Raw interrupt status 0x3FF53020 0x3FF67020 RO

I2C_INT_CLR_REG Interrupt clear bits 0x3FF53024 0x3FF67024 WO

I2C_INT_ENA_REG Interrupt enable bits 0x3FF53028 0x3FF67028 R/W

I2C_INT_STATUS_REG Interrupt status bits 0x3FF5302C 0x3FF6702C RO

Command registers

I2C_COMD0_REG I2C command register 0 0x3FF53058 0x3FF67058 R/W

I2C_COMD1_REG I2C command register 1 0x3FF5305C 0x3FF6705C R/W

I2C_COMD2_REG I2C command register 2 0x3FF53060 0x3FF67060 R/W

I2C_COMD3_REG I2C command register 3 0x3FF53064 0x3FF67064 R/W

I2C_COMD4_REG I2C command register 4 0x3FF53068 0x3FF67068 R/W

I2C_COMD5_REG I2C command register 5 0x3FF5306C 0x3FF6706C R/W

I2C_COMD6_REG I2C command register 6 0x3FF53070 0x3FF67070 R/W

I2C_COMD7_REG I2C command register 7 0x3FF53074 0x3FF67074 R/W

I2C_COMD8_REG I2C command register 8 0x3FF53078 0x3FF67078 R/W

I2C_COMD9_REG I2C command register 9 0x3FF5307C 0x3FF6707C R/W

I2C_COMD10_REG I2C command register 10 0x3FF53080 0x3FF67080 R/W

I2C_COMD11_REG I2C command register 11 0x3FF53084 0x3FF67084 R/W

Espressif Systems 292
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

Name Description I2C0 I2C1 Acc

I2C_COMD12_REG I2C command register 12 0x3FF53088 0x3FF67088 R/W

I2C_COMD13_REG I2C command register 13 0x3FF5308C 0x3FF6708C R/W

I2C_COMD14_REG I2C command register 14 0x3FF53090 0x3FF67090 R/W

I2C_COMD15_REG I2C command register 15 0x3FF53094 0x3FF67094 R/W

Espressif Systems 293
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

11.5 Registers
The addresses in parenthesis besides register names are the register addresses relative to the I2C base address

provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register ad-

dresses are listed in Section 11.4 Register Summary.

Register 11.1. I2C_SCL_LOW_PERIOD_REG (0x0000)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

I2C
_S

CL_
LO

W
_P

ERIO
D

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

I2C_SCL_LOW_PERIOD This register is used to configure for how long SCL remains low in master

mode, in APB clock cycles. (R/W)

Register 11.2. I2C_CTR_REG (0x0004)

(re
se

rve
d)

0 0

31 8

I2C
_R

X_
LS

B_F
IR

ST

0

7

I2C
_T

X_
LS

B_F
IR

ST

0

6

I2C
_T

RANS_S
TA

RT

0

5

I2C
_M

S_M
ODE

0

4

(re
se

rve
d)

0

3

I2C
_S

AM
PLE

_S
CL_

LE
VEL

0

2

I2C
_S

CL_
FO

RCE_O
UT

1

1

I2C
_S

DA_F
ORCE_O

UT

1

0

Reset

I2C_RX_LSB_FIRST This bit is used to control the storage mode for received data. (R/W)

1: receive data from the least significant bit;

0: receive data from the most significant bit.

I2C_TX_LSB_FIRST This bit is used to control the sending mode for data needing to be sent. (R/W)

1: send data from the least significant bit;

0: send data from the most significant bit.

I2C_TRANS_START Set this bit to start sending the data in txfifo. (R/W)

I2C_MS_MODE Set this bit to configure the module as an I2C Master. Clear this bit to configure the

module as an I2C Slave. (R/W)

I2C_SAMPLE_SCL_LEVEL 1: sample SDA data on the SCL low level; 0: sample SDA data on the

SCL high level. (R/W)

I2C_SCL_FORCE_OUT 0: direct output; 1: open drain output. (R/W)

I2C_SDA_FORCE_OUT 0: direct output; 1: open drain output. (R/W)

Espressif Systems 294
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

Register 11.3. I2C_SR_REG (0x0008)

(re
se

rve
d)

0

31

I2C
_S

CL_
STA

TE
_L

AST

0 0 0

30 28

(re
se

rve
d)

0

27

I2C
_S

CL_
M

AIN
_S

TA
TE

_L
AST

0 0 0

26 24

I2C
_T

XF
IFO

_C
NT

0 0 0 0 0 0

23 18

(re
se

rve
d)

0 0 0 0

17 14

I2C
_R

XF
IFO

_C
NT

0 0 0 0 0 0

13 8

(re
se

rve
d)

0

7

I2C
_B

YTE
_T

RANS

0

6

I2C
_S

LA
VE_A

DDRESSED

0

5

I2C
_B

US_B
USY

0

4

I2C
_A

RB_L
OST

0

3

I2C
_T

IM
E_O

UT

0

2

I2C
_S

LA
VE_R

W

0

1

I2C
_A

CK_R
EC

0

0

Reset

I2C_SCL_STATE_LAST This field indicates the states of the state machine used to produce SCL.

(RO)

0: Idle; 1: Start; 2: Negative edge; 3: Low; 4: Positive edge; 5: High; 6: Stop

I2C_SCL_MAIN_STATE_LAST This field indicates the states of the I2C module state machine. (RO)

0: Idle; 1: Address shift; 2: ACK address; 3: Rx data; 4: Tx data; 5: Send ACK; 6: Wait ACK

I2C_TXFIFO_CNT This field stores the amount of received data in RAM. (RO)

I2C_RXFIFO_CNT This field represents the amount of data needed to be sent. (RO)

I2C_BYTE_TRANS This field changes to 1 when one byte is transferred. (RO)

I2C_SLAVE_ADDRESSED When configured as an I2C Slave, and the address sent by the master is

equal to the address of the slave, then this bit will be of high level. (RO)

I2C_BUS_BUSY 1: the I2C bus is busy transferring data; 0: the I2C bus is in idle state. (RO)

I2C_ARB_LOST When the I2C controller loses control of SCL line, this register changes to 1. (RO)

I2C_TIME_OUT When the I2C controller takes more than I2C_TIME_OUT clocks to receive a data bit,

this field changes to 1. (RO)

I2C_SLAVE_RW When in slave mode, 1: master reads from slave; 0: master writes to slave. (RO)

I2C_ACK_REC This register stores the value of the received ACK bit. (RO)

Register 11.4. I2C_TO_REG (0x000c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

I2C
_T

IM
E_O

UT_
REG

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

I2C_TIME_OUT_REG This register is used to configure the timeout for receiving a data bit in APB

clock cycles. (R/W)

Espressif Systems 295
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

Register 11.5. I2C_SLAVE_ADDR_REG (0x0010)

I2C
_S

LA
VE_A

DDR_1
0B

IT_
EN

0

31

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 15

I2C
_S

LA
VE_A

DDR

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0

Reset

I2C_SLAVE_ADDR_10BIT_EN This field is used to enable the slave 10-bit addressing mode in master

mode. (R/W)

I2C_SLAVE_ADDR When configured as an I2C Slave, this field is used to configure the slave address.

(R/W)

Register 11.6. I2C_RXFIFO_ST_REG (0x0014)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

I2C
_R

XF
IFO

_T
XF

IFO
_E

ND_A
DDR

0 0 0 0 0

19 15

I2C
_R

XF
IFO

_T
XF

IFO
_S

TA
RT_

ADDR

0 0 0 0 0

14 10

I2C
_R

XF
IFO

_E
ND_A

DDR

0 0 0 0 0

9 5

I2C
_R

XF
IFO

_S
TA

RT_
ADDR

0 0 0 0 0

4 0

Reset

I2C_TXFIFO_END_ADDR This is the offset address of the last sent data, as described

in nonfifo_tx_thres register. The value refreshes when I2C_TX_SEND_EMPTY_INT or

I2C_TRANS_COMPLETE_INT interrupt is generated. (RO)

I2C_TXFIFO_START_ADDR This is the offset address of the first sent data, as described in non-

fifo_tx_thres register. (RO)

I2C_RXFIFO_END_ADDR This is the offset address of the last received data, as de-

scribed in nonfifo_rx_thres_register. This value refreshes when I2C_RX_REC_FULL_INT or

I2C_TRANS_COMPLETE_INT interrupt is generated. (RO)

I2C_RXFIFO_START_ADDR This is the offset address of the last received data, as described in non-

fifo_rx_thres_register. (RO)

Espressif Systems 296
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

Register 11.7. I2C_FIFO_CONF_REG (0x0018)

(re
se

rve
d)

0 0 0 0 0 0

31 26

I2C
_N

ONFIF
O_T

X_
TH

RES

0x15

25 20

I2C
_N

ONFIF
O_R

X_
TH

RES

0x15

19 14

(re
se

rve
d)

0 0

13 12

I2C
_F

IFO
_A

DDR_C
FG

_E
N

0

11

I2C
_N

ONFIF
O_E

N

0

10

Reset

I2C_NONFIFO_TX_THRES When I2C sends more than nonfifo_tx_thres bytes of data, it will generate

a tx_send_empty_int_raw interrupt and update the current offset address of the sent data. (R/W)

I2C_NONFIFO_RX_THRES When I2C receives more than nonfifo_rx_thres bytes of data, it will gen-

erate a rx_send_full_int_raw interrupt and update the current offset address of the received data.

(R/W)

I2C_FIFO_ADDR_CFG_EN When this bit is set to 1, the byte received after the I2C address byte

represents the offset address in the I2C Slave RAM. (R/W)

I2C_NONFIFO_EN Set this bit to enable APB nonfifo access. (R/W)

Espressif Systems 297
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

Register 11.8. I2C_INT_RAW_REG (0x0020)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

I2C
_T

X_
SEND_E

M
PTY

_IN
T_

RAW

0

12

I2C
_R

X_
REC_F

ULL
_IN

T_
RAW

0

11

I2C
_A

CK_E
RR_IN

T_
RAW

0

10

I2C
_T

RANS_S
TA

RT_
IN

T_
RAW

0

9

I2C
_T

IM
E_O

UT_
IN

T_
RAW

0

8

I2C
_T

RANS_C
OM

PLE
TE

_IN
T_

RAW

0

7

I2C
_M

ASTE
R_T

RAN_C
OM

P_IN
T_

RAW

0

6

I2C
_A

RBITR
AT

IO
N_L

OST_
IN

T_
RAW

0

5

I2C
_E

ND_D
ETE

CT_
IN

T_
RAW

0

3

Reset

I2C_TX_SEND_EMPTY_INT_RAW The raw interrupt status bit for the I2C_TX_SEND_EMPTY_INT

interrupt. (RO)

I2C_RX_REC_FULL_INT_RAW The raw interrupt status bit for the I2C_RX_REC_FULL_INT interrupt.

(RO)

I2C_ACK_ERR_INT_RAW The raw interrupt status bit for the I2C_ACK_ERR_INT interrupt. (RO)

I2C_TRANS_START_INT_RAW The raw interrupt status bit for the I2C_TRANS_START_INT interrupt.

(RO)

I2C_TIME_OUT_INT_RAW The raw interrupt status bit for the I2C_TIME_OUT_INT interrupt. (RO)

I2C_TRANS_COMPLETE_INT_RAW The raw interrupt status bit for the

I2C_TRANS_COMPLETE_INT interrupt. (RO)

I2C_MASTER_TRAN_COMP_INT_RAW The raw interrupt status bit for the

I2C_MASTER_TRAN_COMP_INT interrupt. (RO)

I2C_ARBITRATION_LOST_INT_RAW The raw interrupt status bit for the

I2C_ARBITRATION_LOST_INT interrupt. (RO)

I2C_END_DETECT_INT_RAW The raw interrupt status bit for the I2C_END_DETECT_INT interrupt.

(RO)

Espressif Systems 298
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

Register 11.9. I2C_INT_CLR_REG (0x0024)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

I2C
_T

X_
SEND_E

M
PTY

_IN
T_

CLR

0

12

I2C
_R

X_
REC_F

ULL
_IN

T_
CLR

0

11

I2C
_A

CK_E
RR_IN

T_
CLR

0

10

I2C
_T

RANS_S
TA

RT_
IN

T_
CLR

0

9

I2C
_T

IM
E_O

UT_
IN

T_
CLR

0

8

I2C
_T

RANS_C
OM

PLE
TE

_IN
T_

CLR

0

7

I2C
_M

ASTE
R_T

RAN_C
OM

P_IN
T_

CLR

0

6

I2C
_A

RBITR
AT

IO
N_L

OST_
IN

T_
CLR

0

5

I2C
_E

ND_D
ETE

CT_
IN

T_
CLR

0

3

Reset

I2C_TX_SEND_EMPTY_INT_CLR Set this bit to clear the I2C_TX_SEND_EMPTY_INT interrupt.

(WO)

I2C_RX_REC_FULL_INT_CLR Set this bit to clear the I2C_RX_REC_FULL_INT interrupt. (WO)

I2C_ACK_ERR_INT_CLR Set this bit to clear the I2C_ACK_ERR_INT interrupt. (WO)

I2C_TRANS_START_INT_CLR Set this bit to clear the I2C_TRANS_START_INT interrupt. (WO)

I2C_TIME_OUT_INT_CLR Set this bit to clear the I2C_TIME_OUT_INT interrupt. (WO)

I2C_TRANS_COMPLETE_INT_CLR Set this bit to clear the I2C_TRANS_COMPLETE_INT interrupt.

(WO)

I2C_MASTER_TRAN_COMP_INT_CLR Set this bit to clear the I2C_MASTER_TRAN_COMP_INT in-

terrupt. (WO)

I2C_ARBITRATION_LOST_INT_CLR Set this bit to clear the I2C_ARBITRATION_LOST_INT inter-

rupt. (WO)

I2C_END_DETECT_INT_CLR Set this bit to clear the I2C_END_DETECT_INT interrupt. (WO)

Espressif Systems 299
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

Register 11.10. I2C_INT_ENA_REG (0x0028)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

I2C
_T

X_
SEND_E

M
PTY

_IN
T_

ENA

0

12

I2C
_R

X_
REC_F

ULL
_IN

T_
ENA

0

11

I2C
_A

CK_E
RR_IN

T_
ENA

0

10

I2C
_T

RANS_S
TA

RT_
IN

T_
ENA

0

9

I2C
_T

IM
E_O

UT_
IN

T_
ENA

0

8

I2C
_T

RANS_C
OM

PLE
TE

_IN
T_

ENA

0

7

I2C
_M

ASTE
R_T

RAN_C
OM

P_IN
T_

ENA

0

6

I2C
_A

RBITR
AT

IO
N_L

OST_
IN

T_
ENA

0

5

I2C
_E

ND_D
ETE

CT_
IN

T_
ENA

0

3

Reset

I2C_TX_SEND_EMPTY_INT_ENA The interrupt enable bit for the I2C_TX_SEND_EMPTY_INT inter-

rupt. (R/W)

I2C_RX_REC_FULL_INT_ENA The interrupt enable bit for the I2C_RX_REC_FULL_INT interrupt.

(R/W)

I2C_ACK_ERR_INT_ENA The interrupt enable bit for the I2C_ACK_ERR_INT interrupt. (R/W)

I2C_TRANS_START_INT_ENA The interrupt enable bit for the I2C_TRANS_START_INT interrupt.

(R/W)

I2C_TIME_OUT_INT_ENA The interrupt enable bit for the I2C_TIME_OUT_INT interrupt. (R/W)

I2C_TRANS_COMPLETE_INT_ENA The interrupt enable bit for the I2C_TRANS_COMPLETE_INT

interrupt. (R/W)

I2C_MASTER_TRAN_COMP_INT_ENA The interrupt enable bit for the

I2C_MASTER_TRAN_COMP_INT interrupt. (R/W)

I2C_ARBITRATION_LOST_INT_ENA The interrupt enable bit for the I2C_ARBITRATION_LOST_INT

interrupt. (R/W)

I2C_END_DETECT_INT_ENA The interrupt enable bit for the I2C_END_DETECT_INT interrupt. (R/W)

Espressif Systems 300
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

Register 11.11. I2C_INT_STATUS_REG (0x002c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

I2C
_T

X_
SEND_E

M
PTY

_IN
T_

ST

0

12

I2C
_R

X_
REC_F

ULL
_IN

T_
ST

0

11

I2C
_A

CK_E
RR_IN

T_
ST

0

10

I2C
_T

RANS_S
TA

RT_
IN

T_
ST

0

9

I2C
_T

IM
E_O

UT_
IN

T_
ST

0

8

I2C
_T

RANS_C
OM

PLE
TE

_IN
T_

ST

0

7

I2C
_M

ASTE
R_T

RAN_C
OM

P_IN
T_

ST

0

6

I2C
_A

RBITR
AT

IO
N_L

OST_
IN

T_
ST

0

5

I2C
_E

ND_D
ETE

CT_
IN

T_
ST

0

3

Reset

I2C_TX_SEND_EMPTY_INT_ST The masked interrupt status bit for the I2C_TX_SEND_EMPTY_INT

interrupt. (RO)

I2C_RX_REC_FULL_INT_ST The masked interrupt status bit for the I2C_RX_REC_FULL_INT inter-

rupt. (RO)

I2C_ACK_ERR_INT_ST The masked interrupt status bit for the I2C_ACK_ERR_INT interrupt. (RO)

I2C_TRANS_START_INT_ST The masked interrupt status bit for the I2C_TRANS_START_INT inter-

rupt. (RO)

I2C_TIME_OUT_INT_ST The masked interrupt status bit for the I2C_TIME_OUT_INT interrupt. (RO)

I2C_TRANS_COMPLETE_INT_ST The masked interrupt status bit for the

I2C_TRANS_COMPLETE_INT interrupt. (RO)

I2C_MASTER_TRAN_COMP_INT_ST The masked interrupt status bit for the

I2C_MASTER_TRAN_COMP_INT interrupt. (RO)

I2C_ARBITRATION_LOST_INT_ST The masked interrupt status bit for the

I2C_ARBITRATION_LOST_INT interrupt. (RO)

I2C_END_DETECT_INT_ST The masked interrupt status bit for the I2C_END_DETECT_INT interrupt.

(RO)

Register 11.12. I2C_SDA_HOLD_REG (0x0030)

(re
se

rve
d)

0 0

31 10

I2C
_S

DA_H
OLD

_T
IM

E

0 0 0 0 0 0 0 0 0 0

9 0

Reset

I2C_SDA_HOLD_TIME This register is used to configure the time to hold the data after the negative

edge of SCL, in APB clock cycles. (R/W)

Espressif Systems 301
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

Register 11.13. I2C_SDA_SAMPLE_REG (0x0034)

(re
se

rve
d)

0 0

31 10

I2C
_S

DA_S
AM

PLE
_T

IM
E

0 0 0 0 0 0 0 0 0 0

9 0

Reset

I2C_SDA_SAMPLE_TIME This register is used to configure for how long SDA is sampled, in APB

clock cycles. (R/W)

Register 11.14. I2C_SCL_HIGH_PERIOD_REG (0x0038)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

I2C
_S

CL_
HIG

H_P
ERIO

D

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

I2C_SCL_HIGH_PERIOD This register is used to configure for how long SCL remains high in master

mode, in APB clock cycles. (R/W)

Register 11.15. I2C_SCL_START_HOLD_REG (0x0040)

(re
se

rve
d)

0 0

31 10

I2C
_S

CL_
STA

RT_
HOLD

_T
IM

E

0 0 0 0 0 0 1 0 0 0

9 0

Reset

I2C_SCL_START_HOLD_TIME This register is used to configure the time between the negative edge

of SDA and the negative edge of SCL for a START condition, in APB clock cycles. (R/W)

Espressif Systems 302
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

Register 11.16. I2C_SCL_RSTART_SETUP_REG (0x0044)

(re
se

rve
d)

0 0

31 10

I2C
_S

CL_
RSTA

RT_
SETU

P_T
IM

E

0 0 0 0 0 0 1 0 0 0

9 0

Reset

I2C_SCL_RSTART_SETUP_TIME This register is used to configure the time between the positive

edge of SCL and the negative edge of SDA for a RESTART condition, in APB clock cycles. (R/W)

Register 11.17. I2C_SCL_STOP_HOLD_REG (0x0048)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

I2C
_S

CL_
STO

P_H
OLD

_T
IM

E

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

I2C_SCL_STOP_HOLD_TIME This register is used to configure the delay after the STOP condition,

in APB clock cycles. (R/W)

Register 11.18. I2C_SCL_STOP_SETUP_REG (0x004C)

(re
se

rve
d)

0 0

31 10

I2C
_S

CL_
STO

P_S
ETU

P_T
IM

E

0 0 0 0 0 0 0 0 0 0

9 0

Reset

I2C_SCL_STOP_SETUP_TIME This register is used to configure the time between the positive edge

of SCL and the positive edge of SDA, in APB clock cycles. (R/W)

Espressif Systems 303
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

11 I2C Controller (I2C)

Register 11.19. I2C_SCL_FILTER_CFG_REG (0x0050)

(re
se

rve
d)

0 0

31 4

I2C
_S

CL_
FIL

TE
R_E

N

1

3

I2C
_S

CL_
FIL

TE
R_T

HRES

0 0 0

2 0

Reset

I2C_SCL_FILTER_EN This is the filter enable bit for SCL. (R/W)

I2C_SCL_FILTER_THRES When a pulse on the SCL input has smaller width than this register value

in APB clock cycles, the I2C controller will ignore that pulse. (R/W)

Register 11.20. I2C_SDA_FILTER_CFG_REG (0x0054)

(re
se

rve
d)

0 0

31 4

I2C
_S

DA_F
ILT

ER_E
N

1

3

I2C
_S

DA_F
ILT

ER_T
HRES

0 0 0

2 0

Reset

I2C_SDA_FILTER_EN This is the filter enable bit for SDA. (R/W)

I2C_SDA_FILTER_THRES When a pulse on the SDA input has smaller width than this register value

in APB clock cycles, the I2C controller will ignore that pulse. (R/W)

Register 11.21. I2C_COMDn_REG (n: 015) (0x58+4*n)

I2C
_C

OM
M

ANDn
_D

ONE

0

31

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 14

I2C
_C

OM
M

ANDn

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

I2C_COMMANDn_DONE When command n is done in I2C Master mode, this bit changes to high

level. (R/W)

I2C_COMMANDn This is the content of command n. It consists of three parts: (R/W)

op_code is the command, 0: RSTART; 1: WRITE; 2: READ; 3: STOP; 4: END.

Byte_num represents the number of bytes that need to be sent or received.

ack_check_en, ack_exp and ack are used to control the ACK bit. See I2C cmd structure for more

information.

Espressif Systems 304
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

12 I2S Controller (I2S)

12.1 Overview
The I2S bus provides a flexible communication interface for streaming digital data in multimedia applications, es-

pecially digital audio applications. The ESP32 includes two I2S interfaces: I2S0 and I2S1.

The I2S standard bus defines three signals: a clock signal, a channel selection signal, and a serial data signal. A

basic I2S data bus has one master and one slave. The roles remain unchanged throughout the communication.

The I2S modules on the ESP32 provide separate transmit and receive channels for high performance.

Figure 121. I2S System Block Diagram

Figure 12-1 is the system block diagram of the ESP32 I2S module. In the figure above, the value of ”n” can be

either 0 or 1. There are two independent I2S modules embedded in ESP32, namely I2S0 and I2S1. Each I2S

module contains a Tx (transmit) unit and a Rx (receive) unit. Both the Tx unit and the Rx unit have a three-wire

interface that includes a clock line, a channel selection line and a serial data line. The serial data line of the Tx unit is

fixed as output, and the serial data line of the Rx unit is fixed as input. The clock line and the channel selection line

of the Tx and Rx units can be configured to both master transmitting mode and slave receiving mode. In the LCD

mode, the serial data line extends to the parallel data bus. Both the Tx unit and the Rx unit have a 32-bit-wide FIFO

with a depth of 64. Besides, only I2S0 supports on-chip DAC/ADC modes, as well as receiving and transmitting

PDM signals.

The right side of Figure 12-1 shows the signal bus of the I2S module. The signal naming rule of the Rx and Tx

units is I2SnA_B_C, where ”n” stands for either I2S0 or I2S1; ”A” represents the direction of I2S module’s data

bus signal, ”I” represents input, ”O” represents output; ”B” represents signal function; ”C” represents the signal

direction, ”in” means that the signal is input into the I2S module, while ”out” means that the I2S module outputs

the signal. For a detailed description of the I2S signal bus, please refer to Table 12-1. Table 12-1 describes the

signal bus of the I2S module. Except for the I2Sn_CLK signal, all other signals are mapped to the chip pin via the

Espressif Systems 305
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

GPIO matrix and IO MUX. The I2Sn_CLK signal is mapped to the chip pin via the IO_MUX. For details, please refer

to the chapter about IO_MUX and the GPIO Matrix.

Table 121. I2S Signal Bus Description

Signal Bus Signal Direction Data Signal Direction

I2SnI_BCK_in In slave mode, I2S module inputs signals. I2S module receives data.

I2SnI_BCK_out In master mode, I2S module outputs signals. I2S module receives data.

I2SnI_WS_in In slave mode, I2S module inputs signals. I2S module receives data.

I2SnI_WS_out In master mode, I2S module outputs signals. I2S module receives data.

I2SnI_Data_in1 I2S module inputs signals.

In I2S mode, I2SnI_Data_in[15] is the

serial data bus of I2S. In LCD mode,

the data bus width can be configured

as needed.

I2SnO_Data_out1 I2S module outputs signals.

In I2S mode, I2SnO_Data_out[23] is

the serial data bus of I2S. In LCD

mode, the data bus width can be

configured as needed.

I2SnO_BCK_in In slave mode, I2S module inputs signals. I2S module sends data.

I2SnO_BCK_out In master mode, I2S module outputs signals. I2S module sends data.

I2SnO_WS_in In slave mode, I2S module inputs signals. I2S module sends data.

I2SnO_WS_out In master mode, I2S module outputs signals. I2S module sends data.

I2Sn_CLK2 I2S module outputs signals.
It is used as a clock source for pe-

ripheral chips.

I2Sn_H_SYNC

In Camera mode, I2S module inputs signals. The signals are sent from the Camera.I2Sn_V_SYNC

I2Sn_H_ENABLE

Note:

1. Assume that the bit width of the input/output signal is N, the input signal should be configured to I2SnI_Data_in[N-

1:0], and the output signal to I2SnO_Data_out[23:23-N+1]. Generally, for input signals, N=8 or 16; while for output

signals, N=8, 16 or 24 (note that I2S1 does not support 24-bit width).

2. I2Sn_CLK can only be mapped to GPIO0, U0RXD (GPIO3) or U0TXD (GPIO1) by selecting GPIO functions CLK_OUT1,

CLK_OUT2, or CLK_OUT3. For more information, see Table 4-3: IO_MUX Pad List.

12.2 Features
I2S mode

• Configurable high-precision output clock

• Full-duplex and half-duplex data transmit and receive modes

• Supports multiple digital audio standards

• Embedded A-law compression/decompression module

• Configurable clock signal

Espressif Systems 306
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

• Supports PDM signal input and output

• Configurable data transmit and receive modes

LCD mode

• Supports multiple LCD modes, including external LCD

• Supports external Camera

• Supports on-chip DAC/ADC modes

I2S interrupts

• Standard I2S interface interrupts

• I2S DMA interface interrupts

12.3 The Clock of I2S Module
As is shown in Figure 12-2, I2Sn_CLK, as the master clock of I2S module, is derived from the 160 MHz clock

PLL_F160M_CLK or the configurable analog PLL output clock APLL_CLK. The serial clock (BCK) of the I2S module

is derived from I2Sn_CLK. The I2S_CLKA_ENA bit of register I2S_CLKM_CONF_REG is used to select either

PLL_F160M_CLK or APLL_CLK as the clock source for I2Sn. PLL_F160_CLK is used as the clock source for

I2Sn, by default.

Notice:

• When using PLL_F160M_CLK as the clock source, it is not recommended to divide it using decimals. For high

performance audio applications, the analog PLL output clock source APLL_CLK must be used to acquire

highly accurate I2Sn_CLK and BCK. For further details, please refer to the chapter entitled Reset and Clock.

• When ESP32 I2S works in slave mode, the master must use I2Sn_CLK as the master clock and fi2s >= 8 *

fBCK.

Figure 122. I2S Clock

The relation between I2Sn_CLK frequency fi2s and the divider clock source frequency fpll can be seen in the

equation below:

fi2s =
fpll

N + b
a

”N”, whose value is >=2, corresponds to the REG _CLKM_DIV_NUM [7:0] bits of register I2S_CLKM_CONF_REG

, ”b” is the I2S_CLKM_DIV_B[5:0] bit and ”a” is the I2S_CLKM_DIV_A[5:0] bit.

In master mode, the serial clock BCK in the I2S module is derived from I2Sn_CLK, that is:

fBCK =
fi2s

M

Espressif Systems 307
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

In master transmitting mode, ”M”, whose value is >=2, is the I2S_TX_BCK_DIV_NUM[5:0] bit of register I2S_SAMPLE

_RATE_CONF_REG. In master receiving mode, ”M” is the I2S_RX_BCK_DIV_NUM[5:0] bit of register I2S_SAMPLE

_RATE_CONF_REG.

12.4 I2S Mode
The ESP32 I2S module integrates an A-law compression/decompression module to enable compression/decompression

of the received audio data. The RX_PCM_BYPASS bit and the TX_PCM_BYPASS bit of register I2S_CONF1_REG

should be cleared when using the A-law compression/decompression module.

12.4.1 Supported Audio Standards
In the I2S bus, BCK is the serial clock, WS is the left- /right-channel selection signal (also called word select

signal), and SD is the serial data signal for transmitting/receiving digital audio data. WS and SD signals in the

I2S module change on the falling edge of BCK, while the SD signal can be sampled on the rising edge of BCK.

If the I2S_RX_RIGHT_FIRST bit and the I2S_TX_RIGHT_FIRST bit of register I2S_CONF_REG are set to 1, the

I2S module is configured to receive and transmit right-channel data first. Otherwise, the I2S module receives and

transmits left-channel data first.

12.4.1.1 Philips Standard

Figure 123. Philips Standard

As is shown in Figure 12-3, the Philips I2S bus specifications require that the WS signal starts to change one BCK

clock cycle earlier than the SD signal on BCK falling edge, which means the WS signal becomes valid one clock

cycle before the first bit of data transfer on the current channel, and changes one clock cycle earlier than the end

of data transfer on the current channel. The SD signal line transmits the most significant bit of audio data first. If

the I2S_RX_MSB_SHIFT bit and the I2S_TX_MSB_SHIFT bit of register I2S_CONF_REG are set to 1, respectively,

the I2S module will use the Philips standard when receiving and transmitting data.

12.4.1.2 MSB Alignment Standard

Figure 124. MSB Alignment Standard

Espressif Systems 308
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

The MSB alignment standard is shown in Figure 12-4. WS and SD signals both change simultaneously on the falling

edge of BCK under the MSB alignment standard. The WS signal continues until the end of the current channel-data

transmission, and the SD signal line transmits the most significant bit of audio data first. If the I2S_RX_MSB_SHIFT

and I2S_TX_MSB_SHIFT bits of register I2S_CONF_REG are cleared, the I2S module will use the MSB alignment

standard when receiving and transmitting data.

12.4.1.3 PCM Standard

As is shown in Figure 12-5, under the short frame synchronization mode of the PCM standard, the WS signal

starts to change a BCK clock cycle earlier than the SD signal, which means that the WS signal takes effect a

clock cycle earlier than the first bit of the current channel-data transmission and continues for one extra BCK clock

cycle. The SD signal line transmits the most significant bit of audio data first. If the I2S_RX_SHORT_SYNC and

I2S_TX_SHORT_SYNC bits of register I2S_CONF_REG are set, the I2S module will receive and transmit data in

the short frame synchronization mode.

Figure 125. PCM Standard

12.4.2 Module Reset
The four low-order bits in register I2S_CONF_REG, that is, I2S_TX_RESET, I2S_RX_RESET, I2S_TX_FIFO_RESET

and I2S_RX_FIFO_RESET reset the receive module, the transmit module and the corresponding FIFO buffer, re-

spectively. In order to finish a reset operation, the corresponding bit should be set and then cleared by soft-

ware.

12.4.3 FIFO Operation
The data read/write packet length for a FIFO operation is 32 bits. The data packet format for the FIFO buffer can be

configured using configuration registers. As shown in Figure 12-1, both sent and received data should be written

into FIFO first and then read from FIFO. There are two approaches to accessing the FIFO; one is to directly access

the FIFO using a CPU, the other is to access the FIFO using a DMA controller.

Generally, both the I2S_RX_FIFO_MOD_FORCE_EN bit and I2S_TX_FIFO_MOD_FORCE_EN bits of register I2S_

FIFO_CONF_REG should be set to 1. I2S_TX_DATA_NUM[5:0] bit and I2S_RX_DATA_NUM[5:0] are used to control

the length of the data that have been sent, received and buffered. Hardware inspects the received-data length

RX_LEN and the transmitted-data length TX_LEN. Both the received and the transmitted data are buffered in the

FIFO method.

When RX_LEN is greater than I2S_RX_DATA_NUM[5:0], the received data, which is buffered in FIFO, has reached

the set threshold and needs to be read out to prevent an overflow. When TX_LEN is less than I2S_TX_DATA_NUM[5:0],

the transmitted data, which is buffered in FIFO, has not reached the set threshold and software can continue feeding

data into FIFO.

Espressif Systems 309
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

12.4.4 Sending Data
The ESP32 I2S module carries out a data-transmit operation in three stages:

• Read data from internal storage and transfer it to FIFO

• Read data to be sent from FIFO

• Clock out data serially, or in parallel, as configured by the user

Figure 126. Tx FIFO Data Mode

Table 122. Register Configuration

I2S_TX_FIFO_MOD[2:0] Description

Tx FIFO mode0

0 16-bit dual channel data

2 32-bit dual channel data

3 32-bit single channel data

Tx FIFO mode1 1 16-bit single channel data

At the first stage, there are two modes for data to be sent and written into FIFO. In Tx FIFO mode0, the Tx data-

to-be-sent are written into FIFO according to the time order. In Tx FIFO mode1, the data-to-be-sent are divided

into 16 high- and 16 low-order bits. Then, both the 16 high- and 16 low-order bits are recomposed and written

into FIFO. The details are shown in Figure 12-6 with the corresponding registers listed in Table 12-2. D
′

n consists

of 16 high-order bits of Dn and 16 zeros. D
′′

n consists of 16 low-order bits of Dn and 16 zeros. That is to say,

D
′

n = {Dn[31 : 16], 16′h0}, D
′′

n = {Dn[15 : 0], 16′h0}.

At the second stage, the system reads data that will be sent from FIFO, according to the relevant register configura-

tion. The mode in which the system reads data from FIFO is relevant to the configuration of I2S_TX_FIFO_MOD[2.0]

and I2S_TX_CHAN_MOD[2:0]. I2S_TX_FIFO_MOD[2.0] determines whether the data are 16-bit or 32-bit, as shown

in Table 12-2, while I2S_TX_CHAN_MOD[2:0] determines the format of the data-to-be-sent, as shown in Table 12-

3.

Table 123. Send Channel Mode

I2S_TX_CHAN_MOD[2:0] Description

0 Dual channel mode

1

Mono mode

When I2S_TX_MSB_RIGHT equals 0, the left-channel data are ”holding”

their values and the right-channel data change into the left-channel data.

Espressif Systems 310
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

I2S_TX_CHAN_MOD[2:0] Description

When I2S_TX_MSB_RIGHT equals 1, the right-channel data are ”holding”

their values and the left-channel data change into the right-channel data.

2

Mono mode

When I2S_TX_MSB_RIGHT equals 0, the right-channel data are ”holding”

their values and the left-channel data change into the right-channel data.

When I2S_TX_MSB_RIGHT equals 1, the left-channel data are ”holding”

their values and the right-channel data change into the left-channel data.

3

Mono mode

When I2S_TX_MSB_RIGHT equals 0, the left-channel data are constants

in the range of REG[31:0].

When I2S_TX_MSB_RIGHT equals 1, the right-channel data are constants

in the range of REG[31:0].

4

Mono mode

When I2S_TX_MSB_RIGHT equals 0, the right-channel data are constants

in the range of REG[31:0].

When I2S_TX_MSB_RIGHT equals 1, the left-channel data are constants

in the range of REG[31:0].

REG[31:0] is the value of register I2S_CONF_SINGLE_DATA_REG[31:0].

The output of the third stage is determined by the mode of the I2S and I2S_TX_BITS_MOD[5:0] bits of register

I2S_SAMPLE_RATE_CONF_REG.

12.4.5 Receiving Data
The data-receive phase of the ESP32 I2S module consists of another three stages:

• The input serial-bit stream is transformed into a 64-bit parallel-data stream in I2S mode. In LCD mode, the

input parallel-data stream will be extended to a 64-bit parallel-data stream.

• Received data are written into FIFO.

• Data are read from FIFO by CPU/DMA and written into the internal memory.

At the first stage of receiving data, the received-data stream is expanded to a zero-padded parallel-data stream with

32 high-order bits and 32 low-order bits, according to the level of the I2SnI_WS_out (or I2SnI_WS_in) signal. The

I2S_RX_MSB_RIGHT bit of register I2S_CONF_REG is used to determine how the data are to be expanded.

Figure 127. The First Stage of Receiving Data

For example, as is shown in Figure 12-7, if the width of serial data is 16 bits, when I2S_RX_RIGHT_FIRST equals

1, Data0 will be discarded and I2S will start receiving data from Data1. If I2S_RX_MSB_RIGHT equals 1, data

of the first stage would be {0xFEDC0000, 0x32100000}. If I2S_RX_MSB_RIGHT equals 0, data of the first

Espressif Systems 311
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

stage would be {0x32100000, 0xFEDC0000}. When I2S_RX_RIGHT_FIRST equals 0, I2S will start receiving data

from Data0. If I2S_RX_MSB_RIGHT equals 1, data of the first stage would be {0xFEDC0000, 0x76540000}. If

I2S_RX_MSB_RIGHT equals 0, data of the first stage would be {0x76540000, 0xFEDC0000}.

As is shown in Table 12-4 and Figure 12-8, at the second stage, the received data of the Rx unit is written into FIFO.

There are four modes of writing received data into FIFO. Each mode corresponds to a value of I2S_RX_FIFO_MOD[2:0]

bit.

Table 124. Modes of Writing Received Data into FIFO and the Corresponding Register Configuration

I2S_RX_FIFO_MOD[2:0] Data format

0 16-bit dual channel data

1 16-bit single channel data

2 32-bit dual channel data

3 32-bit single channel data

Figure 128. Modes of Writing Received Data into FIFO

At the third stage, CPU or DMA will read data from FIFO and write them into the internal memory directly. The

register configuration that each mode corresponds to is shown in Table 12-5.

Table 125. The Register Configuration to Which the Four Modes Correspond

I2S_RX_MSB_RIGHT I2S_RX_CHAN_MOD mode0 mode1 mode2 mode3

0

0

left channel

+ right channel

-

left channel

+ right channel

-

1
left channel +

left channel

left channel +

left channel

2
right channel +

right channel

right channel +

right channel

3 - -

1

0

right channel

+ left channel

-

right channel

+ left channel

-

1
right channel +

right channel

right channel +

right channel

2
left channel +

left channel

left channel +

left channel

3 - -

Espressif Systems 312
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

12.4.6 I2S Master/Slave Mode
The ESP32 I2S module can be configured to act as a master or slave device on the I2S bus. The module supports

slave transmitter and receiver configurations in addition to master transmitter and receiver configurations. All these

modes can support full-duplex and half-duplex communication over the I2S bus.

I2S_RX_SLAVE_MOD bit and I2S_TX_SLAVE_MOD bit of register I2S_CONF_REG can configure I2S to slave re-

ceiving mode and slave transmitting mode, respectively.

I2S_TX_START bit of register I2S_CONF_REG is used to enable transmission. When I2S is in master transmitting

mode and this bit is set, the module will keep driving the clock signal and data of left and right channels. If FIFO

sends out all the buffered data and there are no new data to shift, the last batch of data will be looped on the data

line. When this bit is reset, master will stop driving clock and data lines. When I2S is configured to slave transmitting

mode and this bit is set, the module will wait for the master BCK clock to enable a transmit operation.

The I2S_RX_START bit of register I2S_CONF_REG is used to enable a receive operation. When I2S is in master

receiving mode and this bit is set, the module will keep driving the clock signal and sampling the input data stream

until this bit is reset. If I2S is configured to slave receiving mode and this bit is set, the receiving module will wait

for the master BCK clock to enable a receiving operation.

12.4.7 I2S PDM
As is shown in Figure 12-1, ESP32 I2S0 allows for pulse density modulation (PDM), which enables fast conversion

between pulse code modulation (PCM) and PDM signals.

The output clock of PDM is mapped to the I2S0*_WS_out signal. Its configuration is identical to I2S’s BCK. Please

refer to section 12.3, ”The Clock of I2S Module”, for further details. The bit width for both received and transmitted

I2S PCM signals is 16 bits.

Figure 129. PDM Transmitting Module

The PDM transmitting module is used to convert PCM signals into PDM signals, as shown in Figure 12-9. HPF is

a high-speed channel filter, and LPF is a low-speed channel filter. The PDM signal is derived from the PCM signal,

after upsampling and filtering. Signal I2S_TX_PDM_HP_BYPASS of register I2S_PDM_CONF_REG can be set to

bypass the HPF at the PCM input. Filter module group0 carries out the upsampling. If the frequency of the PDM

signal is fpdm and the frequency of the PCM signal is fpcm, the relation between fpdm and fpcm is given by:

fpdm = 64×fpcm×
I2S_TX_PDM_FP

I2S_TX_PDM_FS

The upsampling factor of 64 is the result of the two upsampling stages.

Table 12-6 lists the configuration rates of the I2S_TX_PDM_FP bit and the I2S_TX_PDM_FS bit of register I2S_PDM

_FREQ_CONF_REG, whose output PDM signal frequency remains 48×128 KHz at different PCM signal frequen-

cies.

Espressif Systems 313
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Table 126. Upsampling Rate Configuration

fpcm (KHz) I2S_TX_PDM_FP I2S_TX_PDM_FS fpdm (KHz)

48 960 480

48×128

44.1 960 441

32 960 320

24 960 240

16 960 160

8 960 80

The I2S_TX_PDM_SINC_OSR2 bit of I2S_PDM_CONF_REG is the upsampling rate of the Filter group0.

I2S_TX_PDM_SINC_OSR2 =

⌊
I2S_TX_PDM_FP

I2S_TX_PDM_FS

⌋
As is shown in Figure 12-10, the I2S_TX_PDM_EN bit and the I2S_PCM2PDM_CONV_EN bit of register I2S_PDM_

CONF_REG should be set to 1 to use the PDM sending module. The I2S_TX_PDM_SIGMADELTA_IN_SHIFT bit,

I2S_TX_PDM_SINC_IN_SHIFT bit, I2S_TX_PDM_LP_IN_SHIFT bit and I2S_TX_PDM_HP_IN_SHIFT bit of register

I2S_PDM_CONF_REG are used to adjust the size of the input signal of each filter module.

Figure 1210. PDM Sends Signal

As is shown in Figure 12-11, the I2S_RX_PDM_EN bit and the I2S_PDM2PCM_CONV_EN bit of register I2S_PDM_

CONF_REG should be set to 1, in order to use the PDM receiving module. As is shown in Figure 12-12, the PDM

receiving module will convert the received PDM signal into a 16-bit PCM signal. Filter group1 is used to downsample

the PDM signal, and the I2S_RX_PDM_SINC_DSR_16_EN bit of register I2S_PDM_CONF_REG is used to adjust

the corresponding down-sampling rate.

Figure 1211. PDM Receives Signal

Figure 1212. PDM Receive Module

Espressif Systems 314
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Table 12-7 shows the configuration of the I2S_RX_PDM_SINC_DSR_16_EN bit whose PCM signal frequency re-

mains 48 KHz at different PDM signal frequencies.

Table 127. Downsampling Configuration

PDM freq (KHz) I2S_RX_PDM_SINC_DSR_16_EN PCM freq (KHz)

fpcm×128 1
fpcm

fpcm×64 0

12.5 CameraLCD Controller
There are three operational modes in the LCD mode of ESP32 I2S:

• LCD master transmitting mode

• Camera slave receiving mode

• ADC/DAC mode

The clock configuration of the LCD master transmitting mode is identical to I2S’ clock configuration. In the LCD

mode, the frequency of WS is half of fBCK.

In the ADC/DAC mode, use PLL_F160M_CLK as the clock source.

12.5.1 LCD Master Transmitting Mode
As is shown in Figure 12-13, the WR signal of LCD connects to the WS signal of I2S. The LCD data bus width is

24 bits.

Figure 1213. LCD Master Transmitting Mode

The I2S_LCD_EN bit of register I2S_CONF2_REG needs to be set and the I2S_TX_SLAVE_MOD bit of register

I2S_CONF_REG needs to be cleared, in order to configure I2S to the LCD master transmitting mode. Mean-

while, data should be sent under the correct mode, according to the I2S_TX_CHAN_MOD[2:0] bit of register

I2S_CONF_CHAN_REG and the I2S_TX_FIFO_MOD[2:0] bit of register I2S_FIFO_CONF_REG. The WS signal

needs to be inverted when it is routed through the GPIO Matrix. For details, please refer to the chapter about

IO_MUX and the GPIO Matrix. The I2S_LCD_TX_SDX2_EN bit and the I2S_LCD_TX_WRX2_EN bit of register

I2S_CONF2_REG should be set to the LCD master transmitting mode, so that both the data bus and WR signal

work in the appropriate mode.

Espressif Systems 315
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Figure 1214. LCD Master Transmitting Data Frame, Form 1

Figure 1215. LCD Master Transmitting Data Frame, Form 2

As is shown in Figure 12-14 and Figure 12-15, the I2S_LCD_TX_WRX2_EN bit should be set to 1 and the

I2S_LCD_TX_SDX2_EN bit should be set to 0 in the data frame, form 1. Both I2S_LCD_TX_SDX2_EN bit and

I2S_LCD_TX_WRX2_EN bit are set to 1 in the data frame, form 2.

12.5.2 Camera Slave Receiving Mode
ESP32 I2S supports a camera slave mode for high-speed data transfer from external camera modules. As

shown in Figure 12-16, in this mode, I2S is set to slave receiving mode. Besides the 16-channel data signal

bus I2SnI_Data_in, there are other signals, such as I2Sn_H_SYNC, I2Sn_V_SYNC and I2Sn_H_ENABLE.

The PCLK in the Camera module connects to I2SnI_WS_in in the I2S module, as Figure 12-16 shows.

Figure 1216. Camera Slave Receiving Mode

When I2S is in the camera slave receiving mode, and when I2Sn_H_SYNC, I2S_V_SYNC and I2S_H_REF are held

high, the master starts transmitting data, that is,

transmission_start = (I2Sn_H_SY NC == 1)&&(I2Sn_V _SY NC == 1)&&(I2Sn_H_ENABLE == 1)

Thus, during data transmission, these three signals should be kept at a high level. For example, if the I2Sn_V_SYNC

signal of a camera is at low level during data transmission, it will be inverted when routed to the I2S module. ESP32

supports signal inversion through the GPIO matrix. For details, please refer to the chapter about IO_MUX and the

GPIO Matrix.

In order to make I2S work in camera mode, the I2S_LCD_EN bit and the I2S_CAMERA_EN bit of register I2S_CONF2

_REG are set to 1, the I2S_RX_SLAVE_MOD bit of register I2S_CONF_REG is set to 1, the I2S_RX_MSB_RIGHT

Espressif Systems 316
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

bit and the I2S_RX_RIGHT_FIRST bit of I2S_CONF_REG are set to 0. Thus, I2S works in the LCD slave receiving

mode. At the same time, in order to use the correct mode to receive data, both the I2S_RX_CHAN_MOD[2:0] bit

of register I2S_CONF_CHAN_REG and the I2S_RX_FIFO_MOD[2:0] bit of register I2S_FIFO_CONF_REG are set

to 1.

12.5.3 ADC/DAC mode
In LCD mode, ESP32’s ADC and DAC can receive data. When the I2S0 module connects to the on-chip ADC,

the I2S0 module should be set to master receiving mode. Figure 12-17 shows the signal connection between the

I2S0 module and the ADC.

Figure 1217. ADC Interface of I2S0

Firstly, the I2S_LCD_EN bit of register I2S_CONF2_REG is set to 1, and the I2S_RX_SLAVE_MOD bit of register

I2S_CONF_REG is set to 0, so that the I2S0 module works in LCD master receiving mode, and the I2S0 module

clock is configured such that the WS signal of I2S0 outputs an appropriate frequency. Then, the APB_CTRL_SAR

ADC_DATA_TO_I2S bit of register APB_CTRL_APB_SARADC_CTRL_REG is set to 1. Enable I2S to receive data

after configuring the relevant registers of SARADC. For details, please refer to Chapter On-Chip Sensors and

Analog Signal Processing.

Figure 1218. DAC Interface of I2S

Figure 1219. Data Input by I2S DAC Interface

The I2S0 module should be configured to master transmitting mode when it connects to the on-chip DAC. Figure

Espressif Systems 317
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

12-18 shows the signal connection between the I2S0 module and the DAC. The DAC’s control module regards

I2S_CLK as the clock in this configuration. As shown in Figure 12-19, when the data bus inputs data to the DAC’s

control module, the latter will input right-channel data to DAC1 module and left-channel data to DAC2 module.

When using the I2S DMA module, 8 bits of data-to-be-transmitted are shifted to the left by 8 bits of data-to-be-

received into the DMA double-byte type of buffer.

The I2S_LCD_EN bit of register I2S_CONF2_REG should be set to 1, while I2S_RX_SHORT_SYNC, I2S_TX_SHORT

_SYNC, I2S_CONF_REG , I2S_RX_MSB_SHIFT and I2S_TX_MSB_SHIFT should all be reset to 0. The I2S_TX_

SLAVE_MOD bit of register I2S_CONF_REG should be set to 0, as well, when using the DAC mode of I2S0. Select

a suitable transmit mode according to the standards of transmitting a 16-bit digital data stream. Configure the I2S0

module clock to output a suitable frequency for the I2S_CLK and the WS of I2S. Enable I2S0 to send data after

configuring the relevant DAC registers.

12.6 I2S Interrupts
12.6.1 FIFO Interrupts

• I2S_TX_HUNG_INT: Triggered when transmitting data is timed out.

• I2S_RX_HUNG_INT: Triggered when receiving data is timed out.

• I2S_TX_REMPTY_INT: Triggered when the transmit FIFO is empty.

• I2S_TX_WFULL_INT: Triggered when the transmit FIFO is full.

• I2S_RX_REMPTY_INT: Triggered when the receive FIFO is empty.

• I2S_RX_WFULL_INT: Triggered when the receive FIFO is full.

• I2S_TX_PUT_DATA_INT: Triggered when the transmit FIFO is almost empty.

• I2S_RX_TAKE_DATA_INT: Triggered when the receive FIFO is almost full.

12.6.2 DMA Interrupts
• I2S_OUT_TOTAL_EOF_INT: Triggered when all transmitting linked lists are used up.

• I2S_IN_DSCR_EMPTY_INT: Triggered when there are no valid receiving linked lists left.

• I2S_OUT_DSCR_ERR_INT: Triggered when invalid rxlink descriptors are encountered.

• I2S_IN_DSCR_ERR_INT: Triggered when invalid txlink descriptors are encountered.

• I2S_OUT_EOF_INT: Triggered when rxlink has finished sending a packet.

• I2S_OUT_DONE_INT: Triggered when all transmitted and buffered data have been read.

• I2S_IN_SUC_EOF_INT: Triggered when all data have been received.

• I2S_IN_DONE_INT: Triggered when the current txlink descriptor is handled.

12.7 Register Summary

Name Description I2S0 I2S1 Acc

I2S FIFO registers

I2S_FIFO_WR_REG
Writes the data sent by I2S into

FIFO
0x3FF4F000 0x3FF6D000 WO

Espressif Systems 318
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

I2S_FIFO_RD_REG
Stores the data that I2S receives

from FIFO
0x3FF4F004 0x3FF6D004 RO

Configuration registers

I2S_CONF_REG Configuration and start/stop bits 0x3FF4F008 0x3FF6D008 R/W

I2S_CONF1_REG PCM configuration register 0x3FF4F0A0 0x3FF6D0A0 R/W

I2S_CONF2_REG
ADC/LCD/camera configuration

register
0x3FF4F0A8 0x3FF6D0A8 R/W

I2S_TIMING_REG
Signal delay and timing parame-

ters
0x3FF4F01C 0x3FF6D01C R/W

I2S_FIFO_CONF_REG FIFO configuration 0x3FF4F020 0x3FF6D020 R/W

I2S_CONF_SINGLE_DATA_REG Static channel output value 0x3FF4F028 0x3FF6D028 R/W

I2S_CONF_CHAN_REG Channel configuration 0x3FF4F02C 0x3FF6D02C R/W

I2S_LC_HUNG_CONF_REG Timeout detection configuration 0x3FF4F074 0x3FF6D074 R/W

I2S_CLKM_CONF_REG Bitclock configuration 0x3FF4F0AC 0x3FF6D0AC R/W

I2S_SAMPLE_RATE_CONF_REG Sample rate configuration 0x3FF4F0B0 0x3FF6D0B0 R/W

I2S_PD_CONF_REG Power-down register 0x3FF4F0A4 0x3FF6D0A4 R/W

I2S_STATE_REG I2S status register 0x3FF4F0BC 0x3FF6D0BC RO

DMA registers

I2S_LC_CONF_REG DMA configuration register 0x3FF4F060 0x3FF6D060 R/W

I2S_RXEOF_NUM_REG Receive data count 0x3FF4F024 0x3FF6D024 R/W

I2S_OUT_LINK_REG
DMA transmit linked list configu-

ration and address
0x3FF4F030 0x3FF6D030 R/W

I2S_IN_LINK_REG
DMA receive linked list configura-

tion and address
0x3FF4F034 0x3FF6D034 R/W

I2S_OUT_EOF_DES_ADDR_REG
The address of transmit link de-

scriptor producing EOF
0x3FF4F038 0x3FF6D038 RO

I2S_IN_EOF_DES_ADDR_REG
The address of receive link de-

scriptor producing EOF
0x3FF4F03C 0x3FF6D03C RO

I2S_OUT_EOF_BFR_DES_ADDR_REG
The address of transmit buffer

producing EOF
0x3FF4F040 0x3FF6D040 RO

I2S_INLINK_DSCR_REG
The address of current inlink de-

scriptor
0x3FF4F048 0x3FF6D048 RO

I2S_INLINK_DSCR_BF0_REG
The address of next inlink de-

scriptor
0x3FF4F04C 0x3FF6D04C RO

I2S_INLINK_DSCR_BF1_REG
The address of next inlink data

buffer
0x3FF4F050 0x3FF6D050 RO

I2S_OUTLINK_DSCR_REG
The address of current outlink de-

scriptor
0x3FF4F054 0x3FF6D054 RO

I2S_OUTLINK_DSCR_BF0_REG
The address of next outlink de-

scriptor
0x3FF4F058 0x3FF6D058 RO

I2S_OUTLINK_DSCR_BF1_REG
The address of next outlink data

buffer
0x3FF4F05C 0x3FF6D05C RO

I2S_LC_STATE0_REG DMA receive status 0x3FF4F06C 0x3FF6D06C RO

I2S_LC_STATE1_REG DMA transmit status 0x3FF4F070 0x3FF6D070 RO

Espressif Systems 319
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Pulse density (DE) modulation registers

I2S_PDM_CONF_REG PDM configuration 0x3FF4F0B4 0x3FF6D0B4 R/W

I2S_PDM_FREQ_CONF_REG PDM frequencies 0x3FF4F0B8 0x3FF6D0B8 R/W

Interrupt registers

I2S_INT_RAW_REG Raw interrupt status 0x3FF4F00C 0x3FF6D00C RO

I2S_INT_ST_REG Masked interrupt status 0x3FF4F010 0x3FF6D010 RO

I2S_INT_ENA_REG Interrupt enable bits 0x3FF4F014 0x3FF6D014 R/W

I2S_INT_CLR_REG Interrupt clear bits 0x3FF4F018 0x3FF6D018 WO

Espressif Systems 320
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

12.8 Registers
The addresses in parenthesis besides register names are the register addresses relative to the I2S0/I2S1 base

addresses provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute

register addresses are listed in Section 12.7 Register Summary.

Register 12.1. I2S_FIFO_WR_REG (0x0000)

I2S
_F

IFO
_W

R_R
EG

0 0 0 0 0 0 0 0 0 0 0 0 0

31 0

I2S_FIFO_WR_REG Writes the data sent by I2S into FIFO. (WO)

Register 12.2. I2S_FIFO_RD_REG (0x0004)

I2S
_F

IFO
_R

D_R
EG

0 0 0 0 0 0 0 0 0 0 0 0 0

31 0

I2S_FIFO_RD_REG Stores the data that I2S receives from FIFO. (RO)

Espressif Systems 321
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.3. I2S_CONF_REG (0x0008)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

I2S
_S

IG
_L

OOPBACK

0

18

I2S
_R

X_
M

SB_R
IG

HT

0

17

I2S
_T

X_
M

SB_R
IG

HT

0

16

I2S
_R

X_
M

ONO

1

15

I2S
_T

X_
M

ONO

1

14

I2S
_R

X_
SHORT_

SYNC

1

13

I2S
_T

X_
SHORT_

SYNC

1

12

I2S
_R

X_
M

SB_S
HIFT

0

11

I2S
_T

X_
M

SB_S
HIFT

0

10

I2S
_R

X_
RIG

HT_
FIR

ST

0

9

I2S
_T

X_
RIG

HT_
FIR

ST

0

8

I2S
_R

X_
SLA

VE_M
OD

0

7

I2S
_T

X_
SLA

VE_M
OD

0

6

I2S
_R

X_
STA

RT

0

5

I2S
_T

X_
STA

RT

0

4

I2S
_R

X_
FIF

O_R
ESET

0

3

I2S
_T

X_
FIF

O_R
ESET

0

2

I2S
_R

X_
RESET

0

1

I2S
_T

X_
RESET

0

0

Reset

I2S_SIG_LOOPBACK Enable signal loopback mode, with transmitter module and receiver module

sharing the same WS and BCK signals. (R/W)

I2S_RX_MSB_RIGHT Set this to place right-channel data at the MSB in the receive FIFO. (R/W)

I2S_TX_MSB_RIGHT Set this bit to place right-channel data at the MSB in the transmit FIFO. (R/W)

I2S_RX_MONO Set this bit to enable receiver’s mono mode in PCM standard mode. (R/W)

I2S_TX_MONO Set this bit to enable transmitter’s mono mode in PCM standard mode. (R/W)

I2S_RX_SHORT_SYNC Set this bit to enable receiver in PCM standard mode. (R/W)

I2S_TX_SHORT_SYNC Set this bit to enable transmitter in PCM standard mode. (R/W)

I2S_RX_MSB_SHIFT Set this bit to enable receiver in Philips standard mode. (R/W)

I2S_TX_MSB_SHIFT Set this bit to enable transmitter in Philips standard mode. (R/W)

I2S_RX_RIGHT_FIRST Set this bit to receive right-channel data first. (R/W)

I2S_TX_RIGHT_FIRST Set this bit to transmit right-channel data first. (R/W)

I2S_RX_SLAVE_MOD Set this bit to enable slave receiver mode. (R/W)

I2S_TX_SLAVE_MOD Set this bit to enable slave transmitter mode. (R/W)

I2S_RX_START Set this bit to start receiving data. (R/W)

I2S_TX_START Set this bit to start transmitting data. (R/W)

I2S_RX_FIFO_RESET Set this bit to reset the receive FIFO. (R/W)

I2S_TX_FIFO_RESET Set this bit to reset the transmit FIFO. (R/W)

I2S_RX_RESET Set this bit to reset the receiver. (R/W)

I2S_TX_RESET Set this bit to reset the transmitter. (R/W)

Espressif Systems 322
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.4. I2S_INT_RAW_REG (0x000c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

I2S
_O

UT_
TO

TA
L_

EOF_
IN

T_
RAW

0

16

I2S
_IN

_D
SCR_E

M
PTY

_IN
T_

RAW

0

15

I2S
_O

UT_
DSCR_E

RR_IN
T_

RAW

0

14

I2S
_IN

_D
SCR_E

RR_IN
T_

RAW

0

13

I2S
_O

UT_
EOF_

IN
T_

RAW

0

12

I2S
_O

UT_
DONE_IN

T_
RAW

0

11

(re
se

rve
d)

0

10

I2S
_IN

_S
UC_E

OF_
IN

T_
RAW

0

9

I2S
_IN

_D
ONE_IN

T_
RAW

0

8

I2S
_T

X_
HUNG_IN

T_
RAW

0

7

I2S
_R

X_
HUNG_IN

T_
RAW

0

6

I2S
_T

X_
REM

PTY
_IN

T_
RAW

0

5

I2S
_T

X_
W

FU
LL

_IN
T_

RAW

0

4

I2S
_R

X_
REM

PTY
_IN

T_
RAW

0

3

I2S
_R

X_
W

FU
LL

_IN
T_

RAW

0

2

I2S
_T

X_
PUT_

DAT
A_IN

T_
RAW

0

1

I2S
_R

X_
TA

KE_D
AT

A_IN
T_

RAW

0

0

Reset

I2S_OUT_TOTAL_EOF_INT_RAW The raw interrupt status bit for the I2S_OUT_TOTAL_EOF_INT in-

terrupt. (RO)

I2S_IN_DSCR_EMPTY_INT_RAW The raw interrupt status bit for the I2S_IN_DSCR_EMPTY_INT in-

terrupt. (RO)

I2S_OUT_DSCR_ERR_INT_RAW The raw interrupt status bit for the I2S_OUT_DSCR_ERR_INT in-

terrupt. (RO)

I2S_IN_DSCR_ERR_INT_RAW The raw interrupt status bit for the I2S_IN_DSCR_ERR_INT interrupt.

(RO)

I2S_OUT_EOF_INT_RAW The raw interrupt status bit for the I2S_OUT_EOF_INT interrupt. (RO)

I2S_OUT_DONE_INT_RAW The raw interrupt status bit for the I2S_OUT_DONE_INT interrupt. (RO)

I2S_IN_SUC_EOF_INT_RAW The raw interrupt status bit for the I2S_IN_SUC_EOF_INT interrupt.

(RO)

I2S_IN_DONE_INT_RAW The raw interrupt status bit for the I2S_IN_DONE_INT interrupt. (RO)

I2S_TX_HUNG_INT_RAW The raw interrupt status bit for the I2S_TX_HUNG_INT interrupt. (RO)

I2S_RX_HUNG_INT_RAW The raw interrupt status bit for the I2S_RX_HUNG_INT interrupt. (RO)

I2S_TX_REMPTY_INT_RAW The raw interrupt status bit for the I2S_TX_REMPTY_INT interrupt. (RO)

I2S_TX_WFULL_INT_RAW The raw interrupt status bit for the I2S_TX_WFULL_INT interrupt. (RO)

I2S_RX_REMPTY_INT_RAW The raw interrupt status bit for the I2S_RX_REMPTY_INT interrupt.

(RO)

I2S_RX_WFULL_INT_RAW The raw interrupt status bit for the I2S_RX_WFULL_INT interrupt. (RO)

I2S_TX_PUT_DATA_INT_RAW The raw interrupt status bit for the I2S_TX_PUT_DATA_INT interrupt.

(RO)

I2S_RX_TAKE_DATA_INT_RAW The raw interrupt status bit for the I2S_RX_TAKE_DATA_INT inter-

rupt. (RO)

Espressif Systems 323
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.5. I2S_INT_ST_REG (0x0010)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

I2S
_O

UT_
TO

TA
L_

EOF_
IN

T_
ST

0

16

I2S
_IN

_D
SCR_E

M
PTY

_IN
T_

ST

0

15

I2S
_O

UT_
DSCR_E

RR_IN
T_

ST

0

14

I2S
_IN

_D
SCR_E

RR_IN
T_

ST

0

13

I2S
_O

UT_
EOF_

IN
T_

ST

0

12

I2S
_O

UT_
DONE_IN

T_
ST

0

11

(re
se

rve
d)

0

10

I2S
_IN

_S
UC_E

OF_
IN

T_
ST

0

9

I2S
_T

X_
DONE_IN

T_
ST

0

8

I2S
_T

X_
HUNG_IN

T_
ST

0

7

I2S
_R

X_
HUNG_IN

T_
ST

0

6

I2S
_T

X_
REM

PTY
_IN

T_
ST

0

5

I2S
_T

X_
W

FU
LL

_IN
T_

ST

0

4

I2S
_R

X_
REM

PTY
_IN

T_
ST

0

3

I2S
_R

X_
W

FU
LL

_IN
T_

ST

0

2

I2S
_T

X_
PUT_

DAT
A_IN

T_
ST

0

1

I2S
_R

X_
TA

KE_D
AT

A_IN
T_

ST

0

0

Reset

I2S_OUT_TOTAL_EOF_INT_ST The masked interrupt status bit for the I2S_OUT_TOTAL_EOF_INT

interrupt. (RO)

I2S_IN_DSCR_EMPTY_INT_ST The masked interrupt status bit for the I2S_IN_DSCR_EMPTY_INT

interrupt. (RO)

I2S_OUT_DSCR_ERR_INT_ST The masked interrupt status bit for the I2S_OUT_DSCR_ERR_INT

interrupt. (RO)

I2S_IN_DSCR_ERR_INT_ST The masked interrupt status bit for the I2S_IN_DSCR_ERR_INT inter-

rupt. (RO)

I2S_OUT_EOF_INT_ST The masked interrupt status bit for the I2S_OUT_EOF_INT interrupt. (RO)

I2S_OUT_DONE_INT_ST The masked interrupt status bit for the I2S_OUT_DONE_INT interrupt. (RO)

I2S_IN_SUC_EOF_INT_ST The masked interrupt status bit for the I2S_IN_SUC_EOF_INT interrupt.

(RO)

I2S_IN_DONE_INT_ST The masked interrupt status bit for the I2S_IN_DONE_INT interrupt. (RO)

I2S_TX_HUNG_INT_ST The masked interrupt status bit for the I2S_TX_HUNG_INT interrupt. (RO)

I2S_RX_HUNG_INT_ST The masked interrupt status bit for the I2S_RX_HUNG_INT interrupt. (RO)

I2S_TX_REMPTY_INT_ST The masked interrupt status bit for the I2S_TX_REMPTY_INT interrupt.

(RO)

I2S_TX_WFULL_INT_ST The masked interrupt status bit for the I2S_TX_WFULL_INT interrupt. (RO)

I2S_RX_REMPTY_INT_ST The masked interrupt status bit for the I2S_RX_REMPTY_INT interrupt.

(RO)

I2S_RX_WFULL_INT_ST The masked interrupt status bit for the I2S_RX_WFULL_INT interrupt. (RO)

I2S_TX_PUT_DATA_INT_ST The masked interrupt status bit for the I2S_TX_PUT_DATA_INT inter-

rupt. (RO)

I2S_RX_TAKE_DATA_INT_ST The masked interrupt status bit for the I2S_RX_TAKE_DATA_INT inter-

rupt. (RO)

Espressif Systems 324
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.6. I2S_INT_ENA_REG (0x0014)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

I2S
_O

UT_
TO

TA
L_

EOF_
IN

T_
ENA

0

16

I2S
_IN

_D
SCR_E

M
PTY

_IN
T_

ENA

0

15

I2S
_O

UT_
DSCR_E

RR_IN
T_

ENA

0

14

I2S
_IN

_D
SCR_E

RR_IN
T_

ENA

0

13

I2S
_O

UT_
EOF_

IN
T_

ENA

0

12

I2S
_O

UT_
DONE_IN

T_
ENA

0

11

(re
se

rve
d)

0

10

I2S
_IN

_S
UC_E

OF_
IN

T_
ENA

0

9

I2S
_IN

_D
ONE_IN

T_
ENA

0

8

I2S
_T

X_
HUNG_IN

T_
ENA

0

7

I2S
_R

X_
HUNG_IN

T_
ENA

0

6

I2S
_T

X_
REM

PTY
_IN

T_
ENA

0

5

I2S
_T

X_
W

FU
LL

_IN
T_

ENA

0

4

I2S
_R

X_
REM

PTY
_IN

T_
ENA

0

3

I2S
_R

X_
W

FU
LL

_IN
T_

ENA

0

2

I2S
_T

X_
PUT_

DAT
A_IN

T_
ENA

0

1

I2S
_R

X_
TA

KE_D
AT

A_IN
T_

ENA

0

0

Reset

I2S_OUT_TOTAL_EOF_INT_ENA The interrupt enable bit for the I2S_OUT_TOTAL_EOF_INT inter-

rupt. (R/W)

I2S_IN_DSCR_EMPTY_INT_ENA The interrupt enable bit for the I2S_IN_DSCR_EMPTY_INT inter-

rupt. (R/W)

I2S_OUT_DSCR_ERR_INT_ENA The interrupt enable bit for the I2S_OUT_DSCR_ERR_INT interrupt.

(R/W)

I2S_IN_DSCR_ERR_INT_ENA The interrupt enable bit for the I2S_IN_DSCR_ERR_INT interrupt.

(R/W)

I2S_OUT_EOF_INT_ENA The interrupt enable bit for the I2S_OUT_EOF_INT interrupt. (R/W)

I2S_OUT_DONE_INT_ENA The interrupt enable bit for the I2S_OUT_DONE_INT interrupt. (R/W)

I2S_IN_SUC_EOF_INT_ENA The interrupt enable bit for the I2S_IN_SUC_EOF_INT interrupt. (R/W)

I2S_IN_DONE_INT_ENA The interrupt enable bit for the I2S_IN_DONE_INT interrupt. (R/W)

I2S_TX_HUNG_INT_ENA The interrupt enable bit for the I2S_TX_HUNG_INT interrupt. (R/W)

I2S_RX_HUNG_INT_ENA The interrupt enable bit for the I2S_RX_HUNG_INT interrupt. (R/W)

I2S_TX_REMPTY_INT_ENA The interrupt enable bit for the I2S_TX_REMPTY_INT interrupt. (R/W)

I2S_TX_WFULL_INT_ENA The interrupt enable bit for the I2S_TX_WFULL_INT interrupt. (R/W)

I2S_RX_REMPTY_INT_ENA The interrupt enable bit for the I2S_RX_REMPTY_INT interrupt. (R/W)

I2S_RX_WFULL_INT_ENA The interrupt enable bit for the I2S_RX_WFULL_INT interrupt. (R/W)

I2S_TX_PUT_DATA_INT_ENA The interrupt enable bit for the I2S_TX_PUT_DATA_INT interrupt.

(R/W)

I2S_RX_TAKE_DATA_INT_ENA The interrupt enable bit for the I2S_RX_TAKE_DATA_INT interrupt.

(R/W)

Espressif Systems 325
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.7. I2S_INT_CLR_REG (0x0018)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

I2S
_O

UT_
TO

TA
L_

EOF_
IN

T_
CLR

0

16

I2S
_IN

_D
SCR_E

M
PTY

_IN
T_

CLR

0

15

I2S
_O

UT_
DSCR_E

RR_IN
T_

CLR

0

14

I2S
_IN

_D
SCR_E

RR_IN
T_

CLR

0

13

I2S
_O

UT_
EOF_

IN
T_

CLR

0

12

I2S
_O

UT_
DONE_IN

T_
CLR

0

11

(re
se

rve
d)

0

10

I2S
_IN

_S
UC_E

OF_
IN

T_
CLR

0

9

I2S
_IN

_D
ONE_IN

T_
CLR

0

8

I2S
_T

X_
HUNG_IN

T_
CLR

0

7

I2S
_R

X_
HUNG_IN

T_
CLR

0

6

I2S
_T

X_
REM

PTY
_IN

T_
CLR

0

5

I2S
_T

X_
W

FU
LL

_IN
T_

CLR

0

4

I2S
_R

X_
REM

PTY
_IN

T_
CLR

0

3

I2S
_R

X_
W

FU
LL

_IN
T_

CLR

0

2

I2S
_T

X_
PUT_

DAT
A_IN

T_
CLR

0

1

I2S
_R

X_
TA

KE_D
AT

A_IN
T_

CLR

0

0

Reset

I2S_OUT_TOTAL_EOF_INT_CLR Set this bit to clear the I2S_OUT_TOTAL_EOF_INT interrupt. (WO)

I2S_IN_DSCR_EMPTY_INT_CLR Set this bit to clear the I2S_IN_DSCR_EMPTY_INT interrupt. (WO)

I2S_OUT_DSCR_ERR_INT_CLR Set this bit to clear the I2S_OUT_DSCR_ERR_INT interrupt. (WO)

I2S_IN_DSCR_ERR_INT_CLR Set this bit to clear the I2S_IN_DSCR_ERR_INT interrupt. (WO)

I2S_OUT_EOF_INT_CLR Set this bit to clear the I2S_OUT_EOF_INT interrupt. (WO)

I2S_OUT_DONE_INT_CLR Set this bit to clear the I2S_OUT_DONE_INT interrupt. (WO)

I2S_IN_SUC_EOF_INT_CLR Set this bit to clear the I2S_IN_SUC_EOF_INT interrupt. (WO)

I2S_IN_DONE_INT_CLR Set this bit to clear the I2S_IN_DONE_INT interrupt. (WO)

I2S_TX_HUNG_INT_CLR Set this bit to clear the I2S_TX_HUNG_INT interrupt. (WO)

I2S_RX_HUNG_INT_CLR Set this bit to clear the I2S_RX_HUNG_INT interrupt. (WO)

I2S_TX_REMPTY_INT_CLR Set this bit to clear the I2S_TX_REMPTY_INT interrupt. (WO)

I2S_TX_WFULL_INT_CLR Set this bit to clear the I2S_TX_WFULL_INT interrupt. (WO)

I2S_RX_REMPTY_INT_CLR Set this bit to clear the I2S_RX_REMPTY_INT interrupt. (WO)

I2S_RX_WFULL_INT_CLR Set this bit to clear the I2S_RX_WFULL_INT interrupt. (WO)

I2S_TX_PUT_DATA_INT_CLR Set this bit to clear the I2S_TX_PUT_DATA_INT interrupt. (WO)

I2S_RX_TAKE_DATA_INT_CLR Set this bit to clear the I2S_RX_TAKE_DATA_INT interrupt. (WO)

Espressif Systems 326
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.8. I2S_TIMING_REG (0x001c)

(re
se

rve
d)

0 0 0 0 0 0 0

31 25

I2S
_T

X_
BCK_IN

_IN
V

0

24

I2S
_D

AT
A_E

NABLE
_D

ELA
Y

0 0

23 22

I2S
_R

X_
DSYNC_S

W

0

21

I2S
_T

X_
DSYNC_S

W

0

20

I2S
_R

X_
BCK_O

UT_
DELA

Y

0 0

19 18

I2S
_R

X_
W

S_O
UT_

DELA
Y

0 0

17 16

I2S
_T

X_
SD_O

UT_
DELA

Y

0 0

15 14

I2S
_T

X_
W

S_O
UT_

DELA
Y

0 0

13 12

I2S
_T

X_
BCK_O

UT_
DELA

Y

0 0

11 10

I2S
_R

X_
SD_IN

_D
ELA

Y

0 0

9 8

I2S
_R

X_
W

S_IN
_D

ELA
Y

0 0

7 6

I2S
_R

X_
BCK_IN

_D
ELA

Y

0 0

5 4

I2S
_T

X_
W

S_IN
_D

ELA
Y

0 0

3 2

I2S
_T

X_
BCK_IN

_D
ELA

Y

0 0

1 0

Reset

I2S_TX_BCK_IN_INV Set this bit to invert the BCK signal into the slave transmitter. (R/W)

I2S_DATA_ENABLE_DELAY Number of delay cycles for data valid flag. (R/W)

I2S_RX_DSYNC_SW Set this bit to synchronize signals into the receiver in double sync method.

(R/W)

I2S_TX_DSYNC_SW Set this bit to synchronize signals into the transmitter in double sync method.

(R/W)

I2S_RX_BCK_OUT_DELAY Number of delay cycles for BCK signal out of the receiver. (R/W)

I2S_RX_WS_OUT_DELAY Number of delay cycles for WS signal out of the receiver. (R/W)

I2S_TX_SD_OUT_DELAY Number of delay cycles for SD signal out of the transmitter. (R/W)

I2S_TX_WS_OUT_DELAY Number of delay cycles for WS signal out of the transmitter. (R/W)

I2S_TX_BCK_OUT_DELAY Number of delay cycles for BCK signal out of the transmitter. (R/W)

I2S_RX_SD_IN_DELAY Number of delay cycles for SD signal into the receiver. (R/W)

I2S_RX_WS_IN_DELAY Number of delay cycles for WS signal into the receiver. (R/W)

I2S_RX_BCK_IN_DELAY Number of delay cycles for BCK signal into the receiver. (R/W)

I2S_TX_WS_IN_DELAY Number of delay cycles for WS signal into the transmitter. (R/W)

I2S_TX_BCK_IN_DELAY Number of delay cycles for BCK signal into the transmitter. (R/W)

Espressif Systems 327
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.9. I2S_FIFO_CONF_REG (0x0020)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

I2S
_R

X_
FIF

O_M
OD_F

ORCE_E
N

0

20

I2S
_T

X_
FIF

O_M
OD_F

ORCE_E
N

0

19

I2S
_R

X_
FIF

O_M
OD

0 0 0

18 16

I2S
_T

X_
FIF

O_M
OD

0 0 0

15 13

I2S
_D

SCR_E
N

1

12

I2S
_T

X_
DAT

A_N
UM

32

11 6

I2S
_R

X_
DAT

A_N
UM

32

5 0

Reset

I2S_RX_FIFO_MOD_FORCE_EN The bit should always be set to 1. (R/W)

I2S_TX_FIFO_MOD_FORCE_EN The bit should always be set to 1. (R/W)

I2S_RX_FIFO_MOD Receive FIFO mode configuration bit. (R/W)

I2S_TX_FIFO_MOD Transmit FIFO mode configuration bit. (R/W)

I2S_DSCR_EN Set this bit to enable I2S DMA mode. (R/W)

I2S_TX_DATA_NUM Threshold of data length in the transmit FIFO. (R/W)

I2S_RX_DATA_NUM Threshold of data length in the receive FIFO. (R/W)

Register 12.10. I2S_RXEOF_NUM_REG (0x0024)

64

31 0

Reset

I2S_RXEOF_NUM_REG The length of the data to be received. It will trigger I2S_IN_SUC_EOF_INT.

(R/W)

Register 12.11. I2S_CONF_SINGLE_DATA_REG (0x0028)

0

31 0

Reset

I2S_CONF_SINGLE_DATA_REG The right channel or the left channel outputs constant values stored

in this register according to TX_CHAN_MOD and I2S_TX_MSB_RIGHT. (R/W)

Espressif Systems 328
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.12. I2S_CONF_CHAN_REG (0x002c)

(re
se

rve
d)

0 0

31 5

I2S
_R

X_
CHAN_M

OD

0 0

4 3

I2S
_T

X_
CHAN_M

OD

0 0 0

2 0

Reset

I2S_RX_CHAN_MOD I2S receiver channel mode configuration bits. Please refer to Section 12.4.5

for further details. (R/W)

I2S_TX_CHAN_MOD I2S transmitter channel mode configuration bits. Please refer to Section 12.4.4

for further details. (R/W)

Register 12.13. I2S_OUT_LINK_REG (0x0030)

(re
se

rve
d)

0

31

I2S
_O

UTL
IN

K_R
ESTA

RT

0

30

I2S
_O

UTL
IN

K_S
TA

RT

0

29

I2S
_O

UTL
IN

K_S
TO

P

0

28

(re
se

rve
d)

0 0 0 0 0 0 0 0

27 20

I2S
_O

UTL
IN

K_A
DDR

0x000000

19 0

Reset

I2S_OUTLINK_RESTART Set this bit to restart outlink descriptor. (R/W)

I2S_OUTLINK_START Set this bit to start outlink descriptor. (R/W)

I2S_OUTLINK_STOP Set this bit to stop outlink descriptor. (R/W)

I2S_OUTLINK_ADDR The address of first outlink descriptor. (R/W)

Register 12.14. I2S_IN_LINK_REG (0x0034)

(re
se

rve
d)

0

31

I2S
_IN

LIN
K_R

ESTA
RT

0

30

I2S
_IN

LIN
K_S

TA
RT

0

29

I2S
_IN

LIN
K_S

TO
P

0

28

(re
se

rve
d)

0 0 0 0 0 0 0 0

27 20

I2S
_IN

LIN
K_A

DDR

0x000000

19 0

Reset

I2S_INLINK_RESTART Set this bit to restart inlink descriptor. (R/W)

I2S_INLINK_START Set this bit to start inlink descriptor. (R/W)

I2S_INLINK_STOP Set this bit to stop inlink descriptor. (R/W)

I2S_INLINK_ADDR The address of first inlink descriptor. (R/W)

Espressif Systems 329
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.15. I2S_OUT_EOF_DES_ADDR_REG (0x0038)

0x000000000

31 0

Reset

I2S_OUT_EOF_DES_ADDR_REG The address of outlink descriptor that produces EOF. (RO)

Register 12.16. I2S_IN_EOF_DES_ADDR_REG (0x003c)

0x000000000

31 0

Reset

I2S_IN_EOF_DES_ADDR_REG The address of inlink descriptor that produces EOF. (RO)

Register 12.17. I2S_OUT_EOF_BFR_DES_ADDR_REG (0x0040)

0x000000000

31 0

Reset

I2S_OUT_EOF_BFR_DES_ADDR_REG The address of the buffer corresponding to the outlink de-

scriptor that produces EOF. (RO)

Register 12.18. I2S_INLINK_DSCR_REG (0x0048)

0 0

31 0

Reset

I2S_INLINK_DSCR_REG The address of current inlink descriptor. (RO)

Register 12.19. I2S_INLINK_DSCR_BF0_REG (0x004c)

0 0

31 0

Reset

I2S_INLINK_DSCR_BF0_REG The address of next inlink descriptor. (RO)

Register 12.20. I2S_INLINK_DSCR_BF1_REG (0x0050)

0 0

31 0

Reset

I2S_INLINK_DSCR_BF1_REG The address of next inlink data buffer. (RO)

Espressif Systems 330
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.21. I2S_OUTLINK_DSCR_REG (0x0054)

0 0

31 0

Reset

I2S_OUTLINK_DSCR_REG The address of current outlink descriptor. (RO)

Register 12.22. I2S_OUTLINK_DSCR_BF0_REG (0x0058)

0 0

31 0

Reset

I2S_OUTLINK_DSCR_BF0_REG The address of next outlink descriptor. (RO)

Register 12.23. I2S_OUTLINK_DSCR_BF1_REG (0x005c)

0 0

31 0

Reset

I2S_OUTLINK_DSCR_BF1_REG The address of next outlink data buffer. (RO)

Espressif Systems 331
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.24. I2S_LC_CONF_REG (0x0060)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

I2S
_C

HECK_O
W

NER

0

12

I2S
_O

UT_
DAT

A_B
URST_

EN

0

11

I2S
_IN

DSCR_B
URST_

EN

0

10

I2S
_O

UTD
SCR_B

URST_
EN

0

9

I2S
_O

UT_
EOF_

M
ODE

1

8

(re
se

rve
d)

0

7

I2S
_O

UT_
AUTO

_W
RBACK

0

6

I2S
_O

UT_
LO

OP_T
EST

0

5

I2S
_IN

_L
OOP_T

EST

0

4

I2S
_A

HBM
_R

ST

0

3

I2S
_A

HBM
_F

IFO
_R

ST

0

2

I2S
_O

UT_
RST

0

1

I2S
_IN

_R
ST

0

0

Reset

I2S_CHECK_OWNER Set this bit to check the owner bit by hardware. (R/W)

I2S_OUT_DATA_BURST_EN Transmitter data transfer mode configuration bit. (R/W)

1: Transmit data in burst mode;

0: Transmit data in byte mode.

I2S_INDSCR_BURST_EN DMA inlink descriptor transfer mode configuration bit. (R/W)

1: Transfer inlink descriptor in burst mode;

0: Transfer inlink descriptor in byte mode.

I2S_OUTDSCR_BURST_EN DMA outlink descriptor transfer mode configuration bit. (R/W)

1: Transfer outlink descriptor in burst mode;

0: Transfer outlink descriptor in byte mode.

I2S_OUT_EOF_MODE DMA I2S_OUT_EOF_INT generation mode. (R/W)

1: When DMA has popped all data from the FIFO;

0: When AHB has pushed all data to the FIFO.

I2S_OUT_AUTO_WRBACK Set this bit to enable automatic outlink-writeback when all the data in tx

buffer has been transmitted. (R/W)

I2S_OUT_LOOP_TEST Set this bit to loop test outlink. (R/W)

I2S_IN_LOOP_TEST Set this bit to loop test inlink. (R/W)

I2S_AHBM_RST Set this bit to reset AHB interface of DMA. (R/W)

I2S_AHBM_FIFO_RST Set this bit to reset AHB interface cmdFIFO of DMA. (R/W)

I2S_OUT_RST Set this bit to reset out DMA FSM. (R/W)

I2S_IN_RST Set this bit to reset in DMA FSM. (R/W)

Register 12.25. I2S_LC_STATE0_REG (0x006c)

0x000000000

31 0

Reset

I2S_LC_STATE0_REG Receiver DMA channel status register. (RO)

Espressif Systems 332
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.26. I2S_LC_STATE1_REG (0x0070)

0x000000000

31 0

Reset

I2S_LC_STATE1_REG Transmitter DMA channel status register. (RO)

Register 12.27. I2S_LC_HUNG_CONF_REG (0x0074)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

I2S
_L

C_F
IFO

_T
IM

EOUT_
ENA

1

11

I2S
_L

C_F
IFO

_T
IM

EOUT_
SHIFT

0 0 0

10 8

I2S
_L

C_F
IFO

_T
IM

EOUT

0x010

7 0

Reset

I2S_LC_FIFO_TIMEOUT_ENA The enable bit for FIFO timeout. (R/W)

I2S_LC_FIFO_TIMEOUT_SHIFT The bits are used to set the tick counter threshold. The tick counter

is reset when the counter value >= 88000/2i2s_lc_fifo_timeout_shift. (R/W)

I2S_LC_FIFO_TIMEOUT When the value of FIFO hung counter is equal to this bit value, sending

data-timeout interrupt or receiving data-timeout interrupt will be triggered. (R/W)

Espressif Systems 333
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.28. I2S_CONF1_REG (0x00a0)

(re
se

rve
d)

0 0

31 9

I2S
_T

X_
STO

P_E
N

0

8

I2S
_R

X_
PCM

_B
YPA

SS

1

7

I2S
_R

X_
PCM

_C
ONF

0x0

6 4

I2S
_T

X_
PCM

_B
YPA

SS

1

3

I2S
_T

X_
PCM

_C
ONF

0x1

2 0

Reset

I2S_TX_STOP_EN Set this bit and the transmitter will stop transmitting BCK signal and WS signal

when tx FIFO is empty. (R/W)

I2S_RX_PCM_BYPASS Set this bit to bypass the Compress/Decompress module for the received

data. (R/W)

I2S_RX_PCM_CONF Compress/Decompress module configuration bit. (R/W)

0: Decompress received data;

1: Compress received data.

I2S_TX_PCM_BYPASS Set this bit to bypass the Compress/Decompress module for the transmitted

data. (R/W)

I2S_TX_PCM_CONF Compress/Decompress module configuration bit. (R/W)

0: Decompress transmitted data;

1: Compress transmitted data.

Register 12.29. I2S_PD_CONF_REG (0x00a4)

(re
se

rve
d)

0 0

31 4

(re
se

rve
d)

1

3

(re
se

rve
d)

0

2

I2S
_F

IFO
_F

ORCE_P
U

1

1

I2S
_F

IFO
_F

ORCE_P
D

0

0

Reset

I2S_FIFO_FORCE_PU Force FIFO power-up. (R/W)

I2S_FIFO_FORCE_PD Force FIFO power-down. (R/W)

Espressif Systems 334
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.30. I2S_CONF2_REG (0x00a8)

(re
se

rve
d)

0 0

31 8

I2S
_IN

TE
R_V

ALID
_E

N

0

7

I2S
_E

XT
_A

DC_S
TA

RT_
EN

0

6

I2S
_L

CD_E
N

1

5

(re
se

rve
d)

0 0

4 3

I2S
_L

CD_T
X_

SDX2
_E

N

0

2

I2S
_L

CD_T
X_

W
RX2

_E
N

0

1

I2S
_C

AM
ERA_E

N

0

0

Reset

I2S_INTER_VALID_EN Set this bit to enable camera’s internal validation. (R/W)

I2S_EXT_ADC_START_EN Set this bit to enable the start of external ADC . (R/W)

I2S_LCD_EN Set this bit to enable LCD mode. (R/W)

I2S_LCD_TX_SDX2_EN Set this bit to duplicate data pairs (Data Frame, Form 2) in LCD mode. (R/W)

I2S_LCD_TX_WRX2_EN One datum will be written twice in LCD mode. (R/W)

I2S_CAMERA_EN Set this bit to enable camera mode. (R/W)

Register 12.31. I2S_CLKM_CONF_REG (0x00ac)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 22

I2S
_C

LK
A_E

NA

0

21

(re
se

rve
d)

0

20

I2S
_C

LK
M

_D
IV_A

0x00

19 14

I2S
_C

LK
M

_D
IV_B

0x00

13 8

I2S
_C

LK
M

_D
IV_N

UM

4

7 0

Reset

I2S_CLKA_ENA Set this bit to enable APLL_CLK. Default is PLL_F160M_CLK. (R/W)

I2S_CLKM_DIV_A Fractional clock divider’s denominator value. (R/W)

I2S_CLKM_DIV_B Fractional clock divider’s numerator value. (R/W)

I2S_CLKM_DIV_NUM I2S clock divider’s integral value. (R/W)

Espressif Systems 335
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.32. I2S_SAMPLE_RATE_CONF_REG (0x00b0)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

I2S
_R

X_
BITS

_M
OD

16

23 18

I2S
_T

X_
BITS

_M
OD

16

17 12

I2S
_R

X_
BCK_D

IV_N
UM

6

11 6

I2S
_T

X_
BCK_D

IV_N
UM

6

5 0

Reset

I2S_RX_BITS_MOD Set the bits to configure the bit length of I2S receiver channel. (R/W)

I2S_TX_BITS_MOD Set the bits to configure the bit length of I2S transmitter channel. (R/W)

I2S_RX_BCK_DIV_NUM Bit clock configuration bit in receiver mode. (R/W)

I2S_TX_BCK_DIV_NUM Bit clock configuration bit in transmitter mode. (R/W)

Espressif Systems 336
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.33. I2S_PDM_CONF_REG (0x00b4)

(re
se

rve
d)

0 0 0 0 0 0

31 26

I2S
_T

X_
PDM

_H
P_B

YPA
SS

0

25

I2S
_R

X_
PDM

_S
IN

C_D
SR_1

6_
EN

1

24

I2S
_T

X_
PDM

_S
IG

M
ADELT

A_IN
_S

HIFT

0x1

23 22

I2S
_T

X_
PDM

_S
IN

C_IN
_S

HIFT

0x1

21 20

I2S
_T

X_
PDM

_L
P_IN

_S
HIFT

0x1

19 18

I2S
_T

X_
PDM

_H
P_IN

_S
HIFT

0x1

17 16

(re
se

rve
d)

0 0 0 0 0 0 0 0

15 8

I2S
_T

X_
PDM

_S
IN

C_O
SR2

0x02

7 4

I2S
_P

DM
2P

CM
_C

ONV_E
N

1

3

I2S
_P

CM
2P

DM
_C

ONV_E
N

1

2

I2S
_R

X_
PDM

_E
N

0

1

I2S
_T

X_
PDM

_E
N

0

0

Reset

I2S_TX_PDM_HP_BYPASS Set this bit to bypass the transmitter’s PDM HP filter. (R/W)

I2S_RX_PDM_SINC_DSR_16_EN PDM downsampling rate for filter group 1 in receiver mode. (R/W)

1: downsampling rate = 128;

0: downsampling rate = 64.

I2S_TX_PDM_SIGMADELTA_IN_SHIFT Adjust the size of the input signal into filter module. (R/W)

0: divided by 2; 1: multiplied by 1; 2: multiplied by 2; 3: multiplied by 4.

I2S_TX_PDM_SINC_IN_SHIFT Adjust the size of the input signal into filter module. (R/W)

0: divided by 2; 1: multiplied by 1; 2: multiplied by 2; 3: multiplied by 4.

I2S_TX_PDM_LP_IN_SHIFT Adjust the size of the input signal into filter module. (R/W)

0: divided by 2; 1: multiplied by 1; 2: multiplied by 2; 3: multiplied by 4.

I2S_TX_PDM_HP_IN_SHIFT Adjust the size of the input signal into filter module. (R/W)

0: divided by 2; 1: multiplied by 1; 2: multiplied by 2; 3: multiplied by 4.

I2S_TX_PDM_SINC_OSR2 Upsampling rate = 64×i2s_tx_pdm_sinc_osr2 (R/W)

I2S_PDM2PCM_CONV_EN Set this bit to enable PDM-to-PCM converter. (R/W)

I2S_PCM2PDM_CONV_EN Set this bit to enable PCM-to-PDM converter. (R/W)

I2S_RX_PDM_EN Set this bit to enable receiver’s PDM mode. (R/W)

I2S_TX_PDM_EN Set this bit to enable transmitter’s PDM mode. (R/W)

Register 12.34. I2S_PDM_FREQ_CONF_REG (0x00b8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

I2S
_T

X_
PDM

_F
P

960

19 10

I2S
_T

X_
PDM

_F
S

441

9 0

Reset

I2S_TX_PDM_FP PCM-to-PDM converter’s PDM frequency parameter. (R/W)

I2S_TX_PDM_FS PCM-to-PDM converter’s PCM frequency parameter. (R/W)

Espressif Systems 337
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

12 I2S Controller (I2S)

Register 12.35. I2S_STATE_REG (0x00bc)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 3

I2S
_R

X_
FIF

O_R
ESET_

BACK

0

2

I2S
_T

X_
FIF

O_R
ESET_

BACK

0

1

I2S
_T

X_
ID

LE

1

0

Reset

I2S_RX_FIFO_RESET_BACK This bit is used to confirm if the Rx FIFO reset is done. 1: reset is not

ready; 0: reset is ready. (RO)

I2S_TX_FIFO_RESET_BACK This bit is used to confirm if the Tx FIFO reset is done. 1: reset is not

ready; 0: reset is ready. (RO)

I2S_TX_IDLE The status bit of the transmitter. 1: the transmitter is idle; 0: the transmitter is busy.

(RO)

Espressif Systems 338
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

13 UART Controller (UART)

13.1 Overview
Embedded applications often require a simple method of exchanging data between devices that need minimal

system resources. The Universal Asynchronous Receiver/Transmitter (UART) is one such standard that can realize

a flexible full-duplex data exchange among different devices. The three UART controllers available on a chip are

compatible with UART-enabled devices from various manufacturers. The UART can also carry out an IrDA (Infrared

Data Exchange), or function as an RS-485 modem.

All UART controllers integrated in the ESP32 feature an identical set of registers for ease of programming and

flexibility. In this documentation, these controllers are referred to as UARTn, where n = 0, 1, and 2, referring to

UART0, UART1, and UART2, respectively.

13.2 UART Features
The UART modules have the following main features:

• Programmable baud rate

• 1024 × 8-bit RAM shared by three UART transmit-FIFOs and receive-FIFOs

• Supports input baud rate self-check

• Supports 5/6/7/8 bits of data length

• Supports 1/1.5/2 STOP bits

• Supports parity bit

• Supports RS485 Protocol

• Supports IrDA Protocol

• Supports DMA to communicate data in high speed

• Supports UART wake-up

• Supports both software and hardware flow control

13.3 Functional Description
13.3.1 Introduction
UART is a character-oriented data link that can be used to achieve communication between two devices. The

asynchronous mode of transmission means that it is not necessary to add clocking information to the data being

sent. This, in turn, requires that the data rate, STOP bits, parity, etc., be identical at the transmitting and receiving

end for the devices to communicate successfully.

A typical UART frame begins with a START bit, followed by a “character” and an optional parity bit for error detection,

and it ends with a STOP condition. The UART controllers available on the ESP32 provide hardware support for

multiple lengths of data and STOP bits. In addition, the controllers support both software and hardware flow

control, as well as DMA, for seamless high-speed data transfer. This allows the developer to employ multiple

UART ports in the system with minimal software overhead.

Espressif Systems 339
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

13.3.2 UART Architecture

Figure 131. UART Basic Structure

Figure 13-1 shows the basic block diagram of the UART controller. The UART block can derive its clock from two

sources: the 80-MHz APB_CLK, or the reference clock REF_TICK (please refer to Chapter Reset and Clock for

more details). These two clock sources can be selected by configuring UART_TICK_REF_ALWAYS_ON.

Then, a divider in the clock path divides the selected clock source to generate clock signals that drive the UART

module. UART_CLKDIV_REG contains the clock divider value in two parts — UART_CLKDIV (integral part) and

UART_CLKDIV_FRAG (decimal part).

The UART controller can be further broken down into two functional blocks — the transmit block and the receive

block.

The transmit block contains a transmit-FIFO buffer, which buffers data awaiting to be transmitted. Software can

write Tx_FIFO via APB, and transmit data into Tx_FIFO via DMA. Tx_FIFO_Ctrl is used to control read- and write-

access to the Tx_FIFO. When Tx_FIFO is not null, Tx_FSM reads data via Tx_FIFO_Ctrl, and transmits data out

according to the set frame format. The outgoing bit stream can be inverted by appropriately configuring the register

UART_TXD_INV.

The receive-block contains a receive-FIFO buffer, which buffers incoming data awaiting to be processed. The

input bit stream, rxd_in, is fed to the UART controller. Negation of the input stream can be controlled by config-

uring the UART_RXD_INV register. Baudrate_Detect measures the baud rate of the input signal by measuring the

minimum pulse width of the input bit stream. Start_Detect is used to detect a START bit in a frame of incoming

data. After detecting the START bit, RX_FSM stores data retrieved from the received frame into Rx_FIFO through

Rx_FIFO_Ctrl.

Software can read data in the Rx_FIFO through the APB. In order to free the CPU from engaging in data transfer

operations, the DMA can be configured for sending or receiving data.

HW_Flow_Ctrl is able to control the data flow of rxd_in and txd_out through standard UART RTS and CTS flow

control signals (rtsn_out and ctsn_in). SW_Flow_Ctrl controls the data flow by inserting special characters in the

incoming and outgoing data flow. When UART is in Light-sleep mode (refer to Chapter Low-Power Management),

Wakeup_Ctrl will start counting pulses in rxd_in. When the number or positive edges of RxD signal is greater than

Espressif Systems 340
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

or equal to (UART_ACTIVE_THRESHOLD+2), a wake_up signal will be generated and sent to RTC. RTC will then

wake up the UART controller. Note that only UART1 and UART2 support Light-sleep mode and that rxd_in cannot

be input through GPIO Matrix but only through IO_MUX.

13.3.3 UART RAM

Figure 132. UART Shared RAM

Three UART controllers share a 1024 × 8-bit RAM space. As illustrated in Figure 13-2, RAM is allocated in different

blocks. One block holds 128 × 8-bit data. Figure 13-2 illustrates the default RAM allocated to Tx_FIFO and

Rx_FIFO of the three UART controllers. Tx_FIFO of UARTn can be extended by setting UARTn_TX_SIZE, while

Rx_FIFO of UARTn can be extended by setting UARTn_RX_SIZE.

NOTICE: Extending the FIFO space of a UART controller may take up the FIFO space of another UART con-

troller.

If none of the UART controllers is active, setting UART_MEM_PD, UART1_MEM_PD, and UART2_MEM_PD can

prompt the RAM to enter low-power mode.

In UART0, bit UART_TXFIFO_RST and bit UART_RXFIFO_RST can be set to reset Tx_FIFO or Rx_FIFO, respec-

tively. In UART1, bit UART1_TXFIFO_RST and bit UART1_RXFIFO_RST can be set to reset Tx_FIFO or Rx_FIFO,

respectively.

Note:

UART2 doesn’t have any register to reset Tx_FIFO or Rx_FIFO, and the UART1_TXFIFO_RST and UART1_RXFIFO_RST

in UART1 may impact the functioning of UART2. Therefore, these 2 registers in UART1 should only be used when the

Tx_FIFO and Rx_FIFO in UART2 do not have any data.

UARTn can access FIFO via register UART_FIFO_REG.

Espressif Systems 341
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

13.3.4 Baud Rate Detection
Setting UART_AUTOBAUD_EN for a UART controller will enable the baud rate detection function. The Bau-

drate_Detect block shown in Figure 13-1 can filter glitches with a pulse width lower than UART_GLITCH_FILT.

In order to use the baud rate detection feature, some random data should be sent to the receiver before starting the

UART communication stream. This is required so that the baud rate can be determined based on the pulse width.

UART_LOWPULSE_MIN_CNT stores minimum low-pulse width, UART_HIGHPULSE_MIN_CNT stores minimum

high-pulse width. By reading these two registers, software can calculate the baud rate of the transmitter.

13.3.5 UART Data Frame
Figure 13-3 shows the basic data frame structure. A data frame starts with a START condition and ends with

a STOP condition. The START condition requires 1 bit and the STOP condition can be realized using 1/1.5/2-

bit widths (as set by UART_STOP_BIT_NUM) (in RS485 mode turnaround delay may be added by configuring

UART_DL0_EN and UART_DL1_EN). The START is low level, while the STOP is high level.

Figure 133. UART Data Frame Structure

The length of a character (BIT0 to BITn) can comprise 5 to 8 bits and can be configured by UART_BIT_NUM.

When UART_PARITY_EN is set, the UART controller hardware will add the appropriate parity bit after the data.

UART_PARITY is used to select odd parity or even parity. If the receiver detects an error in the input character,

interrupt UART_PARITY_ERR_INT will be generated. If the receiver detects an error in the frame format, interrupt

UART_FRM_ERR_INT will be generated.

Interrupt UART_TX_DONE_INT will be generated when all data in Tx_FIFO have been transmitted. When UART_TXD

_BRK is set, the transmitter enter the Break condition and send several NULL characters after the process of send-

ing data is completed. The number of NULL characters can be configured by UART_TX_BRK_NUM. After the trans-

mitter finishes sending all NULL characters, interrupt UART_TX_BRK_DONE_INT will be generated. The minimum

interval between data frames can be configured with UART_TX_IDLE_NUM. If the idle time of a data frame is equal

to, or larger than, the configured value of register UART_TX_IDLE_NUM, interrupt UART_TX_BRK_IDLE_DONE_INT

will be generated.

The receiver can also detect the Break conditions when the RX data line remains logical low for one NULL character

transmission, and a UART_BRK_DET_INT interrupt will be triggered to detect that a Break condition has been

completed.

The receiver can detect the current bus state through the timeout interrupt UART_RXFIFO_TOUT_INT. The UART_RXFIFO_TOUT_INT

interrupt will be triggered when the bus is in the idle state for more than UART_RX_TOUT_THRHD bit time on cur-

rent baud rate after the receiver has received at least one byte. You can use this interrupt to detect whether all the

data from the transmitter has been sent.

Espressif Systems 342
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

13.3.6 AT_CMD Character Structure

Figure 134. AT_CMD Character Format

Figure 13-4 shows a special AT_CMD character format. If the receiver constantly receives UART_AT_CMD_CHAR

characters and these characters satisfy the following conditions, interrupt UART_AT_CMD_CHAR_DET_INT will

be generated.

• Between the first UART_AT_CMD_CHAR and the last non-UART_AT_CMD_CHAR, there are at least UART_

PER_IDLE_NUM APB clock cycles.

• Between every UART_AT_CMD_CHAR character there must be less than UART_RX_GAP_TOUT APB clock

cycles.

• The number of received UART_AT_CMD_CHAR characters must be equal to, or greater than, UART_CHAR_NUM.

• Between the last UART_AT_CMD_CHAR character received and the next non-UART_AT_CMD_CHAR, there

are at least UART_POST_IDLE_NUM APB clock cycles.

13.3.7 Flow Control
UART controller supports both hardware and software flow control. Hardware flow control regulates data flow

through input signal dsrn_in and output signal rtsn_out. Software flow control regulates data flow by inserting

special characters in the flow of sent data and by detecting special characters in the flow of received data.

Espressif Systems 343
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

13.3.7.1 Hardware Flow Control

Figure 135. Hardware Flow Control

Figure 13-5 illustrates how the UART hardware flow control works. In hardware flow control, a high state of the

output signal rtsn_out signifies that a data transmission is requested, while a low state of the same signal notifies

the counterpart to stop data transmission until rtsn_out is pulled high again. There are two ways for a transmitter

to realize hardware flow control:

• UART_RX_FLOW_EN is 0: The level of rtsn_out can be changed by configuring UART_SW_RTS.

• UART_RX_FLOW_EN is 1: If data in Rx_FIFO is greater than UART_RX_FLOW_THRHD, the level of rtsn_out

will be lowered.

If the UART controller detects an edge on ctsn_in, it will generate interrupt UART_CTS_CHG_INT and will stop

transmitting data, once the current data transmission is completed.

The high level of the output signal dtrn_out signifies that the transmitter has finished data preparation. UART

controller will generate interrupt UART_DSR_CHG_INT, after it detects an edge on the input signal dsrn_in. After

the software detects the above-mentioned interrupt, the input signal level of dsrn_in can be figured out by reading

UART_DSRN. The software then decides whether it is able to receive data at that time or not.

Setting UART_LOOPBACK will enable the UART loopback detection function. In this mode, the output signal

txd_out of UART is connected to its input signal rxd_in, rtsn_out is connected to ctsn_in, and dtrn_out is connected

to dsrn_out. If the data transmitted corresponds to the data received, UART is able to transmit and receive data

normally.

13.3.7.2 Software Flow Control

Software can force the transmitter to stop transmitting data by setting UART_FORCE_XOFF, as well as force the

transmitter to continue sending data by setting UART_FORCE_XON.

Espressif Systems 344
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

UART can also control the software flow by transmitting special characters. Setting UART_SW_FLOW_CON_EN

will enable the software flow control function. If the number of data bytes that UART has received exceeds that of

the UART_XOFF threshold, the UART controller can send UART_XOFF_CHAR to instruct its counterpart to stop

data transmission.

When UART_SW_FLOW_CON_EN is 1, software can send flow control characters at any time. When UART_SEND

_XOFF is set, the transmitter will insert a UART_XOFF_CHAR and send it after the current data transmission is

completed. When UART_SEND_XON is set, the transmitter will insert a UART_XON_CHAR and send it after the

current data transmission is completed.

13.3.8 UART DMA
For information on the UART DMA, please refer to Chapter DMA Controller.

13.3.9 UART Interrupts
• UART_AT_CMD_CHAR_DET_INT: Triggered when the receiver detects the configured at_cmd char.

• UART_RS485_CLASH_INT: Triggered when a collision is detected between transmitter and receiver in RS-

485 mode.

• UART_RS485_FRM_ERR_INT: Triggered when a data frame error is detected in RS-485.

• UART_RS485_PARITY_ERR_INT: Triggered when a parity error is detected in RS-485 mode.

• UART_TX_DONE_INT: Triggered when the transmitter has sent out all FIFO data.

• UART_TX_BRK_IDLE_DONE_INT: Triggered when the transmitter’s idle state has been kept to a minimum

after sending the last data.

• UART_TX_BRK_DONE_INT: Triggered when the transmitter completes sending NULL characters, after all

data in transmit-FIFO are sent.

• UART_GLITCH_DET_INT: Triggered when the receiver detects a START bit.

• UART_SW_XOFF_INT: Triggered, if the receiver gets an Xon char when UART_SW_FLOW_CON_EN is set

to 1.

• UART_SW_XON_INT: Triggered, if the receiver gets an Xoff char when UART_SW_FLOW_CON_EN is set to

1.

• UART_RXFIFO_TOUT_INT: Triggered when the receiver takes more time than RX_TOUT_THRHD to receive

a byte.

• UART_BRK_DET_INT: Triggered when the receiver detects a NULL character (i.e. logic 0 for one NULL

character transmission) after stop bits.

• UART_CTS_CHG_INT: Triggered when the receiver detects an edge change of the CTSn signal.

• UART_DSR_CHG_INT: Triggered when the receiver detects an edge change of the DSRn signal.

• UART_RXFIFO_OVF_INT: Triggered when the receiver gets more data than the FIFO can store.

• UART_FRM_ERR_INT: Triggered when the receiver detects a data frame error .

• UART_PARITY_ERR_INT: Triggered when the receiver detects a parity error in the data.

• UART_TXFIFO_EMPTY_INT: Triggered when the amount of data in the transmit-FIFO is less than what

tx_mem_cnttxfifo_cnt specifies.

Espressif Systems 345
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

• UART_RXFIFO_FULL_INT: Triggered when the receiver gets more data than what (rx_flow_thrhd_h3, rx_flow_thrhd)

specifies.

13.3.10 UHCI Interrupts
• UHCI_SEND_A_REG_Q_INT: When using the always_send registers to send a series of short packets, this

is triggered when DMA has sent a short packet.

• UHCI_SEND_S_REG_Q_INT: When using the single_send registers to send a series of short packets, this is

triggered when DMA has sent a short packet.

• UHCI_OUT_TOTAL_EOF_INT: Triggered when all data have been sent.

• UHCI_OUTLINK_EOF_ERR_INT: Triggered when there are some errors in EOF in the outlink descriptor.

• UHCI_IN_DSCR_EMPTY_INT: Triggered when there are not enough inlinks for DMA.

• UHCI_OUT_DSCR_ERR_INT: Triggered when there are some errors in the inlink descriptor.

• UHCI_IN_DSCR_ERR_INT: Triggered when there are some errors in the outlink descriptor.

• UHCI_OUT_EOF_INT: Triggered when the current descriptor’s EOF bit is 1.

• UHCI_OUT_DONE_INT: Triggered when an outlink descriptor is completed.

• UHCI_IN_ERR_EOF_INT: Triggered when there are some errors in EOF in the inlink descriptor.

• UHCI_IN_SUC_EOF_INT: Triggered when a data packet has been received.

• UHCI_IN_DONE_INT: Triggered when an inlink descriptor has been completed.

• UHCI_TX_HUNG_INT: Triggered when DMA takes much time to read data from RAM.

• UHCI_RX_HUNG_INT: Triggered when DMA takes much time to receive data .

• UHCI_TX_START_INT: Triggered when DMA detects a separator char.

• UHCI_RX_START_INT: Triggered when a separator char has been sent.

13.4 Register Summary
13.4.1 UART Register Summary

Name Description UART0 UART1 UART2 Acc

Configuration registers

UART_CONF0_REG Configuration register 0 0x3FF40020 0x3FF50020 0x3FF6E020 R/W

UART_CONF1_REG Configuration register 1 0x3FF40024 0x3FF50024 0x3FF6E024 R/W

UART_CLKDIV_REG
Clock divider configu-

ration
0x3FF40014 0x3FF50014 0x3FF6E014 R/W

UART_FLOW_CONF_REG
Software flow-control

configuration
0x3FF40034 0x3FF50034 0x3FF6E034 R/W

UART_SWFC_CONF_REG
Software flow-control

character configuration
0x3FF4003C 0x3FF5003C 0x3FF6E03C R/W

UART_SLEEP_CONF_REG
Sleep-mode configura-

tion
0x3FF40038 0x3FF50038 0x3FF6E038 R/W

UART_IDLE_CONF_REG
Frame-end idle config-

uration
0x3FF40040 0x3FF50040 0x3FF6E040 R/W

Espressif Systems 346
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

UART_RS485_CONF_REG
RS485 mode configu-

ration
0x3FF40044 0x3FF50044 0x3FF6E044 R/W

Status registers

UART_STATUS_REG UART status register 0x3FF4001C 0x3FF5001C 0x3FF6E01C RO

UART_MEM_TX_STATUS_REG TX FIFO write and read

offset address

0x3FF4005C 0x3FF5005C 0x3FF6E05C RO

UART_MEM_RX_STATUS_REG RX FIFO write and read

offset address

0x3FF40060 0x3FF50060 0x3FF6E060 RO

Autobaud registers

UART_AUTOBAUD_REG
Autobaud configura-

tion register
0x3FF40018 0x3FF50018 0x3FF6E018 R/W

UART_LOWPULSE_REG

Autobaud minimum

low pulse duration

register

0x3FF40028 0x3FF50028 0x3FF6E028 RO

UART_HIGHPULSE_REG

Autobaud minimum

high pulse duration

register

0x3FF4002C 0x3FF5002C 0x3FF6E02C RO

UART_POSPULSE_REG
Autobaud high pulse

register
0x3FF40068 0x3FF50068 0x3FF6E068 RO

UART_NEGPULSE_REG
Autobaud low pulse

register
0x3FF4006C 0x3FF5006C 0x3FF6E06C RO

UART_RXD_CNT_REG
Autobaud edge change

count register
0x3FF40030 0x3FF50030 0x3FF6E030 RO

AT escape seqence detection configuration

UART_AT_CMD_PRECNT_REG
Pre-sequence timing

configuration
0x3FF40048 0x3FF50048 0x3FF6E048 R/W

UART_AT_CMD_POSTCNT_REG
Post-sequence timing

configuration
0x3FF4004C 0x3FF5004C 0x3FF6E04C R/W

UART_AT_CMD_GAPTOUT_REG Timeout configuration 0x3FF40050 0x3FF50050 0x3FF6E050 R/W

UART_AT_CMD_CHAR_REG
AT escape sequence

detection configuration
0x3FF40054 0x3FF50054 0x3FF6E054 R/W

FIFO configuration

UART_FIFO_REG FIFO data register 0x3FF40000 0x3FF50000 0x3FF6E000 R/W

UART_MEM_CONF_REG
UART threshold and al-

location configuration
0x3FF40058 0x3FF50058 0x3FF6E058 R/W

UART_MEM_CNT_STATUS_REG
Receive and transmit

memory configuration
0x3FF40064 0x3FF50064 0x3FF6E064 RO

Interrupt registers

UART_INT_RAW_REG Raw interrupt status 0x3FF40004 0x3FF50004 0x3FF6E004 RO

UART_INT_ST_REG
Masked interrupt sta-

tus
0x3FF40008 0x3FF50008 0x3FF6E008 RO

UART_INT_ENA_REG Interrupt enable bits 0x3FF4000C 0x3FF5000C 0x3FF6E00C R/W

UART_INT_CLR_REG Interrupt clear bits 0x3FF40010 0x3FF50010 0x3FF6E010 WO

Espressif Systems 347
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

13.4.2 UHCI Register Summary

Name Description UDMA0 UDMA1 Acc

Configuration registers

UHCI_CONF0_REG
UART and frame separa-

tion config
0x3FF54000 0x3FF4C000 R/W

UHCI_CONF1_REG UHCI config register 0x3FF5402C 0x3FF4C02C R/W

UHCI_ESCAPE_CONF_REG
Escape characters configu-

ration
0x3FF54064 0x3FF4C064 R/W

UHCI_HUNG_CONF_REG Timeout configuration 0x3FF54068 0x3FF4C068 R/W

UHCI_ESC_CONF0_REG
Escape sequence configu-

ration register 0
0x3FF540B0 0x3FF4C0B0 R/W

UHCI_ESC_CONF1_REG
Escape sequence configu-

ration register 1
0x3FF540B4 0x3FF4C0B4 R/W

UHCI_ESC_CONF2_REG
Escape sequence configu-

ration register 2
0x3FF540B8 0x3FF4C0B8 R/W

UHCI_ESC_CONF3_REG
Escape sequence configu-

ration register 3
0x3FF540BC 0x3FF4C0BC R/W

DMA configuration

UHCI_DMA_OUT_LINK_REG
Link descriptor address

and control
0x3FF54024 0x3FF4C024 R/W

UHCI_DMA_IN_LINK_REG
Link descriptor address

and control
0x3FF54028 0x3FF4C028 R/W

UHCI_DMA_OUT_PUSH_REG FIFO data push register 0x3FF54018 0x3FF4C018 R/W

UHCI_DMA_IN_POP_REG FIFO data pop register 0x3FF54020 0x3FF4C020 RO

DMA status

UHCI_DMA_OUT_STATUS_REG DMA FIFO status 0x3FF54014 0x3FF4C014 RO

UHCI_DMA_OUT_EOF_DES_ADDR_REG
Out EOF link descriptor ad-

dress on success
0x3FF54038 0x3FF4C038 RO

UHCI_DMA_OUT_EOF_BFR_DES_ADDR_REG
Out EOF link descriptor ad-

dress on error
0x3FF54044 0x3FF4C044 RO

UHCI_DMA_IN_SUC_EOF_DES_ADDR_REG
In EOF link descriptor ad-

dress on success
0x3FF5403C 0x3FF4C03C RO

UHCI_DMA_IN_ERR_EOF_DES_ADDR_REG
In EOF link descriptor ad-

dress on error
0x3FF54040 0x3FF4C040 RO

UHCI_DMA_IN_DSCR_REG
Current inlink descriptor,

first word
0x3FF5404C 0x3FF4C04C RO

UHCI_DMA_IN_DSCR_BF0_REG
Current inlink descriptor,

second word
0x3FF54050 0x3FF4C050 RO

UHCI_DMA_IN_DSCR_BF1_REG
Current inlink descriptor,

third word
0x3FF54054 0x3FF4C054 RO

UHCI_DMA_OUT_DSCR_REG
Current outlink descriptor,

first word
0x3FF54058 0x3FF4C058 RO

UHCI_DMA_OUT_DSCR_BF0_REG
Current outlink descriptor,

second word
0x3FF5405C 0x3FF4C05C RO

Espressif Systems 348
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

UHCI_DMA_OUT_DSCR_BF1_REG
Current outlink descriptor,

third word
0x3FF54060 0x3FF4C060 RO

Interrupt registers

UHCI_INT_RAW_REG Raw interrupt status 0x3FF54004 0x3FF4C004 RO

UHCI_INT_ST_REG Masked interrupt status 0x3FF54008 0x3FF4C008 RO

UHCI_INT_ENA_REG Interrupt enable bits 0x3FF5400C 0x3FF4C00C R/W

UHCI_INT_CLR_REG Interrupt clear bits 0x3FF54010 0x3FF4C010 WO

Espressif Systems 349
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

13.5 Registers
13.5.1 UART Registers
The addresses in parenthesis besides register names are the register addresses relative to the UART base ad-

dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 13.4.1 UART Register Summary.

13.5.2 UHCI Registers

Register 13.1. UART_FIFO_REG (0x0)

(re
se

rve
d)

0 0

31 8

UART_
RXF

IFO
_R

D_B
YTE

0 0 0 0 0 0 0 0

7 0

Reset

UART_RXFIFO_RD_BYTE UARTn accesses FIFO via this register. (R/W)

Espressif Systems 350
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.2. UART_INT_RAW_REG (0x4)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

UART_
AT

_C
M

D_C
HAR_D

ET_
IN

T_
RAW

0

18

UART_
RS48

5_
CLA

SH_IN
T_

RAW

0

17

UART_
RS48

5_
FR

M
_E

RR_IN
T_

RAW

0

16

UART_
RS48

5_
PA

RITY
_E

RR_IN
T_

RAW

0

15

UART_
TX

_D
ONE_IN

T_
RAW

0

14

UART_
TX

_B
RK_ID

LE
_D

ONE_IN
T_

RAW

0

13

UART_
TX

_B
RK_D

ONE_IN
T_

RAW

0

12

UART_
GLIT

CH_D
ET_

IN
T_

RAW

0

11

UART_
SW

_X
OFF

_IN
T_

RAW

0

10

UART_
SW

_X
ON_IN

T_
RAW

0

9

UART_
RXF

IFO
_T

OUT_
IN

T_
RAW

0

8

UART_
BRK_D

ET_
IN

T_
RAW

0

7

UART_
CTS

_C
HG_IN

T_
RAW

0

6

UART_
DSR_C

HG_IN
T_

RAW

0

5

UART_
RXF

IFO
_O

VF_
IN

T_
RAW

0

4

UART_
FR

M
_E

RR_IN
T_

RAW

0

3

UART_
PA

RITY
_E

RR_IN
T_

RAW

0

2

UART_
TX

FIF
O_E

M
PTY

_IN
T_

RAW

0

1

UART_
RXF

IFO
_F

ULL
_IN

T_
RAW

0

0

Reset

UART_AT_CMD_CHAR_DET_INT_RAW The raw interrupt status bit for the

UART_AT_CMD_CHAR_DET_INT interrupt. (RO)

UART_RS485_CLASH_INT_RAW The raw interrupt status bit for the UART_RS485_CLASH_INT in-

terrupt. (RO)

UART_RS485_FRM_ERR_INT_RAW The raw interrupt status bit for the

UART_RS485_FRM_ERR_INT interrupt. (RO)

UART_RS485_PARITY_ERR_INT_RAW The raw interrupt status bit for the

UART_RS485_PARITY_ERR_INT interrupt. (RO)

UART_TX_DONE_INT_RAW The raw interrupt status bit for the UART_TX_DONE_INT interrupt. (RO)

UART_TX_BRK_IDLE_DONE_INT_RAW The raw interrupt status bit for the

UART_TX_BRK_IDLE_DONE_INT interrupt. (RO)

UART_TX_BRK_DONE_INT_RAW The raw interrupt status bit for the UART_TX_BRK_DONE_INT

interrupt. (RO)

UART_GLITCH_DET_INT_RAW The raw interrupt status bit for the UART_GLITCH_DET_INT inter-

rupt. (RO)

UART_SW_XOFF_INT_RAW The raw interrupt status bit for the UART_SW_XOFF_INT interrupt. (RO)

UART_SW_XON_INT_RAW The raw interrupt status bit for the UART_SW_XON_INT interrupt. (RO)

UART_RXFIFO_TOUT_INT_RAW The raw interrupt status bit for the UART_RXFIFO_TOUT_INT in-

terrupt. (RO)

UART_BRK_DET_INT_RAW The raw interrupt status bit for the UART_BRK_DET_INT interrupt. (RO)

UART_CTS_CHG_INT_RAW The raw interrupt status bit for the UART_CTS_CHG_INT interrupt. (RO)

UART_DSR_CHG_INT_RAW The raw interrupt status bit for the UART_DSR_CHG_INT interrupt.

(RO)

UART_RXFIFO_OVF_INT_RAW The raw interrupt status bit for the UART_RXFIFO_OVF_INT inter-

rupt. (RO)

UART_FRM_ERR_INT_RAW The raw interrupt status bit for the UART_FRM_ERR_INT interrupt. (RO)

Continued on the next page...

Espressif Systems 351
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.2. UART_INT_RAW_REG (0x4)

Continued from the previous page...

UART_PARITY_ERR_INT_RAW The raw interrupt status bit for the UART_PARITY_ERR_INT inter-

rupt. (RO)

UART_TXFIFO_EMPTY_INT_RAW The raw interrupt status bit for the UART_TXFIFO_EMPTY_INT

interrupt. (RO)

UART_RXFIFO_FULL_INT_RAW The raw interrupt status bit for the UART_RXFIFO_FULL_INT inter-

rupt. (RO)

Espressif Systems 352
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.3. UART_INT_ST_REG (0x8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

UART_
AT

_C
M

D_C
HAR_D

ET_
IN

T_
ST

0

18

UART_
RS48

5_
CLA

SH_IN
T_

ST

0

17

UART_
RS48

5_
FR

M
_E

RR_IN
T_

ST

0

16

UART_
RS48

5_
PA

RITY
_E

RR_IN
T_

ST

0

15

UART_
TX

_D
ONE_IN

T_
ST

0

14

UART_
TX

_B
RK_ID

LE
_D

ONE_IN
T_

ST

0

13

UART_
TX

_B
RK_D

ONE_IN
T_

ST

0

12

UART_
GLIT

CH_D
ET_

IN
T_

ST

0

11

UART_
SW

_X
OFF

_IN
T_

ST

0

10

UART_
SW

_X
ON_IN

T_
ST

0

9

UART_
RXF

IFO
_T

OUT_
IN

T_
ST

0

8

UART_
BRK_D

ET_
IN

T_
ST

0

7

UART_
CTS

_C
HG_IN

T_
ST

0

6

UART_
DSR_C

HG_IN
T_

ST

0

5

UART_
RXF

IFO
_O

VF_
IN

T_
ST

0

4

UART_
FR

M
_E

RR_IN
T_

ST

0

3

UART_
PA

RITY
_E

RR_IN
T_

ST

0

2

UART_
TX

FIF
O_E

M
PTY

_IN
T_

ST

0

1

UART_
RXF

IFO
_F

ULL
_IN

T_
ST

0

0

Reset

UART_AT_CMD_CHAR_DET_INT_ST The masked interrupt status bit for the

UART_AT_CMD_CHAR_DET_INT interrupt. (RO)

UART_RS485_CLASH_INT_ST The masked interrupt status bit for the UART_RS485_CLASH_INT

interrupt. (RO)

UART_RS485_FRM_ERR_INT_ST The masked interrupt status bit for the

UART_RS485_FRM_ERR_INT interrupt. (RO)

UART_RS485_PARITY_ERR_INT_ST The masked interrupt status bit for the

UART_RS485_PARITY_ERR_INT interrupt. (RO)

UART_TX_DONE_INT_ST The masked interrupt status bit for the UART_TX_DONE_INT interrupt.

(RO)

UART_TX_BRK_IDLE_DONE_INT_ST The masked interrupt status bit for the

UART_TX_BRK_IDLE_DONE_INT interrupt. (RO)

UART_TX_BRK_DONE_INT_ST The masked interrupt status bit for the UART_TX_BRK_DONE_INT

interrupt. (RO)

UART_GLITCH_DET_INT_ST The masked interrupt status bit for the UART_GLITCH_DET_INT inter-

rupt. (RO)

UART_SW_XOFF_INT_ST The masked interrupt status bit for the UART_SW_XOFF_INT interrupt.

(RO)

UART_SW_XON_INT_ST The masked interrupt status bit for the UART_SW_XON_INT interrupt. (RO)

UART_RXFIFO_TOUT_INT_ST The masked interrupt status bit for the UART_RXFIFO_TOUT_INT

interrupt. (RO)

UART_BRK_DET_INT_ST The masked interrupt status bit for the UART_BRK_DET_INT interrupt.

(RO)

UART_CTS_CHG_INT_ST The masked interrupt status bit for the UART_CTS_CHG_INT interrupt.

(RO)

UART_DSR_CHG_INT_ST The masked interrupt status bit for the UART_DSR_CHG_INT interrupt.

(RO)

Continued on the next page...

Espressif Systems 353
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.3. UART_INT_ST_REG (0x8)

Continued from the previous page...

UART_RXFIFO_OVF_INT_ST The masked interrupt status bit for the UART_RXFIFO_OVF_INT inter-

rupt. (RO)

UART_FRM_ERR_INT_ST The masked interrupt status bit for the UART_FRM_ERR_INT interrupt.

(RO)

UART_PARITY_ERR_INT_ST The masked interrupt status bit for the UART_PARITY_ERR_INT inter-

rupt. (RO)

UART_TXFIFO_EMPTY_INT_ST The masked interrupt status bit for the UART_TXFIFO_EMPTY_INT

interrupt. (RO)

UART_RXFIFO_FULL_INT_ST The masked interrupt status bit for UART_RXFIFO_FULL_INT. (RO)

Espressif Systems 354
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.4. UART_INT_ENA_REG (0xC)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

UART_
AT

_C
M

D_C
HAR_D

ET_
IN

T_
ENA

0

18

UART_
RS48

5_
CLA

SH_IN
T_

ENA

0

17

UART_
RS48

5_
FR

M
_E

RR_IN
T_

ENA

0

16

UART_
RS48

5_
PA

RITY
_E

RR_IN
T_

ENA

0

15

UART_
TX

_D
ONE_IN

T_
ENA

0

14

UART_
TX

_B
RK_ID

LE
_D

ONE_IN
T_

ENA

0

13

UART_
TX

_B
RK_D

ONE_IN
T_

ENA

0

12

UART_
GLIT

CH_D
ET_

IN
T_

ENA

0

11

UART_
SW

_X
OFF

_IN
T_

ENA

0

10

UART_
SW

_X
ON_IN

T_
ENA

0

9

UART_
RXF

IFO
_T

OUT_
IN

T_
ENA

0

8

UART_
BRK_D

ET_
IN

T_
ENA

0

7

UART_
CTS

_C
HG_IN

T_
ENA

0

6

UART_
DSR_C

HG_IN
T_

ENA

0

5

UART_
RXF

IFO
_O

VF_
IN

T_
ENA

0

4

UART_
FR

M
_E

RR_IN
T_

ENA

0

3

UART_
PA

RITY
_E

RR_IN
T_

ENA

0

2

UART_
TX

FIF
O_E

M
PTY

_IN
T_

ENA

0

1

UART_
RXF

IFO
_F

ULL
_IN

T_
ENA

0

0

Reset

UART_AT_CMD_CHAR_DET_INT_ENA The interrupt enable bit for the

UART_AT_CMD_CHAR_DET_INT interrupt. (R/W)

UART_RS485_CLASH_INT_ENA The interrupt enable bit for the UART_RS485_CLASH_INT inter-

rupt. (R/W)

UART_RS485_FRM_ERR_INT_ENA The interrupt enable bit for the UART_RS485_FRM_ERR_INT

interrupt. (R/W)

UART_RS485_PARITY_ERR_INT_ENA The interrupt enable bit for the

UART_RS485_PARITY_ERR_INT interrupt. (R/W)

UART_TX_DONE_INT_ENA The interrupt enable bit for the UART_TX_DONE_INT interrupt. (R/W)

UART_TX_BRK_IDLE_DONE_INT_ENA The interrupt enable bit for the

UART_TX_BRK_IDLE_DONE_INT interrupt. (R/W)

UART_TX_BRK_DONE_INT_ENA The interrupt enable bit for the UART_TX_BRK_DONE_INT inter-

rupt. (R/W)

UART_GLITCH_DET_INT_ENA The interrupt enable bit for the UART_GLITCH_DET_INT interrupt.

(R/W)

UART_SW_XOFF_INT_ENA The interrupt enable bit for the UART_SW_XOFF_INT interrupt. (R/W)

UART_SW_XON_INT_ENA The interrupt enable bit for the UART_SW_XON_INT interrupt. (R/W)

UART_RXFIFO_TOUT_INT_ENA The interrupt enable bit for the UART_RXFIFO_TOUT_INT interrupt.

(R/W)

UART_BRK_DET_INT_ENA The interrupt enable bit for the UART_BRK_DET_INT interrupt. (R/W)

UART_CTS_CHG_INT_ENA The interrupt enable bit for the UART_CTS_CHG_INT interrupt. (R/W)

UART_DSR_CHG_INT_ENA The interrupt enable bit for the UART_DSR_CHG_INT interrupt. (R/W)

UART_RXFIFO_OVF_INT_ENA The interrupt enable bit for the UART_RXFIFO_OVF_INT interrupt.

(R/W)

UART_FRM_ERR_INT_ENA The interrupt enable bit for the UART_FRM_ERR_INT interrupt. (R/W)

UART_PARITY_ERR_INT_ENA The interrupt enable bit for the UART_PARITY_ERR_INT interrupt.

(R/W)

Continued on the next page...
Espressif Systems 355

Submit Documentation Feedback
ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.4. UART_INT_ENA_REG (0xC)

Continued from the previous page...

UART_TXFIFO_EMPTY_INT_ENA The interrupt enable bit for the UART_TXFIFO_EMPTY_INT inter-

rupt. (R/W)

UART_RXFIFO_FULL_INT_ENA The interrupt enable bit for the UART_RXFIFO_FULL_INT interrupt.

(R/W)

Espressif Systems 356
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.5. UART_INT_CLR_REG (0x10)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

UART_
AT

_C
M

D_C
HAR_D

ET_
IN

T_
CLR

0

18

UART_
RS48

5_
CLA

SH_IN
T_

CLR

0

17

UART_
RS48

5_
FR

M
_E

RR_IN
T_

CLR

0

16

UART_
RS48

5_
PA

RITY
_E

RR_IN
T_

CLR

0

15

UART_
TX

_D
ONE_IN

T_
CLR

0

14

UART_
TX

_B
RK_ID

LE
_D

ONE_IN
T_

CLR

0

13

UART_
TX

_B
RK_D

ONE_IN
T_

CLR

0

12

UART_
GLIT

CH_D
ET_

IN
T_

CLR

0

11

UART_
SW

_X
OFF

_IN
T_

CLR

0

10

UART_
SW

_X
ON_IN

T_
CLR

0

9

UART_
RXF

IFO
_T

OUT_
IN

T_
CLR

0

8

UART_
BRK_D

ET_
IN

T_
CLR

0

7

UART_
CTS

_C
HG_IN

T_
CLR

0

6

UART_
DSR_C

HG_IN
T_

CLR

0

5

UART_
RXF

IFO
_O

VF_
IN

T_
CLR

0

4

UART_
FR

M
_E

RR_IN
T_

CLR

0

3

UART_
PA

RITY
_E

RR_IN
T_

CLR

0

2

UART_
TX

FIF
O_E

M
PTY

_IN
T_

CLR

0

1

UART_
RXF

IFO
_F

ULL
_IN

T_
CLR

0

0

Reset

UART_AT_CMD_CHAR_DET_INT_CLR Set this bit to clear the UART_AT_CMD_CHAR_DET_INT in-

terrupt. (WO)

UART_RS485_CLASH_INT_CLR Set this bit to clear the UART_RS485_CLASH_INT interrupt. (WO)

UART_RS485_FRM_ERR_INT_CLR Set this bit to clear the UART_RS485_FRM_ERR_INT interrupt.

(WO)

UART_RS485_PARITY_ERR_INT_CLR Set this bit to clear the UART_RS485_PARITY_ERR_INT in-

terrupt. (WO)

UART_TX_DONE_INT_CLR Set this bit to clear the UART_TX_DONE_INT interrupt. (WO)

UART_TX_BRK_IDLE_DONE_INT_CLR Set this bit to clear the UART_TX_BRK_IDLE_DONE_INT

interrupt. (WO)

UART_TX_BRK_DONE_INT_CLR Set this bit to clear the UART_TX_BRK_DONE_INT interrupt. (WO)

UART_GLITCH_DET_INT_CLR Set this bit to clear the UART_GLITCH_DET_INT interrupt. (WO)

UART_SW_XOFF_INT_CLR Set this bit to clear the UART_SW_XOFF_INT interrupt. (WO)

UART_SW_XON_INT_CLR Set this bit to clear the UART_SW_XON_INT interrupt. (WO)

UART_RXFIFO_TOUT_INT_CLR Set this bit to clear the UART_RXFIFO_TOUT_INT interrupt. This

bit can be set only when both rxfifo_cnt and rx_mem_cnt are 0. (WO)

UART_BRK_DET_INT_CLR Set this bit to clear the UART_BRK_DET_INT interrupt. (WO)

UART_CTS_CHG_INT_CLR Set this bit to clear the UART_CTS_CHG_INT interrupt. (WO)

UART_DSR_CHG_INT_CLR Set this bit to clear the UART_DSR_CHG_INT interrupt. (WO)

UART_RXFIFO_OVF_INT_CLR Set this bit to clear the UART_RXFIFO_OVF_INT interrupt. (WO)

UART_FRM_ERR_INT_CLR Set this bit to clear the UART_FRM_ERR_INT interrupt. (WO)

UART_PARITY_ERR_INT_CLR Set this bit to clear the UART_PARITY_ERR_INT interrupt. (WO)

UART_TXFIFO_EMPTY_INT_CLR Set this bit to clear the UART_TXFIFO_EMPTY_INT interrupt.

(WO)

UART_RXFIFO_FULL_INT_CLR Set this bit to clear the UART_RXFIFO_FULL_INT interrupt. This bit

can be set only when data in Rx_FIFO is less than UART_RXFIFO_FULL_THRHD. (WO)

Espressif Systems 357
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.6. UART_CLKDIV_REG (0x14)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UART_
CLK

DIV_F
RAG

0x00

23 20

UART_
CLK

DIV

0x0002B6

19 0

Reset

UART_CLKDIV_FRAG The decimal part of the frequency divider factor. (R/W)

UART_CLKDIV The integral part of the frequency divider factor. (R/W)

Register 13.7. UART_AUTOBAUD_REG (0x18)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

UART_
GLIT

CH_F
ILT

0x010

15 8

(re
se

rve
d)

0 0 0 0 0 0 0

7 1

UART_
AUTO

BAUD_E
N

0

0

Reset

UART_GLITCH_FILT When the input pulse width is lower than this value, the pulse is ignored. This

register is used in the autobauding process. (R/W)

UART_AUTOBAUD_EN This is the enable bit for autobaud. (R/W)

Espressif Systems 358
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.8. UART_STATUS_REG (0x1C)

UART_
TX

D

0

31

UART_
RTS

N

0

30

UART_
DTR

N

0

29

(re
se

rve
d)

0

28

UART_
ST_

UTX
_O

UT

0 0 0 0

27 24

UART_
TX

FIF
O_C

NT

0 0 0 0 0 0 0 0

23 16

UART_
RXD

0

15

UART_
CTS

N

0

14

UART_
DSRN

0

13

(re
se

rve
d)

0

12

UART_
ST_

URX_
OUT

0 0 0 0

11 8

UART_
RXF

IFO
_C

NT

0 0 0 0 0 0 0 0

7 0

Reset

UART_TXD This bit represents the level of the internal UART RxD signal. (RO)

UART_RTSN This bit corresponds to the level of the internal UART CTS signal. (RO)

UART_DTRN This bit corresponds to the level of the internal UAR DSR signal. (RO)

UART_ST_UTX_OUT This register stores the state of the transmitter’s finite state machine. 0:

TX_IDLE; 1: TX_STRT; 2: TX_DAT0; 3: TX_DAT1; 4: TX_DAT2; 5: TX_DAT3; 6: TX_DAT4; 7:

TX_DAT5; 8: TX_DAT6; 9: TX_DAT7; 10: TX_PRTY; 11: TX_STP1; 12: TX_STP2; 13: TX_DL0;

14: TX_DL1. (RO)

UART_TXFIFO_CNT (tx_mem_cnt, txfifo_cnt) stores the number of bytes of valid data in transmit-

FIFO. tx_mem_cnt stores the three most significant bits, txfifo_cnt stores the eight least significant

bits. (RO)

UART_RXD This bit corresponds to the level of the internal UART RxD signal. (RO)

UART_CTSN This bit corresponds to the level of the internal UART CTS signal. (RO)

UART_DSRN This bit corresponds to the level of the internal UAR DSR signal. (RO)

UART_ST_URX_OUT This register stores the value of the receiver’s finite state machine. 0: RX_IDLE;

1: RX_STRT; 2: RX_DAT0; 3: RX_DAT1; 4: RX_DAT2; 5: RX_DAT3; 6: RX_DAT4; 7: RX_DAT5; 8:

RX_DAT6; 9: RX_DAT7; 10: RX_PRTY; 11: RX_STP1; 12:RX_STP2; 13: RX_DL1. (RO)

UART_RXFIFO_CNT (rx_mem_cnt, rxfifo_cnt) stores the number of bytes of valid data in the receive-

FIFO. rx_mem_cnt register stores the three most significant bits, rxfifo_cnt stores the eight least

significant bits. (RO)

Espressif Systems 359
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.9. UART_CONF0_REG (0x20)

(re
se

rve
d)

0 0 0 0

31 28

UART_
TIC

K_R
EF_

ALW
AY

S_O
N

1

27

(re
se

rve
d)

0 0

26 25

UART_
DTR

_IN
V

0

24

UART_
RTS

_IN
V

0

23

UART_
TX

D_IN
V

0

22

UART_
DSR_IN

V

0

21

UART_
CTS

_IN
V

0

20

UART_
RXD

_IN
V

0

19

UART_
TX

FIF
O_R

ST

0

18

UART_
RXF

IFO
_R

ST

0

17

UART_
IR

DA_E
N

0

16

UART_
TX

_F
LO

W
_E

N

0

15

UART_
LO

OPBACK

0

14

UART_
IR

DA_R
X_

IN
V

0

13

UART_
IR

DA_T
X_

IN
V

0

12

UART_
IR

DA_W
CTL

0

11

UART_
IR

DA_T
X_

EN

0

10

UART_
IR

DA_D
PLX

0

9

UART_
TX

D_B
RK

0

8

UART_
SW

_D
TR

0

7

UART_
SW

_R
TS

0

6

UART_
STO

P_B
IT_

NUM

1

5 4

UART_
BIT_

NUM

3

3 2

UART_
PA

RITY
_E

N

0

1

UART_
PA

RITY

0

0

Reset

UART_TICK_REF_ALWAYS_ON This register is used to select the clock; 1: APB clock; 0: REF_TICK.

(R/W)

UART_DTR_INV Set this bit to invert the level of the UART DTR signal. (R/W)

UART_RTS_INV Set this bit to invert the level of the UART RTS signal. (R/W)

UART_TXD_INV Set this bit to invert the level of the UART TxD signal. (R/W)

UART_DSR_INV Set this bit to invert the level of the UART DSR signal. (R/W)

UART_CTS_INV Set this bit to invert the level of the UART CTS signal. (R/W)

UART_RXD_INV Set this bit to invert the level of the UART Rxd signal. (R/W)

UART_TXFIFO_RST Set this bit to reset the UART transmit-FIFO. NOTICE: UART2 doesn’t have any

register to reset Tx_FIFO or Rx_FIFO, and the UART1_TXFIFO_RST and UART1_RXFIFO_RST in

UART1 may impact the functioning of UART2. Therefore, these two registers in UART1 should

only be used when the Tx_FIFO and Rx_FIFO in UART2 do not have any data. (R/W)

UART_RXFIFO_RST Set this bit to reset the UART receive-FIFO. NOTICE: UART2 doesn’t have any

register to reset Tx_FIFO or Rx_FIFO, and the UART1_TXFIFO_RST and UART1_RXFIFO_RST in

UART1 may impact the functioning of UART2. Therefore, these two registers in UART1 should

only be used when the Tx_FIFO and Rx_FIFO in UART2 do not have any data. (R/W)

UART_IRDA_EN Set this bit to enable the IrDA protocol. (R/W)

UART_TX_FLOW_EN Set this bit to enable the flow control function for the transmitter. (R/W)

UART_LOOPBACK Set this bit to enable the UART loopback test mode. (R/W)

UART_IRDA_RX_INV Set this bit to invert the level of the IrDA receiver. (R/W)

UART_IRDA_TX_INV Set this bit to invert the level of the IrDA transmitter. (R/W)

UART_IRDA_WCTL 1: The IrDA transmitter’s 11th bit is the same as its 10th bit; 0: set IrDA trans-

mitter’s 11th bit to 0. (R/W)

UART_IRDA_TX_EN This is the start enable bit of the IrDA transmitter. (R/W)

UART_IRDA_DPLX Set this bit to enable the IrDA loopback mode. (R/W)

UART_TXD_BRK Set this bit to enable the transmitter to send NULL, when the process of sending

data is completed. (R/W)

Continued on the next page...

Espressif Systems 360
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.9. UART_CONF0_REG (0x20)

Continued from the previous page...

UART_SW_DTR This register is used to configure the software DTR signal used in software flow

control. (R/W)

UART_SW_RTS This bit is used in hardware flow control when UART_RX_FLOW_EN is 0. Set this

bit to drive the RTS (or rtsn_out) signal low, and reset to drive the signal high. (R/W)

UART_STOP_BIT_NUM This register is used to set the length of the stop bit.

0: Invalid. No effect

1: 1 bit

2: 1.5 bits

3: 2 bits

(R/W)

UART_BIT_NUM This register is used to set the length of data; 0: 5 bits, 1: 6 bits, 2: 7 bits, 3: 8

bits. (R/W)

UART_PARITY_EN Set this bit to enable the UART parity check. (R/W)

UART_PARITY This register is used to configure the parity check mode; 0: even, 1: odd. (R/W)

Espressif Systems 361
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.10. UART_CONF1_REG (0x24)

UART_
RX_

TO
UT_

EN

0

31

UART_
RX_

TO
UT_

TH
RHD

0 0 0 0 0 0 0

30 24

UART_
RX_

FL
OW

_E
N

0

23

UART_
RX_

FL
OW

_T
HRHD

0x00

22 16

(re
se

rve
d)

0

15

UART_
TX

FIF
O_E

M
PTY

_T
HRHD

0x60

14 8

(re
se

rve
d)

0

7

UART_
RXF

IFO
_F

ULL
_T

HRHD

0x60

6 0

Reset

UART_RX_TOUT_EN This is the enable bit for the UART receive-timeout function. (R/W)

UART_RX_TOUT_THRHD This register is used to configure the UART receiver’s timeout value when

receiving a byte. When using APB_CLK as the clock source, the register counts by UART baud

cycle multiplied by 8. When using REF_TICK as the clock source, the register counts by

UART baud cycle * 8 * (REF_TICK frequency)/(APB_CLK frequency). (R/W)

UART_RX_FLOW_EN This is the flow enable bit of the UART receiver; 1: choose software flow control

by configuring the sw_rts signal; 0: disable software flow control. (R/W)

UART_RX_FLOW_THRHD When UART_RX_FLOW_EN is 1 and the receiver gets more data than its

threshold value, the receiver produces an rtsn_out signal that tells the transmitter to stop transfer-

ring data. The threshold value is (rx_flow_thrhd_h3, rx_flow_thrhd). (R/W)

UART_TXFIFO_EMPTY_THRHD When the data amount in transmit-FIFO is less than its thresh-

old value, it will produce a TXFIFO_EMPTY_INT_RAW interrupt. The threshold value is

(tx_mem_empty_thrhd, txfifo_empty_thrhd). (R/W)

UART_RXFIFO_FULL_THRHD When the receiver gets more data than its threshold value, the re-

ceiver will produce an RXFIFO_FULL_INT_RAW interrupt. The threshold value is (rx_flow_thrhd_h3,

rxfifo_full_thrhd). (R/W)

Register 13.11. UART_LOWPULSE_REG (0x28)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UART_
LO

W
PULS

E_M
IN

_C
NT

0x0FFFFF

19 0

Reset

UART_LOWPULSE_MIN_CNT This register stores the value of the minimum duration of the low-level

pulse. It is used in the baud rate detection process. (RO)

Espressif Systems 362
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.12. UART_HIGHPULSE_REG (0x2C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UART_
HIG

HPULS
E_M

IN
_C

NT

0x0FFFFF

19 0

Reset

UART_HIGHPULSE_MIN_CNT This register stores the value of the minimum duration of the high

level pulse. It is used in baud rate detection process. (RO)

Register 13.13. UART_RXD_CNT_REG (0x30)

(re
se

rve
d)

0 0

31 10

UART_
RXD

_E
DGE_C

NT

0x000

9 0

Reset

UART_RXD_EDGE_CNT This register stores the count of the RxD edge change. It is used in the

baud rate detection process. (RO)

Espressif Systems 363
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.14. UART_FLOW_CONF_REG (0x34)

(re
se

rve
d)

0 0

31 6

UART_
SEND_X

OFF

0

5

UART_
SEND_X

ON

0

4

UART_
FO

RCE_X
OFF

0

3

UART_
FO

RCE_X
ON

0

2

UART_
XO

NOFF
_D

EL

0

1

UART_
SW

_F
LO

W
_C

ON_E
N

0

0

Reset

UART_SEND_XOFF Hardware auto-clear; set to 1 to send Xoff char. (R/W)

UART_SEND_XON Hardware auto-clear; set to 1 to send Xon char. (R/W)

UART_FORCE_XOFF Set this bit to set the internal CTSn and stop the transmitter from sending data.

(R/W)

UART_FORCE_XON Set this bit to clear the internal CTSn and enable the transmitter to continue

sending data. (R/W)

UART_XONOFF_DEL Set this bit to remove the flow-control char from the received data. (R/W)

UART_SW_FLOW_CON_EN Set this bit to enable software flow control. It is used with register

sw_xon or sw_xoff. (R/W)

Register 13.15. UART_SLEEP_CONF_REG (0x38)

(re
se

rve
d)

0 0

31 10

UART_
ACTIV

E_T
HRESHOLD

0x0F0

9 0

Reset

UART_ACTIVE_THRESHOLD When the number of positive edges of RxD signal is larger than or

equal to (UART_ACTIVE_THRESHOLD+2), the system emerges from Light-sleep mode and be-

comes active. (R/W)

Espressif Systems 364
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.16. UART_SWFC_CONF_REG (0x3C)

UART_
XO

FF
_C

HAR

0x013

31 24

UART_
XO

N_C
HAR

0x011

23 16

UART_
XO

FF
_T

HRESHOLD

0x0E0

15 8

UART_
XO

N_T
HRESHOLD

0x000

7 0

Reset

UART_XOFF_CHAR This register stores the Xoff flow control char. (R/W)

UART_XON_CHAR This register stores the Xon flow control char. (R/W)

UART_XOFF_THRESHOLD When the data amount in receive-FIFO is more than what this register

indicates, it will send an Xoff char, with uart_sw_flow_con_en set to 1. (R/W)

UART_XON_THRESHOLD When the data amount in receive-FIFO is less than what this register in-

dicates, it will send an Xon char, with uart_sw_flow_con_en set to 1. (R/W)

Register 13.17. UART_IDLE_CONF_REG (0x40)

(re
se

rve
d)

0 0 0 0

31 28

UART_
TX

_B
RK_N

UM

0x00A

27 20

UART_
TX

_ID
LE

_N
UM

0x100

19 10

UART_
RX_

ID
LE

_T
HRHD

0x100

9 0

Reset

UART_TX_BRK_NUM This register is used to configure the number of zeros (0) sent, after the process

of sending data is completed. It is active when txd_brk is set to 1. (R/W)

UART_TX_IDLE_NUM This register is used to configure the duration between transfers. (R/W)

UART_RX_IDLE_THRHD When the receiver takes more time to receive Byte data than what this

register indicates, it will produce a frame-end signal. (R/W)

Espressif Systems 365
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.18. UART_RS485_CONF_REG (0x44)

(re
se

rve
d)

0 0

31 10

UART_
RS48

5_
TX

_D
LY

_N
UM

0 0 0 0

9 6

UART_
RS48

5_
RX_

DLY
_N

UM

0

5

UART_
RS48

5R
XB

Y_T
X_

EN

0

4

UART_
RS48

5T
X_

RX_
EN

0

3

UART_
DL1

_E
N

0

2

UART_
DL0

_E
N

0

1

UART_
RS48

5_
EN

0

0

Reset

UART_RS485_TX_DLY_NUM This register is used to delay the transmitter’s internal data signal.

(R/W)

UART_RS485_RX_DLY_NUM This register is used to delay the receiver’s internal data signal. (R/W)

UART_RS485RXBY_TX_EN 1: enable the RS-485 transmitter to send data, when the RS-485 re-

ceiver line is busy; 0: the RS-485 transmitter should not send data, when its receiver is busy.

(R/W)

UART_RS485TX_RX_EN Set this bit to enable the transmitter’s output signal loop back to the re-

ceiver’s input signal. (R/W)

UART_DL1_EN Set this bit to delay the STOP bit by 1 bit. (R/W)

UART_DL0_EN Set this bit to delay the STOP bit by 1 bit after DL1. (R/W)

UART_RS485_EN Set this bit to choose the RS-485 mode. (R/W)

Register 13.19. UART_AT_CMD_PRECNT_REG (0x48)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UART_
PRE_ID

LE
_N

UM

0x0186A00

23 0

Reset

UART_PRE_IDLE_NUM This register is used to configure the idle-time duration before the first

at_cmd is received by the receiver. When the duration is less than what this register indicates,

it will not take the next data received as an at_cmd char. (R/W)

Espressif Systems 366
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.20. UART_AT_CMD_POSTCNT_REG (0x4c)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UART_
POST_

ID
LE

_N
UM

0x0186A00

23 0

Reset

UART_POST_IDLE_NUM This register is used to configure the duration between the last at_cmd

and the next data. When the duration is less than what this register indicates, it will not take the

previous data as an at_cmd char. (R/W)

Register 13.21. UART_AT_CMD_GAPTOUT_REG (0x50)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UART_
RX_

GAP_T
OUT

0x0001E00

23 0

Reset

UART_RX_GAP_TOUT This register is used to configure the interval between the at_cmd chars.

When the interval is greater than the value of this register, it will not take the data as continuous

at_cmd chars. The register should be configured to more than half of the baud rate. (R/W)

Register 13.22. UART_AT_CMD_CHAR_REG (0x54)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

UART_
CHAR_N

UM

0x003

15 8

UART_
AT

_C
M

D_C
HAR

0x02B

7 0

Reset

UART_CHAR_NUM This register is used to configure the number of continuous at_cmd chars re-

ceived by the receiver. (R/W)

UART_AT_CMD_CHAR This register is used to configure the content of an at_cmd char. (R/W)

Espressif Systems 367
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.23. UART_MEM_CONF_REG (0x58)

(re
se

rve
d)

0

31

UART_
TX

_M
EM

_E
M

PTY
_T

HRHD

0x0

30 28

UART_
RX_

M
EM

_F
ULL

_T
HRHD

0x0

27 25

UART_
XO

FF
_T

HRESHOLD
_H

2

0x0

24 23

UART_
XO

N_T
HRESHOLD

_H
2

0x0

22 21

UART_
RX_

TO
UT_

TH
RHD_H

3

0x0

20 18

UART_
RX_

FL
OW

_T
HRHD_H

3

0x0

17 15

(re
se

rve
d)

0 0 0 0

14 11

UART_
TX

_S
IZE

0x01

10 7

UART_
RX_

SIZE

0x01

6 3

(re
se

rve
d)

0 0

2 1

UART_
M

EM
_P

D

0

0

Reset

UART_TX_MEM_EMPTY_THRHD Refer to the description of TXFIFO_EMPTY_THRHD. (R/W)

UART_RX_MEM_FULL_THRHD Refer to the description of RXFIFO_FULL_THRHD. (R/W)

UART_XOFF_THRESHOLD_H2 Refer to the description of UART_XOFF_THRESHOLD. (R/W)

UART_XON_THRESHOLD_H2 Refer to the description of UART_XON_THRESHOLD. (R/W)

UART_RX_TOUT_THRHD_H3 Refer to the description of RX_TOUT_THRHD. (R/W)

UART_RX_FLOW_THRHD_H3 Refer to the description of RX_FLOW_THRHD. (R/W)

UART_TX_SIZE This register is used to configure the amount of memory allocated to the transmit-

FIFO. The default number is 128 bytes. (R/W)

UART_RX_SIZE This register is used to configure the amount of memory allocated to the receive-

FIFO. The default number is 128 bytes. (R/W)

UART_MEM_PD Set this bit to power down the memory. When the reg_mem_pd register is set to 1

for all UART controllers, Memory will enter the low-power mode. (R/W)

Register 13.24. UART_MEM_TX_STATUS_REG (0x5c)

(re
se

rve
d)

0

31 24

UART_
M

EM
_T

X_
W

R_A
DDR

0

23 13

UART_
M

EM
_T

X_
RD_A

DDR

0

12 2

(re
se

rve
d)

0

1 0

Reset

UART_MEM_TX_WR_ADDR Represents the offset address to write TX FIFO. (RO)

UART_MEM_TX_RD_ADDR Represents the offset address to read TX FIFO. (RO)

Espressif Systems 368
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.25. UART_MEM_RX_STATUS_REG (0x0060)

(re
se

rve
d)

0

31 24

UART_
M

EM
_R

X_
W

R_A
DDR

0

23 13

UART_
M

EM
_R

X_
RD_A

DDR

0

12 2

(re
se

rve
d)

0

1 0

Reset

UART_MEM_RX_RD_ADDR Represents the offset address to read RX FIFO. (RO)

UART_MEM_RX_WR_ADDR Represents the offset address to write RX FIFO. (RO)

Register 13.26. UART_MEM_CNT_STATUS_REG (0x64)

(re
se

rve
d)

0 0

31 6

UART_
TX

_M
EM

_C
NT

0 0 0

5 3

UART_
RX_

M
EM

_C
NT

0 0 0

2 0

Reset

UART_TX_MEM_CNT Refer to the description of TXFIFO_CNT. (RO)

UART_RX_MEM_CNT Refer to the description of RXFIFO_CNT. (RO)

Register 13.27. UART_POSPULSE_REG (0x68)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UART_
POSEDGE_M

IN
_C

NT

0x0FFFFF

19 0

Reset

UART_POSEDGE_MIN_CNT This register stores the count of RxD positive edges. It is used in the

autobaud detection process. (RO)

Espressif Systems 369
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.28. UART_NEGPULSE_REG (0x6c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UART_
NEGEDGE_M

IN
_C

NT

0x0FFFFF

19 0

Reset

UART_NEGEDGE_MIN_CNT This register stores the count of RxD negative edges. It is used in the

autobaud detection process. (RO)

The addresses in parenthesis besides register names are the register addresses relative to the UDMA base ad-

dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 13.4.2 UHCI Register Summary.

Register 13.29. UHCI_CONF0_REG (0x0)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

UHCI_E
NCODE_C

RC_E
N

1

21

UHCI_L
EN_E

OF_
EN

1

20

UHCI_U
ART_

ID
LE

_E
OF_

EN

0

19

UHCI_C
RC_R

EC_E
N

1

18

UHCI_H
EAD_E

N

1

17

UHCI_S
EPER_E

N

1

16

(re
se

rve
d)

0 0 0 0

15 12

UHCI_U
ART2

_C
E

0

11

UHCI_U
ART1

_C
E

0

10

UHCI_U
ART0

_C
E

0

9

(re
se

rve
d)

0 0 0 0 0 0 0 0 0

8 0

Reset

UHCI_ENCODE_CRC_EN Reserved. Please initialize it to 0. (R/W)

UHCI_LEN_EOF_EN Reserved. Please initialize it to 0. (R/W)

UHCI_UART_IDLE_EOF_EN Reserved. Please initialize it to 0. (R/W)

UHCI_CRC_REC_EN Reserved. Please initialize it to 0. (R/W)

UHCI_HEAD_EN Reserved. Please initialize it to 0. (R/W)

UHCI_SEPER_EN Set this bit to use a special char and separate the data frame. (R/W)

UHCI_UART2_CE Set this bit to use UART2 and transmit or receive data. (R/W)

UHCI_UART1_CE Set this bit to use UART1 and transmit or receive data. (R/W)

UHCI_UART0_CE Set this bit to use UART and transmit or receive data. (R/W)

Espressif Systems 370
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.30. UHCI_INT_RAW_REG (0x4)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

UHCI_O
UT_

TO
TA

L_
EOF_

IN
T_

RAW

0

13

UHCI_O
UTL

IN
K_E

OF_
ERR_IN

T_
RAW

0

12

UHCI_I
N_D

SCR_E
M

PTY
_IN

T_
RAW

0

11

UHCI_O
UT_

DSCR_E
RR_IN

T_
RAW

0

10

UHCI_I
N_D

SCR_E
RR_IN

T_
RAW

0

9

UHCI_O
UT_

EOF_
IN

T_
RAW

0

8

UHCI_O
UT_

DONE_IN
T_

RAW

0

7

UHCI_I
N_E

RR_E
OF_

IN
T_

RAW

0

6

UHCI_I
N_S

UC_E
OF_

IN
T_

RAW

0

5

UHCI_I
N_D

ONE_IN
T_

RAW

0

4

UHCI_T
X_

HUNG_IN
T_

RAW

0

3

UHCI_R
X_

HUNG_IN
T_

RAW

0

2

UHCI_T
X_

STA
RT_

IN
T_

RAW

0

1

UHCI_R
X_

STA
RT_

IN
T_

RAW

0

0

Reset

UHCI_OUT_TOTAL_EOF_INT_RAW The raw interrupt status bit for the

UHCI_OUT_TOTAL_EOF_INT interrupt. (RO)

UHCI_OUTLINK_EOF_ERR_INT_RAW The raw interrupt status bit for the

UHCI_OUTLINK_EOF_ERR_INT interrupt. (RO)

UHCI_IN_DSCR_EMPTY_INT_RAW The raw interrupt status bit for the

UHCI_IN_DSCR_EMPTY_INT interrupt. (RO)

UHCI_OUT_DSCR_ERR_INT_RAW The raw interrupt status bit for the UHCI_OUT_DSCR_ERR_INT

interrupt. (RO)

UHCI_IN_DSCR_ERR_INT_RAW The raw interrupt status bit for the UHCI_IN_DSCR_ERR_INT in-

terrupt. (RO)

UHCI_OUT_EOF_INT_RAW The raw interrupt status bit for the UHCI_OUT_EOF_INT interrupt. (RO)

UHCI_OUT_DONE_INT_RAW The raw interrupt status bit for the UHCI_OUT_DONE_INT interrupt.

(RO)

UHCI_IN_ERR_EOF_INT_RAW The raw interrupt status bit for the UHCI_IN_ERR_EOF_INT interrupt.

(RO)

UHCI_IN_SUC_EOF_INT_RAW The raw interrupt status bit for the UHCI_IN_SUC_EOF_INT inter-

rupt. (RO)

UHCI_IN_DONE_INT_RAW The raw interrupt status bit for the UHCI_IN_DONE_INT interrupt. (RO)

UHCI_TX_HUNG_INT_RAW The raw interrupt status bit for the UHCI_TX_HUNG_INT interrupt. (RO)

UHCI_RX_HUNG_INT_RAW The raw interrupt status bit for the UHCI_RX_HUNG_INT interrupt. (RO)

UHCI_TX_START_INT_RAW The raw interrupt status bit for the UHCI_TX_START_INT interrupt. (RO)

UHCI_RX_START_INT_RAW The raw interrupt status bit for the UHCI_RX_START_INT interrupt.

(RO)

Espressif Systems 371
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.31. UHCI_INT_ST_REG (0x8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

UHCI_D
M

A_IN
FIF

O_F
ULL

_W
M

_IN
T_

ST

0

16

UHCI_S
END_A

_R
EG_Q

_IN
T_

ST

0

15

UHCI_S
END_S

_R
EG_Q

_IN
T_

ST

0

14

UHCI_O
UT_

TO
TA

L_
EOF_

IN
T_

ST

0

13

UHCI_O
UTL

IN
K_E

OF_
ERR_IN

T_
ST

0

12

UHCI_I
N_D

SCR_E
M

PTY
_IN

T_
ST

0

11

UHCI_O
UT_

DSCR_E
RR_IN

T_
ST

0

10

UHCI_I
N_D

SCR_E
RR_IN

T_
ST

0

9

UHCI_O
UT_

EOF_
IN

T_
ST

0

8

UHCI_O
UT_

DONE_IN
T_

ST

0

7

UHCI_I
N_E

RR_E
OF_

IN
T_

ST

0

6

UHCI_I
N_S

UC_E
OF_

IN
T_

ST

0

5

UHCI_I
N_D

ONE_IN
T_

ST

0

4

UHCI_T
X_

HUNG_IN
T_

ST

0

3

UHCI_R
X_

HUNG_IN
T_

ST

0

2

UHCI_T
X_

STA
RT_

IN
T_

ST

0

1

UHCI_R
X_

STA
RT_

IN
T_

ST

0

0

Reset

UHCI_SEND_A_REG_Q_INT_ST The masked interrupt status bit for the

UHCI_SEND_A_REG_Q_INT interrupt. (RO)

UHCI_SEND_S_REG_Q_INT_ST The masked interrupt status bit for the

UHCI_SEND_S_REG_Q_INT interrupt. (RO)

UHCI_OUT_TOTAL_EOF_INT_ST The masked interrupt status bit for the

UHCI_OUT_TOTAL_EOF_INT interrupt. (RO)

UHCI_OUTLINK_EOF_ERR_INT_ST The masked interrupt status bit for the

UHCI_OUTLINK_EOF_ERR_INT interrupt. (RO)

UHCI_IN_DSCR_EMPTY_INT_ST The masked interrupt status bit for the

UHCI_IN_DSCR_EMPTY_INT interrupt. (RO)

UHCI_OUT_DSCR_ERR_INT_ST The masked interrupt status bit for the

UHCI_OUT_DSCR_ERR_INT interrupt. (RO)

UHCI_IN_DSCR_ERR_INT_ST The masked interrupt status bit for the UHCI_IN_DSCR_ERR_INT in-

terrupt. (RO)

UHCI_OUT_EOF_INT_ST The masked interrupt status bit for the UHCI_OUT_EOF_INT interrupt.

(RO)

UHCI_OUT_DONE_INT_ST The masked interrupt status bit for the UHCI_OUT_DONE_INT interrupt.

(RO)

UHCI_IN_ERR_EOF_INT_ST The masked interrupt status bit for the UHCI_IN_ERR_EOF_INT inter-

rupt. (RO)

UHCI_IN_SUC_EOF_INT_ST The masked interrupt status bit for the UHCI_IN_SUC_EOF_INT inter-

rupt. (RO)

UHCI_IN_DONE_INT_ST The masked interrupt status bit for the UHCI_IN_DONE_INT interrupt. (RO)

UHCI_TX_HUNG_INT_ST The masked interrupt status bit for the UHCI_TX_HUNG_INT interrupt.

(RO)

UHCI_RX_HUNG_INT_ST The masked interrupt status bit for the UHCI_RX_HUNG_INT interrupt.

(RO)

Continued on the next page...

Espressif Systems 372
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.31. UHCI_INT_ST_REG (0x8)

Continued from the previous page...

UHCI_TX_START_INT_ST The masked interrupt status bit for the UHCI_TX_START_INT interrupt.

(RO)

UHCI_RX_START_INT_ST The masked interrupt status bit for the UHCI_RX_START_INT interrupt.

(RO)

Espressif Systems 373
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.32. UHCI_INT_ENA_REG (0xC)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

UHCI_D
M

A_IN
FIF

O_F
ULL

_W
M

_IN
T_

ENA

0

16

UHCI_S
END_A

_R
EG_Q

_IN
T_

ENA

0

15

UHCI_S
END_S

_R
EG_Q

_IN
T_

ENA

0

14

UHCI_O
UT_

TO
TA

L_
EOF_

IN
T_

ENA

0

13

UHCI_O
UTL

IN
K_E

OF_
ERR_IN

T_
ENA

0

12

UHCI_I
N_D

SCR_E
M

PTY
_IN

T_
ENA

0

11

UHCI_O
UT_

DSCR_E
RR_IN

T_
ENA

0

10

UHCI_I
N_D

SCR_E
RR_IN

T_
ENA

0

9

UHCI_O
UT_

EOF_
IN

T_
ENA

0

8

UHCI_O
UT_

DONE_IN
T_

ENA

0

7

UHCI_I
N_E

RR_E
OF_

IN
T_

ENA

0

6

UHCI_I
N_S

UC_E
OF_

IN
T_

ENA

0

5

UHCI_I
N_D

ONE_IN
T_

ENA

0

4

UHCI_T
X_

HUNG_IN
T_

ENA

0

3

UHCI_R
X_

HUNG_IN
T_

ENA

0

2

UHCI_T
X_

STA
RT_

IN
T_

ENA

0

1

UHCI_R
X_

STA
RT_

IN
T_

ENA

0

0

Reset

UHCI_SEND_A_REG_Q_INT_ENA The interrupt enable bit for the UHCI_SEND_A_REG_Q_INT in-

terrupt. (R/W)

UHCI_SEND_S_REG_Q_INT_ENA The interrupt enable bit for the UHCI_SEND_S_REG_Q_INT in-

terrupt. (R/W)

UHCI_OUT_TOTAL_EOF_INT_ENA The interrupt enable bit for the UHCI_OUT_TOTAL_EOF_INT in-

terrupt. (R/W)

UHCI_OUTLINK_EOF_ERR_INT_ENA The interrupt enable bit for the

UHCI_OUTLINK_EOF_ERR_INT interrupt. (R/W)

UHCI_IN_DSCR_EMPTY_INT_ENA The interrupt enable bit for the UHCI_IN_DSCR_EMPTY_INT in-

terrupt. (R/W)

UHCI_OUT_DSCR_ERR_INT_ENA The interrupt enable bit for the UHCI_OUT_DSCR_ERR_INT in-

terrupt. (R/W)

UHCI_IN_DSCR_ERR_INT_ENA The interrupt enable bit for the UHCI_IN_DSCR_ERR_INT interrupt.

(R/W)

UHCI_OUT_EOF_INT_ENA The interrupt enable bit for the UHCI_OUT_EOF_INT interrupt. (R/W)

UHCI_OUT_DONE_INT_ENA The interrupt enable bit for the UHCI_OUT_DONE_INT interrupt. (R/W)

UHCI_IN_ERR_EOF_INT_ENA The interrupt enable bit for the UHCI_IN_ERR_EOF_INT interrupt.

(R/W)

UHCI_IN_SUC_EOF_INT_ENA The interrupt enable bit for the UHCI_IN_SUC_EOF_INT interrupt.

(R/W)

UHCI_IN_DONE_INT_ENA The interrupt enable bit for the UHCI_IN_DONE_INT interrupt. (R/W)

UHCI_TX_HUNG_INT_ENA The interrupt enable bit for the UHCI_TX_HUNG_INT interrupt. (R/W)

UHCI_RX_HUNG_INT_ENA The interrupt enable bit for the UHCI_RX_HUNG_INT interrupt. (R/W)

UHCI_TX_START_INT_ENA The interrupt enable bit for the UHCI_TX_START_INT interrupt. (R/W)

UHCI_RX_START_INT_ENA The interrupt enable bit for the UHCI_RX_START_INT interrupt. (R/W)

Espressif Systems 374
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.33. UHCI_INT_CLR_REG (0x10)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

UHCI_D
M

A_IN
FIF

O_F
ULL

_W
M

_IN
T_

CLR

0

16

UHCI_S
END_A

_R
EG_Q

_IN
T_

CLR

0

15

UHCI_S
END_S

_R
EG_Q

_IN
T_

CLR

0

14

UHCI_O
UT_

TO
TA

L_
EOF_

IN
T_

CLR

0

13

UHCI_O
UTL

IN
K_E

OF_
ERR_IN

T_
CLR

0

12

UHCI_I
N_D

SCR_E
M

PTY
_IN

T_
CLR

0

11

UHCI_O
UT_

DSCR_E
RR_IN

T_
CLR

0

10

UHCI_I
N_D

SCR_E
RR_IN

T_
CLR

0

9

UHCI_O
UT_

EOF_
IN

T_
CLR

0

8

UHCI_O
UT_

DONE_IN
T_

CLR

0

7

UHCI_I
N_E

RR_E
OF_

IN
T_

CLR

0

6

UHCI_I
N_S

UC_E
OF_

IN
T_

CLR

0

5

UHCI_I
N_D

ONE_IN
T_

CLR

0

4

UHCI_T
X_

HUNG_IN
T_

CLR

0

3

UHCI_R
X_

HUNG_IN
T_

CLR

0

2

UHCI_T
X_

STA
RT_

IN
T_

CLR

0

1

UHCI_R
X_

STA
RT_

IN
T_

CLR

0

0

Reset

UHCI_SEND_A_REG_Q_INT_CLR Set this bit to clear the UHCI_SEND_A_REG_Q_INT interrupt.

(WO)

UHCI_SEND_S_REG_Q_INT_CLR Set this bit to clear the UHCI_SEND_S_REG_Q_INT interrupt.

(WO)

UHCI_OUT_TOTAL_EOF_INT_CLR Set this bit to clear the UHCI_OUT_TOTAL_EOF_INT interrupt.

(WO)

UHCI_OUTLINK_EOF_ERR_INT_CLR Set this bit to clear the UHCI_OUTLINK_EOF_ERR_INT inter-

rupt. (WO)

UHCI_IN_DSCR_EMPTY_INT_CLR Set this bit to clear the UHCI_IN_DSCR_EMPTY_INT interrupt.

(WO)

UHCI_OUT_DSCR_ERR_INT_CLR Set this bit to clear the UHCI_OUT_DSCR_ERR_INT interrupt.

(WO)

UHCI_IN_DSCR_ERR_INT_CLR Set this bit to clear the UHCI_IN_DSCR_ERR_INT interrupt. (WO)

UHCI_OUT_EOF_INT_CLR Set this bit to clear the UHCI_OUT_EOF_INT interrupt. (WO)

UHCI_OUT_DONE_INT_CLR Set this bit to clear the UHCI_OUT_DONE_INT interrupt. (WO)

UHCI_IN_ERR_EOF_INT_CLR Set this bit to clear the UHCI_IN_ERR_EOF_INT interrupt. (WO)

UHCI_IN_SUC_EOF_INT_CLR Set this bit to clear the UHCI_IN_SUC_EOF_INT interrupt. (WO)

UHCI_IN_DONE_INT_CLR Set this bit to clear the UHCI_IN_DONE_INT interrupt. (WO)

UHCI_TX_HUNG_INT_CLR Set this bit to clear the UHCI_TX_HUNG_INT interrupt. (WO)

UHCI_RX_HUNG_INT_CLR Set this bit to clear the UHCI_RX_HUNG_INT interrupt. (WO)

UHCI_TX_START_INT_CLR Set this bit to clear the UHCI_TX_START_INT interrupt. (WO)

UHCI_RX_START_INT_CLR Set this bit to clear the UHCI_RX_START_INT interrupt. (WO)

Espressif Systems 375
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.34. UHCI_DMA_OUT_STATUS_REG (0x14)

(re
se

rve
d)

0 0

31 2

UHCI_O
UT_

EM
PTY

1

1

UHCI_O
UT_

FU
LL

0

0

Reset

UHCI_OUT_EMPTY 1: DMA inlink descriptor’s FIFO is empty. (RO)

UHCI_OUT_FULL 1: DMA outlink descriptor’s FIFO is full. (RO)

Register 13.35. UHCI_DMA_OUT_PUSH_REG (0x18)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

UHCI_O
UTF

IFO
_P

USH

0

16

(re
se

rve
d)

0 0 0 0 0 0 0

15 9

UHCI_O
UTF

IFO
_W

DAT
A

0x000

8 0

Reset

UHCI_OUTFIFO_PUSH Set this bit to push data into DMA FIFO. (R/W)

UHCI_OUTFIFO_WDATA This is the data that need to be pushed into DMA FIFO. (R/W)

Register 13.36. UHCI_DMA_IN_POP_REG (0x20)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

UHCI_I
NFIF

O_P
OP

0

16

(re
se

rve
d)

0 0 0 0

15 12

UHCI_I
NFIF

O_R
DAT

A

0x0000

11 0

Reset

UHCI_INFIFO_POP Set this bit to pop data from DMA FIFO. (R/W)

UHCI_INFIFO_RDATA This register stores the data popping from DMA FIFO. (RO)

Espressif Systems 376
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.37. UHCI_DMA_OUT_LINK_REG (0x24)

UHCI_O
UTL

IN
K_P

ARK

0

31

UHCI_O
UTL

IN
K_R

ESTA
RT

0

30

UHCI_O
UTL

IN
K_S

TA
RT

0

29

UHCI_O
UTL

IN
K_S

TO
P

0

28

(re
se

rve
d)

0 0 0 0 0 0 0 0

27 20

UHCI_O
UTL

IN
K_A

DDR

0x000000

19 0

Reset

UHCI_OUTLINK_PARK 1: the outlink descriptor’s FSM is in idle state; 0: the outlink descriptor’s FSM

is working. (RO)

UHCI_OUTLINK_RESTART Set this bit to restart the outlink descriptor from the last address. (R/W)

UHCI_OUTLINK_START Set this bit to start a new outlink descriptor. (R/W)

UHCI_OUTLINK_STOP Set this bit to stop dealing with the outlink descriptor. (R/W)

UHCI_OUTLINK_ADDR This register stores the least significant 20 bits of the first outlink descriptor’s

address. (R/W)

Register 13.38. UHCI_DMA_IN_LINK_REG (0x28)

UHCI_I
NLIN

K_P
ARK

0

31

UHCI_I
NLIN

K_R
ESTA

RT

0

30

UHCI_I
NLIN

K_S
TA

RT

0

29

UHCI_I
NLIN

K_S
TO

P

0

28

(re
se

rve
d)

0 0 0 0 0 0 0 0

27 20

UHCI_I
NLIN

K_A
DDR

0x000000

19 0

Reset

UHCI_INLINK_PARK 1: the inlink descriptor’s FSM is in idle state; 0: the inlink descriptor’s FSM is

working. (RO)

UHCI_INLINK_RESTART Set this bit to mount new inlink descriptors. (R/W)

UHCI_INLINK_START Set this bit to start dealing with the inlink descriptors. (R/W)

UHCI_INLINK_STOP Set this bit to stop dealing with the inlink descriptors. (R/W)

UHCI_INLINK_ADDR This register stores the 20 least significant bits of the first inlink descriptor’s

address. (R/W)

Espressif Systems 377
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.39. UHCI_CONF1_REG (0x2C)

(re
se

rve
d)

0 0

31 6

UHCI_T
X_

ACK_N
UM

_R
E

1

5

UHCI_T
X_

CHECK_S
UM

_R
E

1

4

(re
se

rve
d)

0 0

3 2

UHCI_C
HECK_S

EQ_E
N

1

1

UHCI_C
HECK_S

UM
_E

N

1

0

Reset

UHCI_TX_ACK_NUM_RE Reserved. Please initialize to 0. (R/W)

UHCI_TX_CHECK_SUM_RE Reserved. Please initialize to 0. (R/W)

UHCI_CHECK_SEQ_EN Reserved. Please initialize to 0. (R/W)

UHCI_CHECK_SUM_EN Reserved. Please initialize to 0. (R/W)

Register 13.40. UHCI_DMA_OUT_EOF_DES_ADDR_REG (0x38)

0x000000000

31 0

Reset

UHCI_DMA_OUT_EOF_DES_ADDR_REG This register stores the address of the outlink descriptor

when the EOF bit in this descriptor is 1. (RO)

Register 13.41. UHCI_DMA_IN_SUC_EOF_DES_ADDR_REG (0x3C)

0x000000000

31 0

Reset

UHCI_DMA_IN_SUC_EOF_DES_ADDR_REG This register stores the address of the inlink descriptor

when the EOF bit in this descriptor is 1. (RO)

Register 13.42. UHCI_DMA_IN_ERR_EOF_DES_ADDR_REG (0x40)

0x000000000

31 0

Reset

UHCI_DMA_IN_ERR_EOF_DES_ADDR_REG This register stores the address of the inlink descriptor

when there are some errors in this descriptor. (RO)

Espressif Systems 378
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.43. UHCI_DMA_OUT_EOF_BFR_DES_ADDR_REG (0x44)

0x000000000

31 0

Reset

UHCI_DMA_OUT_EOF_BFR_DES_ADDR_REG This register stores the address of the outlink de-

scriptor when there are some errors in this descriptor. (RO)

Register 13.44. UHCI_DMA_IN_DSCR_REG (0x4C)

0 0

31 0

Reset

UHCI_DMA_IN_DSCR_REG The address of the current inlink descriptor x. (RO)

Register 13.45. UHCI_DMA_IN_DSCR_BF0_REG (0x50)

0 0

31 0

Reset

UHCI_DMA_IN_DSCR_BF0_REG The address of the last inlink descriptor x-1. (RO)

Register 13.46. UHCI_DMA_IN_DSCR_BF1_REG (0x54)

0 0

31 0

Reset

UHCI_DMA_IN_DSCR_BF1_REG The address of the second-to-last inlink descriptor x-2. (RO)

Register 13.47. UHCI_DMA_OUT_DSCR_REG (0x58)

0 0

31 0

Reset

UHCI_DMA_OUT_DSCR_REG The address of the current outlink descriptor y. (RO)

Register 13.48. UHCI_DMA_OUT_DSCR_BF0_REG (0x5C)

0 0

31 0

Reset

UHCI_DMA_OUT_DSCR_BF0_REG The address of the last outlink descriptor y-1. (RO)

Espressif Systems 379
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.49. UHCI_DMA_OUT_DSCR_BF1_REG (0x60)

0 0

31 0

Reset

UHCI_DMA_OUT_DSCR_BF1_REG The address of the second-to-last outlink descriptor y-2. (RO)

Register 13.50. UHCI_ESCAPE_CONF_REG (0x64)

(re
se

rve
d)

0 0

31 8

UHCI_R
X_

13
_E

SC_E
N

0

7

UHCI_R
X_

11
_E

SC_E
N

0

6

UHCI_R
X_

DB_E
SC_E

N

1

5

UHCI_R
X_

C0_
ESC_E

N

1

4

UHCI_T
X_

13
_E

SC_E
N

0

3

UHCI_T
X_

11
_E

SC_E
N

0

2

UHCI_T
X_

DB_E
SC_E

N

1

1

UHCI_T
X_

C0_
ESC_E

N

1

0

Reset

UHCI_RX_13_ESC_EN Set this bit to enable replacing flow control char 0x13, when DMA sends data.

(R/W)

UHCI_RX_11_ESC_EN Set this bit to enable replacing flow control char 0x11, when DMA sends data.

(R/W)

UHCI_RX_DB_ESC_EN Set this bit to enable replacing 0xdb char, when DMA sends data. (R/W)

UHCI_RX_C0_ESC_EN Set this bit to enable replacing 0xc0 char, when DMA sends data. (R/W)

UHCI_TX_13_ESC_EN Set this bit to enable decoding flow control char 0x13, when DMA receives

data. (R/W)

UHCI_TX_11_ESC_EN Set this bit to enable decoding flow control char 0x11, when DMA receives

data. (R/W)

UHCI_TX_DB_ESC_EN Set this bit to enable decoding 0xdb char, when DMA receives data. (R/W)

UHCI_TX_C0_ESC_EN Set this bit to enable decoding 0xc0 char, when DMA receives data. (R/W)

Espressif Systems 380
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

13 UART Controller (UART)

Register 13.51. UHCI_HUNG_CONF_REG (0x68)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UHCI_R
XF

IFO
_T

IM
EOUT_

ENA

1

23

UHCI_R
XF

IFO
_T

IM
EOUT_

SHIFT

0 0 0

22 20

UHCI_R
XF

IFO
_T

IM
EOUT

0x010

19 12

UHCI_T
XF

IFO
_T

IM
EOUT_

ENA

1

11

UHCI_T
XF

IFO
_T

IM
EOUT_

SHIFT

0 0 0

10 8

UHCI_T
XF

IFO
_T

IM
EOUT

0x010

7 0

Reset

UHCI_RXFIFO_TIMEOUT_ENA This is the enable bit for DMA send-data timeout. (R/W)

UHCI_RXFIFO_TIMEOUT_SHIFT The tick count is cleared when its value is equal to or greater than

(17’d8000»reg_rxfifo_timeout_shift). (R/W)

UHCI_RXFIFO_TIMEOUT This register stores the timeout value. When DMA takes more time to read

data from RAM than what this register indicates, it will produce the UHCI_RX_HUNG_INT interrupt.

(R/W)

UHCI_TXFIFO_TIMEOUT_ENA The enable bit for Tx FIFO receive-data timeout (R/W)

UHCI_TXFIFO_TIMEOUT_SHIFT The tick count is cleared when its value is equal to or greater than

(17’d8000»reg_txfifo_timeout_shift). (R/W)

UHCI_TXFIFO_TIMEOUT This register stores the timeout value. When DMA takes more time to

receive data than what this register indicates, it will produce the UHCI_TX_HUNG_INT interrupt.

(R/W)

Register 13.52. UHCI_ESC_CONFn_REG (n: 03) (0xB0+4*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

UHCI_E
SC_S

EQ2_
CHAR1

0x0DF

23 16

UHCI_E
SC_S

EQ2_
CHAR0

0x0DB

15 8

UHCI_E
SC_S

EQ2

0x013

7 0

Reset

UHCI_ESC_SEQ2_CHAR1 This register stores the second char used to replace the reg_esc_seq2 in

data. (R/W)

UHCI_ESC_SEQ2_CHAR0 This register stores the first char used to replace the reg_esc_seq2 in

data. (R/W)

UHCI_ESC_SEQ2 This register stores the flow_control char to turn off the flow_control. (R/W)

Espressif Systems 381
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

14 LED PWM Controller (LEDC)

14.1 Introduction
The LED_PWM controller is primarily designed to control the intensity of LEDs, although it can be used to generate

PWM signals for other purposes as well. It has 16 channels which can generate independent waveforms that can

be used to drive RGB LED devices. For maximum flexibility, the high-speed as well as the low-speed channels can

be driven from one of four high-speed/low-speed timers. The PWM controller also has the ability to automatically

increase or decrease the duty cycle gradually, allowing for fades without any processor interference. To increase

resolution, the LED_PWM controller is also able to dither between two values, when a fractional PWM value is

configured.

The LED_PWM controller has eight high-speed and eight low-speed PWM generators. In this document, they

will be referred to as hschn and lschn, respectively. These channels can be driven from four timers which will be

indicated by h_timerx and l_timerx.

14.2 Functional Description
14.2.1 Architecture
Figure 14-1 shows the architecture of the LED_PWM controller. As can be seen in the figure, the LED_PWM

controller contains eight high-speed and eight low-speed channels. There are four high-speed clock modules for

the high-speed channels, from which one h_timerx can be selected. There are also four low-speed clock modules

for the low-speed channels, from which one l_timerx can be selected.

Figure 141. LED_PWM Architecture

Figure 14-2 illustrates a PWM channel with its selected timer; in this instance a high-speed channel and associated

high-speed timer.

Fractional

divider (18 bit)

Figure 142. LED_PWM Highspeed Channel Diagram

Espressif Systems 382
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

14.2.2 Timers

... ...

Clock pulses
divided by A

Divider input
clock

...

...

...

Clock pulses divided
by (A+1)

...

...

...

Divider output
clock

...

...

...

B clock pulses divided
by (A+1)

256 output clock pulses

Clock pulses
divided by A

Clock pulses divided
by (A+1)

Clock pulses divided
by (A+1)

Clock pulses
divided by A

Clock pulses
divided by A

Clock pulses
divided by A

Figure 143. LED_PWM Divider

The clock of each high-speed timer, LEDC_CLKx, has two clock sources: REF_TICK or APB_CLK. For more

information on the clock sources, please see Chapter Reset And Clock. The input clock is divided down by

a divider first. The division factor is specified by LEDC_CLK_DIV_NUM_HSTIMERx which contains a fixed point

number: the highest 10 bits represent the integer portion A, while the lowest eight bits contain the fractional portion

B. The effective division factor LEDC_CLK_DIVx is as follows:

LEDC_CLK_DIV x = A+ B
256

The division factor ranges from 1 ∼ 1023.

When the fractional part B is not 0, the input and output clock of the divider is shown as in figure 14-3. Among the

256 output clocks, B of them are divided by (A+1), whereas the remaining (256-B) are divided by A. Output clocks

divided by (A+1) are evenly distributed in the total 256 output clocks.

The output clock of the divider is the base clock for the counter which will count up to the value specified in

LEDC_HSTIMERx_DUTY_RES. An overflow interrupt will be generated once the counting value reaches

2LEDC_HSTIMERx_DUTY _RES − 1, at which point the counter restarts counting from 0. It is also possible to reset,

suspend, and read the values of the counter by software.

The output signal of the timer is the 20-bit value generated by the counter. The cycle period of this signal defines

the frequency of the signals of any PWM channels connected to this timer.

The frequency of a PWM generator output signal, sig_outn, depends on the frequency of the timer’s clock source

LEDC_CLKx, the division factor of the divider LEDC_CLK_DIVx, as well as the duty resolution (counter width)

LEDC_HSTIMERx_DUTY_RES:

fsig_outn =
fLEDC_CLKx

LEDC_CLK_DIVx · 2LEDC_HSTIMERx_DUTY_RES

Based on the formula above, the desired duty resolution can be calculated as follows:

LEDC_HSTIMERx_DUTY_RES = log2

(
fLEDC_CLKx

fsig_outn · LEDC_CLK_DIVx

)
Table 14-1 lists the commonly-used frequencies and their corresponding resolutions.

Espressif Systems 383
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

Table 141. Commonlyused Frequencies and Resolutions

LEDC_CLKx PWM Frequency Highest Resolution (bit) 1 Lowest Resolution (bit) 2

APB_CLK (80 MHz) 1 kHz 16 6

APB_CLK (80 MHz) 5 kHz 13 3

APB_CLK (80 MHz) 10 kHz 12 2

RC_FAST_CLK (8 MHz) 1 kHz 12 2

RC_FAST_CLK (8 MHz) 2 kHz 11 1

REF_TICK (1 MHz) 1 kHz 9 1

1 The highest resolution is calculated when the clock divisor LEDC_CLK_DIVx is 1. If the highest

resolution calculated by the formula is higher than the counter’s width 20 bits, then the highest

resolution should be 20 bits.
2 The lowest resolution is calculated when the clock divisor LEDC_CLK_DIVx is 1023 + 255

256 . If the

lowest resolution calculated by the formula is lower than 0, then the lowest resolution should be

1.

The low-speed timers l_timerx on the low-speed channel differ from the high-speed timers h_timerx in two as-

pects:

1. Where the high-speed timer clock source can be clocked from REF_TICK or APB_CLK, the low-speed timers

are sourced from either REF_TICK or SLOW_CLOCK. The SLOW_CLOCK source can be either APB_CLK

(80 MHz) or 8 MHz, and can be selected using LEDC_APB_CLK_SEL.

2. The high-speed counter and divider are glitch-free, which means that if the software modifies the maximum

counter or divisor value, the update will come into effect after the next overflow interrupt. In contrast, the

low-speed counter and divider will update these values only when LEDC_LSTIMERx_PARA_UP is set.

14.2.3 Channels
A channel takes the 20-bit value from the counter of the selected high-speed timer and compares it to a set of two

values in order to set the channel output. The first value it is compared to is the content of LEDC_HPOINT_HSCHn;

if these two match, the output will be latched high. The second value is the sum of LEDC_HPOINT_HSCHn and

LEDC_DUTY_HSCHn[24..4]. When this value is reached, the output is latched low. By using these two values,

the relative phase and the duty cycle of the PWM output can be set. Figure 14-4 illustrates this.

Figure 144. LED PWM Output Signal Diagram

LEDC_DUTY_HSCHn is a fixed-point register with four fractional bits. As mentioned before, when LEDC_DUTY_

HSCHn[24..4] is used in the PWM calculation directly, LEDC_DUTY_HSCHn[3..0] can be used to dither the output.

If this value is non-zero, with a statistical chance of LEDC_DUTY_HSCHn[3..0]/16, the actual PWM pulse will be

one cycle longer. This effectively increases the resolution of the PWM generator to 25 bits, but at the cost of a

slight jitter in the duty cycle.

Espressif Systems 384
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

The channels also have the ability to automatically fade from one duty cycle value to another. This feature is enabled

by setting LEDC_DUTY_START_HSCHn. When this bit is set, the PWM controller will automatically increment or

decrement the value in LEDC_DUTY_HSCHn, depending on whether the bit LEDC_DUTY_INC_HSCHn is set or

cleared, respectively. The speed the duty cycle changes is defined as such: every time the LEDC_DUTY_CYCLE_

HSCHn cycles, the content of LEDC_DUTY_SCALE_HSCHn is added to or subtracted from LEDC_DUTY_HSCHn[24..4].

The length of the fade can be limited by setting LEDC_DUTY_NUM_HSCHn: the fade will only last that number of

cycles before finishing. A finished fade also generates an interrupt.

Figure 145. Output Signal Diagram of Fading Duty Cycle

Figure 14-5 is an illustration of this. In this configuration, LEDC_DUTY_NUM_HSCHn_R increases by LEDC_DUTY_

SCALE_HSCHn for every LEDC_DUTY_CYCLE_HSCHn clock cycles, which is reflected in the duty cycle of the

output signal.

Notes

• When LEDC is in fade mode, configure the second fade only after LEDC_DUTY_CHNG_END_HSCHn or

LEDC_DUTY_CHNG_END_LSCHn interrupt is generated.

• When LEDC is in decremental fade mode and LEDC_DUTY_HSCHn is 2LEDC_HSTIMERx_DUTY _RES , LEDC_

DUTY_SCALE_HSCHn cannot be set to 1. When LEDC is in decremental fade mode and LEDC_DUTY_LSCHn

is 2LEDC_LSTIMERx_DUTY _RES , LEDC_DUTY_SCALE_LSCHn cannot be set to 1.

14.2.4 Interrupts
• LEDC_DUTY_CHNG_END_LSCHn_INT: Triggered when a fade on a low-speed channel has finished.

• LEDC_DUTY_CHNG_END_HSCHn_INT: Triggered when a fade on a high-speed channel has finished.

• LEDC_HS_TIMERx_OVF_INT: Triggered when a high-speed timer has reached its maximum counter value.

• LEDC_LS_TIMERx_OVF_INT: Triggered when a low-speed timer has reached its maximum counter value.

14.3 Register Summary

Name Description Address Access

Configuration registers

LEDC_CONF_REG Global ledc configuration register 0x3FF59190 R/W

LEDC_HSCH0_CONF0_REG Configuration register 0 for high-speed channel 0 0x3FF59000 R/W

LEDC_HSCH1_CONF0_REG Configuration register 0 for high-speed channel 1 0x3FF59014 R/W

LEDC_HSCH2_CONF0_REG Configuration register 0 for high-speed channel 2 0x3FF59028 R/W

LEDC_HSCH3_CONF0_REG Configuration register 0 for high-speed channel 3 0x3FF5903C R/W

LEDC_HSCH4_CONF0_REG Configuration register 0 for high-speed channel 4 0x3FF59050 R/W

Espressif Systems 385
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

Name Description Address Access

LEDC_HSCH5_CONF0_REG Configuration register 0 for high-speed channel 5 0x3FF59064 R/W

LEDC_HSCH6_CONF0_REG Configuration register 0 for high-speed channel 6 0x3FF59078 R/W

LEDC_HSCH7_CONF0_REG Configuration register 0 for high-speed channel 7 0x3FF5908C R/W

LEDC_HSCH0_CONF1_REG Configuration register 1 for high-speed channel 0 0x3FF5900C R/W

LEDC_HSCH1_CONF1_REG Configuration register 1 for high-speed channel 1 0x3FF59020 R/W

LEDC_HSCH2_CONF1_REG Configuration register 1 for high-speed channel 2 0x3FF59034 R/W

LEDC_HSCH3_CONF1_REG Configuration register 1 for high-speed channel 3 0x3FF59048 R/W

LEDC_HSCH4_CONF1_REG Configuration register 1 for high-speed channel 4 0x3FF5905C R/W

LEDC_HSCH5_CONF1_REG Configuration register 1 for high-speed channel 5 0x3FF59070 R/W

LEDC_HSCH6_CONF1_REG Configuration register 1 for high-speed channel 6 0x3FF59084 R/W

LEDC_HSCH7_CONF1_REG Configuration register 1 for high-speed channel 7 0x3FF59098 R/W

LEDC_LSCH0_CONF0_REG Configuration register 0 for low-speed channel 0 0x3FF590A0 R/W

LEDC_LSCH1_CONF0_REG Configuration register 0 for low-speed channel 1 0x3FF590B4 R/W

LEDC_LSCH2_CONF0_REG Configuration register 0 for low-speed channel 2 0x3FF590C8 R/W

LEDC_LSCH3_CONF0_REG Configuration register 0 for low-speed channel 3 0x3FF590DC R/W

LEDC_LSCH4_CONF0_REG Configuration register 0 for low-speed channel 4 0x3FF590F0 R/W

LEDC_LSCH5_CONF0_REG Configuration register 0 for low-speed channel 5 0x3FF59104 R/W

LEDC_LSCH6_CONF0_REG Configuration register 0 for low-speed channel 6 0x3FF59118 R/W

LEDC_LSCH7_CONF0_REG Configuration register 0 for low-speed channel 7 0x3FF5912C R/W

LEDC_LSCH0_CONF1_REG Configuration register 1 for low-speed channel 0 0x3FF590AC R/W

LEDC_LSCH1_CONF1_REG Configuration register 1 for low-speed channel 1 0x3FF590C0 R/W

LEDC_LSCH2_CONF1_REG Configuration register 1 for low-speed channel 2 0x3FF590D4 R/W

LEDC_LSCH3_CONF1_REG Configuration register 1 for low-speed channel 3 0x3FF590E8 R/W

LEDC_LSCH4_CONF1_REG Configuration register 1 for low-speed channel 4 0x3FF590FC R/W

LEDC_LSCH5_CONF1_REG Configuration register 1 for low-speed channel 5 0x3FF59110 R/W

LEDC_LSCH6_CONF1_REG Configuration register 1 for low-speed channel 6 0x3FF59124 R/W

LEDC_LSCH7_CONF1_REG Configuration register 1 for low-speed channel 7 0x3FF59138 R/W

Dutycycle registers

LEDC_HSCH0_DUTY_REG Initial duty cycle for high-speed channel 0 0x3FF59008 R/W

LEDC_HSCH1_DUTY_REG Initial duty cycle for high-speed channel 1 0x3FF5901C R/W

LEDC_HSCH2_DUTY_REG Initial duty cycle for high-speed channel 2 0x3FF59030 R/W

LEDC_HSCH3_DUTY_REG Initial duty cycle for high-speed channel 3 0x3FF59044 R/W

LEDC_HSCH4_DUTY_REG Initial duty cycle for high-speed channel 4 0x3FF59058 R/W

LEDC_HSCH5_DUTY_REG Initial duty cycle for high-speed channel 5 0x3FF5906C R/W

LEDC_HSCH6_DUTY_REG Initial duty cycle for high-speed channel 6 0x3FF59080 R/W

LEDC_HSCH7_DUTY_REG Initial duty cycle for high-speed channel 7 0x3FF59094 R/W

LEDC_HSCH0_DUTY_R_REG Current duty cycle for high-speed channel 0 0x3FF59010 RO

LEDC_HSCH1_DUTY_R_REG Current duty cycle for high-speed channel 1 0x3FF59024 RO

LEDC_HSCH2_DUTY_R_REG Current duty cycle for high-speed channel 2 0x3FF59038 RO

LEDC_HSCH3_DUTY_R_REG Current duty cycle for high-speed channel 3 0x3FF5904C RO

LEDC_HSCH4_DUTY_R_REG Current duty cycle for high-speed channel 4 0x3FF59060 RO

LEDC_HSCH5_DUTY_R_REG Current duty cycle for high-speed channel 5 0x3FF59074 RO

LEDC_HSCH6_DUTY_R_REG Current duty cycle for high-speed channel 6 0x3FF59088 RO

Espressif Systems 386
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

Name Description Address Access

LEDC_HSCH7_DUTY_R_REG Current duty cycle for high-speed channel 7 0x3FF5909C RO

LEDC_LSCH0_DUTY_REG Initial duty cycle for low-speed channel 0 0x3FF590A8 R/W

LEDC_LSCH1_DUTY_REG Initial duty cycle for low-speed channel 1 0x3FF590BC R/W

LEDC_LSCH2_DUTY_REG Initial duty cycle for low-speed channel 2 0x3FF590D0 R/W

LEDC_LSCH3_DUTY_REG Initial duty cycle for low-speed channel 3 0x3FF590E4 R/W

LEDC_LSCH4_DUTY_REG Initial duty cycle for low-speed channel 4 0x3FF590F8 R/W

LEDC_LSCH5_DUTY_REG Initial duty cycle for low-speed channel 5 0x3FF5910C R/W

LEDC_LSCH6_DUTY_REG Initial duty cycle for low-speed channel 6 0x3FF59120 R/W

LEDC_LSCH7_DUTY_REG Initial duty cycle for low-speed channel 7 0x3FF59134 R/W

LEDC_LSCH0_DUTY_R_REG Current duty cycle for low-speed channel 0 0x3FF590B0 RO

LEDC_LSCH1_DUTY_R_REG Current duty cycle for low-speed channel 1 0x3FF590C4 RO

LEDC_LSCH2_DUTY_R_REG Current duty cycle for low-speed channel 2 0x3FF590D8 RO

LEDC_LSCH3_DUTY_R_REG Current duty cycle for low-speed channel 3 0x3FF590EC RO

LEDC_LSCH4_DUTY_R_REG Current duty cycle for low-speed channel 4 0x3FF59100 RO

LEDC_LSCH5_DUTY_R_REG Current duty cycle for low-speed channel 5 0x3FF59114 RO

LEDC_LSCH6_DUTY_R_REG Current duty cycle for low-speed channel 6 0x3FF59128 RO

LEDC_LSCH7_DUTY_R_REG Current duty cycle for low-speed channel 7 0x3FF5913C RO

Timer registers

LEDC_HSTIMER0_CONF_REG High-speed timer 0 configuration 0x3FF59140 R/W

LEDC_HSTIMER1_CONF_REG High-speed timer 1 configuration 0x3FF59148 R/W

LEDC_HSTIMER2_CONF_REG High-speed timer 2 configuration 0x3FF59150 R/W

LEDC_HSTIMER3_CONF_REG High-speed timer 3 configuration 0x3FF59158 R/W

LEDC_HSTIMER0_VALUE_REG High-speed timer 0 current counter value 0x3FF59144 RO

LEDC_HSTIMER1_VALUE_REG High-speed timer 1 current counter value 0x3FF5914C RO

LEDC_HSTIMER2_VALUE_REG High-speed timer 2 current counter value 0x3FF59154 RO

LEDC_HSTIMER3_VALUE_REG High-speed timer 3 current counter value 0x3FF5915C RO

LEDC_LSTIMER0_CONF_REG Low-speed timer 0 configuration 0x3FF59160 R/W

LEDC_LSTIMER1_CONF_REG Low-speed timer 1 configuration 0x3FF59168 R/W

LEDC_LSTIMER2_CONF_REG Low-speed timer 2 configuration 0x3FF59170 R/W

LEDC_LSTIMER3_CONF_REG Low-speed timer 3 configuration 0x3FF59178 R/W

LEDC_LSTIMER0_VALUE_REG Low-speed timer 0 current counter value 0x3FF59164 RO

LEDC_LSTIMER1_VALUE_REG Low-speed timer 1 current counter value 0x3FF5916C RO

LEDC_LSTIMER2_VALUE_REG Low-speed timer 2 current counter value 0x3FF59174 RO

LEDC_LSTIMER3_VALUE_REG Low-speed timer 3 current counter value 0x3FF5917C RO

Interrupt registers

LEDC_INT_RAW_REG Raw interrupt status 0x3FF59180 RO

LEDC_INT_ST_REG Masked interrupt status 0x3FF59184 RO

LEDC_INT_ENA_REG Interrupt enable bits 0x3FF59188 R/W

LEDC_INT_CLR_REG Interrupt clear bits 0x3FF5918C WO

Espressif Systems 387
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

14.4 Registers
The addresses in parenthesis besides register names are the register addresses relative to the LED PWM base

address provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 14.3 Register Summary.

Register 14.1. LEDC_HSCHn_CONF0_REG (n: 07) (0x1C+0x10*n)

(re
se

rve
d)

0x00000000

31 4

LE
DC_ID

LE
_L

V_H
SCHn

0

3

LE
DC_S

IG
_O

UT_
EN_H

SCHn

0

2

LE
DC_T

IM
ER_S

EL_
HSCHn

0

1 0

Reset

LEDC_IDLE_LV_HSCHn This bit is used to control the output value when high-speed channel n is

inactive. (R/W)

LEDC_SIG_OUT_EN_HSCHn This is the output enable control bit for high-speed channel n. (R/W)

LEDC_TIMER_SEL_HSCHn There are four high-speed timers. These two bits are used to select one

of them for high-speed channel n: (R/W)

0: select hstimer0;

1: select hstimer1;

2: select hstimer2;

3: select hstimer3.

Register 14.2. LEDC_HSCHn_HPOINT_REG (n: 07) (0x20+0x10*n)

(re
se

rve
d)

0x0000

31 20

LE
DC_H

POIN
T_

HSCHn

0x000000

19 0

Reset

LEDC_HPOINT_HSCHn The output value changes to high when htimerx(x=[0,3]), selected by high-

speed channel n, has reached LEDC_HPOINT_HSCHn[19:0]. (R/W)

Espressif Systems 388
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

Register 14.3. LEDC_HSCHn_DUTY_REG (n: 07) (0x24+0x10*n)

(re
se

rve
d)

0x00

31 25

LE
DC_D

UTY
_H

SCHn

0x0000000

24 0

Reset

LEDC_DUTY_HSCHn The register is used to control output duty. When hstimerx(x=[0,3]), selected

by high-speed channel n, has reached LEDC_LPOINT_HSCHn, the output signal changes to low.

(R/W)

LEDC_LPOINT_HSCHn=LEDC_LPOINT_HSCHn[19:0]+LEDC_DUTY_HSCHn[24:4] (1)

LEDC_LPOINT_HSCHn=LEDC_LPOINT_HSCHn[19:0]+LEDC_DUTY_HSCHn[24:4] +1) (2)

See the Functional Description for more information on when (1) or (2) is chosen.

Register 14.4. LEDC_HSCHn_CONF1_REG (n: 07) (0x28+0x10*n)

LE
DC_D

UTY
_S

TA
RT_

HSCHn

0

31

LE
DC_D

UTY
_IN

C_H
SCHn

1

30

LE
DC_D

UTY
_N

UM
_H

SCHn

0x000

29 20

LE
DC_D

UTY
_C

YCLE
_H

SCHn

0x000

19 10

LE
DC_D

UTY
_S

CALE
_H

SCHn

0x000

9 0

Reset

LEDC_DUTY_START_HSCHn When LEDC_DUTY_NUM_HSCHn, LEDC_DUTY_CYCLE_HSCHn

and LEDC_DUTY_SCALE_HSCHn has been configured, these register will not take effect until

LEDC_DUTY_START_HSCHn is set. This bit is automatically cleared by hardware. (R/W)

LEDC_DUTY_INC_HSCHn This register is used to increase or decrease the duty of output signal for

high-speed channel n. (R/W)

LEDC_DUTY_NUM_HSCHn This register is used to control the number of times the duty cycle is

increased or decreased for high-speed channel n. (R/W)

LEDC_DUTY_CYCLE_HSCHn This register is used to increase or decrease the duty cycle every time

LEDC_DUTY_CYCLE_HSCHn cycles for high-speed channel n. (R/W)

LEDC_DUTY_SCALE_HSCHn This register is used to increase or decrease the step scale for high-

speed channel n. (R/W)

Espressif Systems 389
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

Register 14.5. LEDC_HSCHn_DUTY_R_REG (n: 07) (0x2C+0x10*n)

(re
se

rve
d)

0x00

31 25

LE
DC_D

UTY
_H

SCHn
_R

0x0000000

24 0

Reset

LEDC_DUTY_HSCHn_R This register represents the current duty cycle of the output signal for high-

speed channel n. (RO)

Register 14.6. LEDC_LSCHn_CONF0_REG (n: 07) (0xBC+0x10*n)

(re
se

rve
d)

0x0000000

31 5

LE
DC_P

ARA_U
P_L

SCHn

0

4

LE
DC_ID

LE
_L

V_L
SCHn

0

3

LE
DC_S

IG
_O

UT_
EN_L

SCHn

0

2

LE
DC_T

IM
ER_S

EL_
LS

CHn

0

1 0

Reset

LEDC_PARA_UP_LSCHn This bit is used to update register LEDC_LSCHn_HPOINT and

LEDC_LSCHn_DUTY for low-speed channel n. (R/W)

LEDC_IDLE_LV_LSCHn This bit is used to control the output value, when low-speed channel n is

inactive. (R/W)

LEDC_SIG_OUT_EN_LSCHn This is the output enable control bit for low-speed channel n. (R/W)

LEDC_TIMER_SEL_LSCHn There are four low-speed timers, the two bits are used to select one of

them for low-speed channel n. (R/W)

0: select lstimer0;

1: select lstimer1;

2: select lstimer2;

3: select lstimer3.

Espressif Systems 390
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

Register 14.7. LEDC_LSCHn_HPOINT_REG (n: 07) (0xC0+0x10*n)

(re
se

rve
d)

0x0000

31 20

LE
DC_H

POIN
T_

LS
CHn

0x000000

19 0

Reset

LEDC_HPOINT_LSCHn The output value changes to high when lstimerx(x=[0,3]), selected by low-

speed channel n, has reached LEDC_HPOINT_LSCHn[19:0]. (R/W)

Register 14.8. LEDC_LSCHn_DUTY_REG (n: 07) (0xC4+0x10*n)

(re
se

rve
d)

0x00

31 25

LE
DC_D

UTY
_L

SCHn

0x0000000

24 0

Reset

LEDC_DUTY_LSCHn The register is used to control output duty. When lstimerx(x=[0,3]), chosen by

low-speed channel n, has reached LEDC_LPOINT_LSCHn,the output signal changes to low. (R/W)

LEDC_LPOINT_LSCHn=(LEDC_HPOINT_LSCHn[19:0]+LEDC_DUTY_LSCHn[24:4]) (1)

LEDC_LPOINT_LSCHn=(LEDC_HPOINT_LSCHn[19:0]+LEDC_DUTY_LSCHn[24:4] +1) (2)

See the Functional Description for more information on when (1) or (2) is chosen.

Espressif Systems 391
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

Register 14.9. LEDC_LSCHn_CONF1_REG (n: 07) (0xC8+0x10*n)

LE
DC_D

UTY
_S

TA
RT_

LS
CHn

0

31

LE
DC_D

UTY
_IN

C_L
SCHn

1

30

LE
DC_D

UTY
_N

UM
_L

SCHn

0x000

29 20

LE
DC_D

UTY
_C

YCLE
_L

SCHn

0x000

19 10

LE
DC_D

UTY
_S

CALE
_L

SCHn

0x000

9 0

Reset

LEDC_DUTY_START_LSCHn When LEDC_DUTY_NUM_HSCHn, LEDC_DUTY_CYCLE_HSCHn

and LEDC_DUTY_SCALE_HSCHn have been configured, these settings will not take effect un-

til set LEDC_DUTY_START_HSCHn. This bit is automatically cleared by hardware. (R/W)

LEDC_DUTY_INC_LSCHn This register is used to increase or decrease the duty of output signal for

low-speed channel n. (R/W)

LEDC_DUTY_NUM_LSCHn This register is used to control the number of times the duty cycle is

increased or decreased for low-speed channel n. (R/W)

LEDC_DUTY_CYCLE_LSCHn This register is used to increase or decrease the duty every

LEDC_DUTY_CYCLE_LSCHn cycles for low-speed channel n. (R/W)

LEDC_DUTY_SCALE_LSCHn This register is used to increase or decrease the step scale for low-

speed channel n. (R/W)

Register 14.10. LEDC_LSCHn_DUTY_R_REG (n: 07) (0xCC+0x10*n)

(re
se

rve
d)

0x00

31 25

LE
DC_D

UTY
_L

SCHn
_R

0x0000000

24 0

Reset

LEDC_DUTY_LSCHn_R This register represents the current duty of the output signal for low-speed

channel n. (RO)

Espressif Systems 392
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

Register 14.11. LEDC_HSTIMERx_CONF_REG (x: 03) (0x140+8*x)

(re
se

rve
d)

0x00

31 26

LE
DC_T

IC
K_S

EL_
HSTIM

ERx

0

25

LE
DC_H

STIM
ERx

_R
ST

1

24

LE
DC_H

STIM
ERx

_P
AUSE

0

23

LE
DC_C

LK
_D

IV_N
UM

_H
STIM

ERx

0x00000

22 5

LE
DC_H

STIM
ERx

_D
UTY

_R
ES

0x00

4 0

Reset

LEDC_TICK_SEL_HSTIMERx This bit is used to select APB_CLK or REF_TICK for high-speed timer

x. (R/W)

1: APB_CLK;

0: REF_TICK.

LEDC_HSTIMERx_RST This bit is used to reset high-speed timer x. The counter value will be ’zero’

after reset. (R/W)

LEDC_HSTIMERx_PAUSE This bit is used to suspend the counter in high-speed timer x. (R/W)

LEDC_CLK_DIV_NUM_HSTIMERx This register is used to configure the division factor for the divider

in high-speed timer x. The least significant eight bits represent the fractional part. (R/W)

LEDC_HSTIMERx_DUTY_RES This register is used to control the range of the counter in high-speed

timer x. The counter range is [0, 2LEDC_HSTIMERx_DUTY _RES], the maximum bit width for counter

is 20. (R/W)

Register 14.12. LEDC_HSTIMERx_VALUE_REG (x: 03) (0x144+8*x)

(re
se

rve
d)

0x0000

31 20

LE
DC_H

STIM
ERx

_C
NT

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

LEDC_HSTIMERx_CNT Software can read this register to get the current counter value of high-speed

timer x. (RO)

Espressif Systems 393
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

Register 14.13. LEDC_LSTIMERx_CONF_REG (x: 03) (0x160+8*x)

(re
se

rve
d)

0x00

31 27

LE
DC_L

STIM
ERx

_P
ARA_U

P

0

26

LE
DC_T

IC
K_S

EL_
LS

TIM
ERx

0

25

LE
DC_L

STIM
ERx

_R
ST

1

24

LE
DC_L

STIM
ERx

_P
AUSE

0

23

LE
DC_C

LK
_D

IV_N
UM

_L
STIM

ERx

0x00000

22 5

LE
DC_L

STIM
ERx

_D
UTY

_R
ES

0x00

4 0

Reset

LEDC_LSTIMERx_PARA_UP Set this bit to update LEDC_CLK_DIV_NUM_LSTIMEx and

LEDC_LSTIMERx_DUTY_RES. (R/W)

LEDC_TICK_SEL_LSTIMERx This bit is used to select RTC_SLOW_CLK or REF_TICK for low-speed

timer x. (R/W)

1: RTC_SLOW_CLK;

0: REF_TICK.

LEDC_LSTIMERx_RST This bit is used to reset low-speed timer x. The counter will show 0 after

reset. (R/W)

LEDC_LSTIMERx_PAUSE This bit is used to suspend the counter in low-speed timer x. (R/W)

LEDC_CLK_DIV_NUM_LSTIMERx This register is used to configure the division factor for the divider

in low-speed timer x. The least significant eight bits represent the fractional part. (R/W)

LEDC_LSTIMERx_DUTY_RES This register is used to control the range of the counter in low-speed

timer x. The counter range is [0, 2LEDC_LSTIMERx_DUTY _RES], the max bit width for counter is

20. (R/W)

Register 14.14. LEDC_LSTIMERx_VALUE_REG (x: 03) (0x164+8*x)

(re
se

rve
d)

0x0000

31 20

LE
DC_L

STIM
ERx

_C
NT

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

LEDC_LSTIMERx_CNT Software can read this register to get the current counter value of low-speed

timer x. (RO)

Espressif Systems 394
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

Register 14.15. LEDC_INT_RAW_REG (0x0180)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH7_
IN

T_
RAW

0

23

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH6_
IN

T_
RAW

0

22

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH5_
IN

T_
RAW

0

21

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH4_
IN

T_
RAW

0

20

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH3_
IN

T_
RAW

0

19

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH2_
IN

T_
RAW

0

18

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH1_
IN

T_
RAW

0

17

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH0_
IN

T_
RAW

0

16

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH7_
IN

T_
RAW

0

15

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH6_
IN

T_
RAW

0

14

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH5_
IN

T_
RAW

0

13

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH4_
IN

T_
RAW

0

12

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH3_
IN

T_
RAW

0

11

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH2_
IN

T_
RAW

0

10

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH1_
IN

T_
RAW

0

9

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH0_
IN

T_
RAW

0

8

LE
DC_L

STIM
ER3_

OVF_
IN

T_
RAW

0

7

LE
DC_L

STIM
ER2_

OVF_
IN

T_
RAW

0

6

LE
DC_L

STIM
ER1_

OVF_
IN

T_
RAW

0

5

LE
DC_L

STIM
ER0_

OVF_
IN

T_
RAW

0

4

LE
DC_H

STIM
ER3_

OVF_
IN

T_
RAW

0

3

LE
DC_H

STIM
ER2_

OVF_
IN

T_
RAW

0

2

LE
DC_H

STIM
ER1_

OVF_
IN

T_
RAW

0

1

LE
DC_H

STIM
ER0_

OVF_
IN

T_
RAW

0

0

Reset

LEDC_DUTY_CHNG_END_LSCHn_INT_RAW The raw interrupt status bit for the

LEDC_DUTY_CHNG_END_LSCHn_INT interrupt. (RO)

LEDC_DUTY_CHNG_END_HSCHn_INT_RAW The raw interrupt status bit for the

LEDC_DUTY_CHNG_END_HSCHn_INT interrupt. (RO)

LEDC_LSTIMERx_OVF_INT_RAW The raw interrupt status bit for the LEDC_LSTIMERx_OVF_INT

interrupt. (RO)

LEDC_HSTIMERx_OVF_INT_RAW The raw interrupt status bit for the LEDC_HSTIMERx_OVF_INT

interrupt. (RO)

Register 14.16. LEDC_INT_ST_REG (0x0184)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH7_
IN

T_
ST

0

23

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH6_
IN

T_
ST

0

22

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH5_
IN

T_
ST

0

21

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH4_
IN

T_
ST

0

20

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH3_
IN

T_
ST

0

19

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH2_
IN

T_
ST

0

18

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH1_
IN

T_
ST

0

17

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH0_
IN

T_
ST

0

16

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH7_
IN

T_
ST

0

15

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH6_
IN

T_
ST

0

14

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH5_
IN

T_
ST

0

13

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH4_
IN

T_
ST

0

12

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH3_
IN

T_
ST

0

11

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH2_
IN

T_
ST

0

10

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH1_
IN

T_
ST

0

9

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH0_
IN

T_
ST

0

8

LE
DC_L

STIM
ER3_

OVF_
IN

T_
ST

0

7

LE
DC_L

STIM
ER2_

OVF_
IN

T_
ST

0

6

LE
DC_L

STIM
ER1_

OVF_
IN

T_
ST

0

5

LE
DC_L

STIM
ER0_

OVF_
IN

T_
ST

0

4

LE
DC_H

STIM
ER3_

OVF_
IN

T_
ST

0

3

LE
DC_H

STIM
ER2_

OVF_
IN

T_
ST

0

2

LE
DC_H

STIM
ER1_

OVF_
IN

T_
ST

0

1

LE
DC_H

STIM
ER0_

OVF_
IN

T_
ST

0

0

Reset

LEDC_DUTY_CHNG_END_LSCHn_INT_ST The masked interrupt status bit for the

LEDC_DUTY_CHNG_END_LSCHn_INT interrupt. (RO)

LEDC_DUTY_CHNG_END_HSCHn_INT_ST The masked interrupt status bit for the

LEDC_DUTY_CHNG_END_HSCHn_INT interrupt. (RO)

LEDC_LSTIMERx_OVF_INT_ST The masked interrupt status bit for the LEDC_LSTIMERx_OVF_INT

interrupt. (RO)

LEDC_HSTIMERx_OVF_INT_ST The masked interrupt status bit for the LEDC_HSTIMERx_OVF_INT

interrupt. (RO)

Espressif Systems 395
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

Register 14.17. LEDC_INT_ENA_REG (0x0188)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH7_
IN

T_
ENA

0

23

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH6_
IN

T_
ENA

0

22

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH5_
IN

T_
ENA

0

21

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH4_
IN

T_
ENA

0

20

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH3_
IN

T_
ENA

0

19

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH2_
IN

T_
ENA

0

18

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH1_
IN

T_
ENA

0

17

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH0_
IN

T_
ENA

0

16

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH7_
IN

T_
ENA

0

15

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH6_
IN

T_
ENA

0

14

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH5_
IN

T_
ENA

0

13

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH4_
IN

T_
ENA

0

12

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH3_
IN

T_
ENA

0

11

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH2_
IN

T_
ENA

0

10

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH1_
IN

T_
ENA

0

9

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH0_
IN

T_
ENA

0

8

LE
DC_L

STIM
ER3_

OVF_
IN

T_
ENA

0

7

LE
DC_L

STIM
ER2_

OVF_
IN

T_
ENA

0

6

LE
DC_L

STIM
ER1_

OVF_
IN

T_
ENA

0

5

LE
DC_L

STIM
ER0_

OVF_
IN

T_
ENA

0

4

LE
DC_H

STIM
ER3_

OVF_
IN

T_
ENA

0

3

LE
DC_H

STIM
ER2_

OVF_
IN

T_
ENA

0

2

LE
DC_H

STIM
ER1_

OVF_
IN

T_
ENA

0

1

LE
DC_H

STIM
ER0_

OVF_
IN

T_
ENA

0

0

Reset

LEDC_DUTY_CHNG_END_LSCHn_INT_ENA The interrupt enable bit for the

LEDC_DUTY_CHNG_END_LSCHn_INT interrupt. (R/W)

LEDC_DUTY_CHNG_END_HSCHn_INT_ENA The interrupt enable bit for the

LEDC_DUTY_CHNG_END_HSCHn_INT interrupt. (R/W)

LEDC_LSTIMERx_OVF_INT_ENA The interrupt enable bit for the LEDC_LSTIMERx_OVF_INT inter-

rupt. (R/W)

LEDC_HSTIMERx_OVF_INT_ENA The interrupt enable bit for the LEDC_HSTIMERx_OVF_INT inter-

rupt. (R/W)

Register 14.18. LEDC_INT_CLR_REG (0x018C)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH7_
IN

T_
CLR

0

23

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH6_
IN

T_
CLR

0

22

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH5_
IN

T_
CLR

0

21

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH4_
IN

T_
CLR

0

20

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH3_
IN

T_
CLR

0

19

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH2_
IN

T_
CLR

0

18

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH1_
IN

T_
CLR

0

17

LE
DC_D

UTY
_C

HNG_E
ND_L

SCH0_
IN

T_
CLR

0

16

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH7_
IN

T_
CLR

0

15

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH6_
IN

T_
CLR

0

14

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH5_
IN

T_
CLR

0

13

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH4_
IN

T_
CLR

0

12

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH3_
IN

T_
CLR

0

11

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH2_
IN

T_
CLR

0

10

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH1_
IN

T_
CLR

0

9

LE
DC_D

UTY
_C

HNG_E
ND_H

SCH0_
IN

T_
CLR

0

8

LE
DC_L

STIM
ER3_

OVF_
IN

T_
CLR

0

7

LE
DC_L

STIM
ER2_

OVF_
IN

T_
CLR

0

6

LE
DC_L

STIM
ER1_

OVF_
IN

T_
CLR

0

5

LE
DC_L

STIM
ER0_

OVF_
IN

T_
CLR

0

4

LE
DC_H

STIM
ER3_

OVF_
IN

T_
CLR

0

3

LE
DC_H

STIM
ER2_

OVF_
IN

T_
CLR

0

2

LE
DC_H

STIM
ER1_

OVF_
IN

T_
CLR

0

1

LE
DC_H

STIM
ER0_

OVF_
IN

T_
CLR

0

0

Reset

LEDC_DUTY_CHNG_END_LSCHn_INT_CLR Set this bit to clear the

LEDC_DUTY_CHNG_END_LSCHn_INT interrupt. (WO)

LEDC_DUTY_CHNG_END_HSCHn_INT_CLR Set this bit to clear the

LEDC_DUTY_CHNG_END_HSCHn_INT interrupt. (WO)

LEDC_LSTIMERx_OVF_INT_CLR Set this bit to clear the LEDC_LSTIMERx_OVF_INT interrupt. (WO)

LEDC_HSTIMERx_OVF_INT_CLR Set this bit to clear the LEDC_HSTIMERx_OVF_INT interrupt.

(WO)

Espressif Systems 396
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

14 LED PWM Controller (LEDC)

Register 14.19. LEDC_CONF_REG (0x0190)

(re
se

rve
d)

0 0

31 1

LE
DC_A

PB_C
LK

_S
EL

0

0

Reset

LEDC_APB_CLK_SEL This bit is used to set the frequency of RTC_SLOW_CLK. (R/W)

0: 8 MHz;

1: 80 MHz.

Espressif Systems 397
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

15 Remote Control Peripheral (RMT)

15 Remote Control Peripheral (RMT)

15.1 Introduction
The RMT (Remote Control) module is primarily designed to send and receive infrared remote control signals that

implement on-off keying in a carrier frequency, but due to its design it can be used to generate various types of

signals. An RMT transmitter does this by reading consecutive duration values of an active and inactive output from

the built-in RAM block, optionally modulating it with a carrier wave. A receiver will inspect its input signal, optionally

filtering it, and will place the lengths of time the signal is active and inactive in the RAM block.

The RMT module has eight channels, numbered zero to seven; registers, signals and blocks that are duplicated in

each channel are indicated by an n which is used as a placeholder for the channel number.

15.2 Functional Description
15.2.1 RMT Architecture

Figure 151. RMT Architecture

The RMT module contains eight channels. Each channel has both a transmitter and a receiver, but only one of them

can be active in every channel. The eight channels share a 512x32-bit RAM block which can be read and written

by the processor cores over the APB bus, read by the transmitters, and written by the receivers. The transmitted

signal can optionally be modulated by a carrier wave. Each channel is clocked by a divided-down signal derived

from either the APB bus clock or REF_TICK.

Espressif Systems 398
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

15 Remote Control Peripheral (RMT)

15.2.2 RMT RAM

Figure 152. Data Structure

The data structure in RAM is shown in Figure 15-2. Each 32-bit value contains two 16-bit entries, with two fields

in every entry, ”level” and ”period”. ”Level” indicates whether a high-/low-level value was received or is going to be

sent, while ”period” points out the divider-clock cycles for which the level lasts. A zero period is interpreted as an

end-marker: the transmitter will stop transmitting once it has read this, and the receiver will write this, once it has

detected that the signal it received has gone idle.

Normally, only one block of 64x32-bit worth of data can be sent or received. If the data size is larger than this

block size, blocks can be extended or the channel can be configured for the wraparound mode.

The RMT RAM can be accessed via the APB bus. The initial address is 0x3FF56800. The RAM block is divided into

eight 64x32-bit blocks. By default, each channel uses one block (block zero for channel zero, block one for channel

one, and so on). Users can extend the memory to a specific channel by configuring the RMT_MEM_SIZE_CHn

register; setting this to >1 will prompt the channel to use the memory of subsequent channels as well. The RAM

address range of channel n is start_addr_CHn to end_addr_CHn, which is defined by:

start_addr_chn = 0x3FF56800 + 64 ∗ 4 ∗ n, and

end_addr_chn = 0x3FF56800 + (64 ∗ 4 ∗ n+ 64 ∗ 4 ∗ RMT_MEM_SIZE_CHn)mod(512 ∗ 4)− 4

To protect a receiver from overwriting the blocks a transmitter is about to transmit, RMT_MEM_OWNER_CHn can

be configured to designate the owner, be it a transmitter or receiver, of channel n’s RAM block. This way, if this

ownership is violated, the RMT_CHn_ERR interrupt will be generated.

Note: When enabling the continuous transmission mode by setting RMT_REG_TX_CONTI_MODE, the transmitter

will transmit the data on the channel continuously, that is, from the first byte to the last one, then from the first to

the last again, and so on. In this mode, there will be an idle level lasting one clk_div cycle between N and N+1

transmissions.

15.2.3 Clock
The main clock of a channel is generated by taking either the 80 MHz APB clock or REF_TICK (usually 1MHz),

according to the state of RMT_REF_ALWAYS_ON_CHn. (For more information on clock sources, please see

Chapter Reset And Clock.) Then, the aforementioned state gets scaled down using a configurable 8-bit divider to

create the channel clock which is used by both the carrier wave generator and the counter. The divider value can

be set by configuring RMT_DIV_CNT_CHn.

15.2.4 Transmitter
When the RMT_TX_START_CHn register is 1, the transmitter of channel n will start reading and sending data from

RAM. The transmitter will receive a 32-bit value each time it reads from RAM. Of these 32 bits, the low 16-bit entry

is sent first and the high entry second.

Espressif Systems 399
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

15 Remote Control Peripheral (RMT)

To transmit more data than can be fitted in the channel’s RAM, the wraparound mode can be enabled. In this mode,

when the transmitter has reached the last entry in the channel’s memory, it will loop back to the first byte. To use

this mechanism for sending more data than can be fitted in the channel’s RAM, fill the RAM with the initial events

and set RMT_CHn_TX_LIM_REG to cause an RMT_CHn_TX_THR_EVENT_INT interrupt before the wraparound

happens. Then, when the interrupt happens, the already sent data should be replaced by subsequent events, so

that when the wraparound happens the transmitter will seamlessly continue sending the new events.

With or without the wraparound mode enabled, transmission ends when an entry with zero length is encoun-

tered. When this happens, the transmitter will generate an RMT_CHn_TX_END_INT interrupt and return to the idle

state. When a transmitter is in the idle state, the output level defaults to end-mark 0. Users can also configure

RMT_IDLE_OUT_EN_CHn and RMT_IDLE_OUT_LV_CHn to control the output level manually.

The output of the transmitter can be modulated using a carrier wave by setting RMT_CARRIER_EN_CHn. The

carrier frequency and duty cycle can be configured by adjusting the carrier’s high and low durations in channel-

clock cycles, in RMT_CARRIER_HIGH_CHn and RMT_CARRIER_LOW_CHn.

15.2.5 Receiver
When RMT_RX_EN_CHn is set to 1, the receiver in channel n becomes active, measuring the duration between

input signal edges. These will be written as period/level value pairs to the channel RAM in the same fashion

as the transmitter sends them. Receiving ends, when the receiver detects no change in signal level for more

than RMT_IDLE_THRES_CHn channel clock ticks. The receiver will write a final entry with 0 period, generate an

RMT_CHn_RX_END_INT_RAW interrupt and return to the idle state.

The receiver has an input signal filter which can be configured using RMT_RX_FILTER_EN_CHn: The filter will

remove pulses with a length of less than RMT_RX_FILTER_THRES_CHn in APB clock periods.

When the RMT module is inactive, the RAM can be put into low-power mode by setting the RMT_MEM_PD register

to 1.

15.2.6 Interrupts
• RMT_CHn_TX_THR_EVENT_INT: Triggered when the amount of data the transmitter has sent matches the

value of RMT_CHn_TX_LIM_REG.

• RMT_CHn_TX_END_INT: Triggered when the transmitter has finished transmitting the signal.

• RMT_CHn_RX_END_INT: Triggered when the receiver has finished receiving a signal.

15.3 Register Summary

Name Description Address Access

Configuration registers

RMT_CH0CONF0_REG Channel 0 config register 0 0x3FF56020 R/W

RMT_CH0CONF1_REG Channel 0 config register 1 0x3FF56024 R/W

RMT_CH1CONF0_REG Channel 1 config register 0 0x3FF56028 R/W

RMT_CH1CONF1_REG Channel 1 config register 1 0x3FF5602C R/W

RMT_CH2CONF0_REG Channel 2 config register 0 0x3FF56030 R/W

RMT_CH2CONF1_REG Channel 2 config register 1 0x3FF56034 R/W

RMT_CH3CONF0_REG Channel 3 config register 0 0x3FF56038 R/W

RMT_CH3CONF1_REG Channel 3 config register 1 0x3FF5603C R/W

Espressif Systems 400
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

15 Remote Control Peripheral (RMT)

RMT_CH4CONF0_REG Channel 4 config register 0 0x3FF56040 R/W

RMT_CH4CONF1_REG Channel 4 config register 1 0x3FF56044 R/W

RMT_CH5CONF0_REG Channel 5 config register 0 0x3FF56048 R/W

RMT_CH5CONF1_REG Channel 5 config register 1 0x3FF5604C R/W

RMT_CH6CONF0_REG Channel 6 config register 0 0x3FF56050 R/W

RMT_CH6CONF1_REG Channel 6 config register 1 0x3FF56054 R/W

RMT_CH7CONF0_REG Channel 7 config register 0 0x3FF56058 R/W

RMT_CH7CONF1_REG Channel 7 config register 1 0x3FF5605C R/W

Interrupt registers

RMT_INT_RAW_REG Raw interrupt status 0x3FF560A0 RO

RMT_INT_ST_REG Masked interrupt status 0x3FF560A4 RO

RMT_INT_ENA_REG Interrupt enable bits 0x3FF560A8 R/W

RMT_INT_CLR_REG Interrupt clear bits 0x3FF560AC WO

Carrier wave duty cycle registers

RMT_CH0CARRIER_DUTY_REG Channel 0 duty cycle configuration register 0x3FF560B0 R/W

RMT_CH1CARRIER_DUTY_REG Channel 1 duty cycle configuration register 0x3FF560B4 R/W

RMT_CH2CARRIER_DUTY_REG Channel 2 duty cycle configuration register 0x3FF560B8 R/W

RMT_CH3CARRIER_DUTY_REG Channel 3 duty cycle configuration register 0x3FF560BC R/W

RMT_CH4CARRIER_DUTY_REG Channel 4 duty cycle configuration register 0x3FF560C0 R/W

RMT_CH5CARRIER_DUTY_REG Channel 5 duty cycle configuration register 0x3FF560C4 R/W

RMT_CH6CARRIER_DUTY_REG Channel 6 duty cycle configuration register 0x3FF560C8 R/W

RMT_CH7CARRIER_DUTY_REG Channel 7 duty cycle configuration register 0x3FF560CC R/W

Tx event configuration registers

RMT_CH0_TX_LIM_REG Channel 0 Tx event configuration register 0x3FF560D0 R/W

RMT_CH1_TX_LIM_REG Channel 1 Tx event configuration register 0x3FF560D4 R/W

RMT_CH2_TX_LIM_REG Channel 2 Tx event configuration register 0x3FF560D8 R/W

RMT_CH3_TX_LIM_REG Channel 3 Tx event configuration register 0x3FF560DC R/W

RMT_CH4_TX_LIM_REG Channel 4 Tx event configuration register 0x3FF560E0 R/W

RMT_CH5_TX_LIM_REG Channel 5 Tx event configuration register 0x3FF560E4 R/W

RMT_CH6_TX_LIM_REG Channel 6 Tx event configuration register 0x3FF560E8 R/W

RMT_CH7_TX_LIM_REG Channel 7 Tx event configuration register 0x3FF560EC R/W

Other registers

RMT_APB_CONF_REG RMT-wide configuration register 0x3FF560F0 R/W

15.4 Registers
The addresses in parenthesis besides register names are the register addresses relative to the RMT base ad-

dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 15.3 Register Summary.

Espressif Systems 401
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

15 Remote Control Peripheral (RMT)

Register 15.1. RMT_CHnCONF0_REG (n: 07) (0x0020+8*n)

(re
se

rve
d)

0x0

31

RM
T_

M
EM

_P
D

0

30

RM
T_

CARRIER_O
UT_

LV
_C

Hn

1

29

RM
T_

CARRIER_E
N_C

Hn

1

28

RM
T_

M
EM

_S
IZE

_C
Hn

0x01

27 24

RM
T_

ID
LE

_T
HRES_C

Hn

0x01000

23 8

RM
T_

DIV_C
NT_

CHn

0x002

7 0

Reset

RMT_MEM_PD This bit is used to power down the entire RMT RAM block. (It only exists in

RMT_CH0CONF0). 1: power down memory; 0: power up memory. (R/W)

RMT_CARRIER_OUT_LV_CHn This bit is used for configuration when the carrier wave is being trans-

mitted. Transmit on low output level with 0, and transmit on high output level with 1. (R/W)

RMT_CARRIER_EN_CHn This is the carrier modulation enable-control bit for channel n. Carrier mod-

ulation is enabled with 1, while carrier modulation is disabled with 0. (R/W)

RMT_MEM_SIZE_CHn This register is used to configure the amount of memory blocks allocated to

channel n. (R/W)

RMT_IDLE_THRES_CHn In receive mode, when no edge is detected on the input signal for longer

than REG_IDLE_THRES_CHn channel clock cycles, the receive process is finished. (R/W)

RMT_DIV_CNT_CHn This register is used to set the divider for the channel clock of channel n. (R/W)

Espressif Systems 402
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

15 Remote Control Peripheral (RMT)

Register 15.2. RMT_CHnCONF1_REG (n: 07) (0x0024+8*n)

(re
se

rve
d)

0x0000

31 20

RM
T_

ID
LE

_O
UT_

EN_C
Hn

0

19

RM
T_

ID
LE

_O
UT_

LV
_C

Hn

0

18

RM
T_

REF_
ALW

AY
S_O

N_C
Hn

0

17

RM
T_

REF_
CNT_

RST_
CHn

0

16

RM
T_

RX_
FIL

TE
R_T

HRES_C
Hn

0x00F

15 8

RM
T_

RX_
FIL

TE
R_E

N_C
Hn

0

7

RM
T_

TX
_C

ONTI_
M

ODE_C
Hn

0

6

RM
T_

M
EM

_O
W

NER_C
Hn

1

5

(re
se

rve
d)

0

4

RM
T_

M
EM

_R
D_R

ST_
CHn

0

3

RM
T_

M
EM

_W
R_R

ST_
CHn

0

2

RM
T_

RX_
EN_C

Hn

0

1

RM
T_

TX
_S

TA
RT_

CHn

0

0

Reset

RMT_IDLE_OUT_EN_CHn This is the output enable-control bit for channel n in IDLE state. (R/W)

RMT_IDLE_OUT_LV_CHn This bit configures the level of output signals in channel n when the latter

is in IDLE state. (R/W)

RMT_REF_ALWAYS_ON_CHn This bit is used to select the channel’s base clock. 1:clk_apb;

0:clk_ref. (R/W)

RMT_REF_CNT_RST_CHn Setting this bit resets the clock divider of channel n. (R/W)

RMT_RX_FILTER_THRES_CHn In receive mode, channel n ignores input pulse when the pulse width

is smaller than this value in APB clock periods. (R/W)

RMT_RX_FILTER_EN_CHn This is the receive filter’s enable-bit for channel n. (R/W)

RMT_TX_CONTI_MODE_CHn If this bit is set, instead of going to an idle state when transmission

ends, the transmitter will restart transmission. This results in a repeating output signal. (R/W)

RMT_MEM_OWNER_CHn This bit marks channel n’s RAM block ownership. Number 1 indicates

that the receiver is using the RAM, while 0 indicates that the transmitter is using the RAM. (R/W)

RMT_MEM_RD_RST_CHn Set this bit to reset the read-RAM address for channel n by accessing the

transmitter. (R/W)

RMT_MEM_WR_RST_CHn Set this bit to reset the write-RAM address for channel n by accessing

the receiver. (R/W)

RMT_RX_EN_CHn Set this bit to enable receiving data on channel n. (R/W)

RMT_TX_START_CHn Set this bit to start sending data on channel n. (R/W)

Espressif Systems 403
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

15 Remote Control Peripheral (RMT)

Register 15.3. RMT_INT_RAW_REG (0x00A0)

RM
T_

CH7_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

31

RM
T_

CH6_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

30

RM
T_

CH5_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

29

RM
T_

CH4_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

28

RM
T_

CH3_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

27

RM
T_

CH2_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

26

RM
T_

CH1_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

25

RM
T_

CH0_
TX

_T
HR_E

VENT_
IN

T_
RAW

0

24

RM
T_

CH7_
ERR_IN

T_
RAW

0

23

RM
T_

CH7_
RX_

END_IN
T_

RAW

0

22

RM
T_

CH7_
TX

_E
ND_IN

T_
RAW

0

21

RM
T_

CH6_
ERR_IN

T_
RAW

0

20

RM
T_

CH6_
RX_

END_IN
T_

RAW

0

19

RM
T_

CH6_
TX

_E
ND_IN

T_
RAW

0

18

RM
T_

CH5_
ERR_IN

T_
RAW

0

17

RM
T_

CH5_
RX_

END_IN
T_

RAW

0

16

RM
T_

CH5_
TX

_E
ND_IN

T_
RAW

0

15

RM
T_

CH4_
ERR_IN

T_
RAW

0

14

RM
T_

CH4_
RX_

END_IN
T_

RAW

0

13

RM
T_

CH4_
TX

_E
ND_IN

T_
RAW

0

12

RM
T_

CH3_
ERR_IN

T_
RAW

0

11

RM
T_

CH3_
RX_

END_IN
T_

RAW

0

10

RM
T_

CH3_
TX

_E
ND_IN

T_
RAW

0

9

RM
T_

CH2_
ERR_IN

T_
RAW

0

8

RM
T_

CH2_
RX_

END_IN
T_

RAW

0

7

RM
T_

CH2_
TX

_E
ND_IN

T_
RAW

0

6

RM
T_

CH1_
ERR_IN

T_
RAW

0

5

RM
T_

CH1_
RX_

END_IN
T_

RAW

0

4

RM
T_

CH1_
TX

_E
ND_IN

T_
RAW

0

3

RM
T_

CH0_
ERR_IN

T_
RAW

0

2

RM
T_

CH0_
RX_

END_IN
T_

RAW

0

1

RM
T_

CH0_
TX

_E
ND_IN

T_
RAW

0

0

Reset

RMT_CHn_TX_THR_EVENT_INT_RAW The raw interrupt status bit for the

RMT_CHn_TX_THR_EVENT_INT interrupt. (RO)

RMT_CHn_ERR_INT_RAW The raw interrupt status bit for the RMT_CHn_ERR_INT interrupt. (RO)

RMT_CHn_RX_END_INT_RAW The raw interrupt status bit for the RMT_CHn_RX_END_INT inter-

rupt. (RO)

RMT_CHn_TX_END_INT_RAW The raw interrupt status bit for the RMT_CHn_TX_END_INT interrupt.

(RO)

Register 15.4. RMT_INT_ST_REG (0x00A4)

RM
T_

CH7_
TX

_T
HR_E

VENT_
IN

T_
ST

0

31

RM
T_

CH6_
TX

_T
HR_E

VENT_
IN

T_
ST

0

30

RM
T_

CH5_
TX

_T
HR_E

VENT_
IN

T_
ST

0

29

RM
T_

CH4_
TX

_T
HR_E

VENT_
IN

T_
ST

0

28

RM
T_

CH3_
TX

_T
HR_E

VENT_
IN

T_
ST

0

27

RM
T_

CH2_
TX

_T
HR_E

VENT_
IN

T_
ST

0

26

RM
T_

CH1_
TX

_T
HR_E

VENT_
IN

T_
ST

0

25

RM
T_

CH0_
TX

_T
HR_E

VENT_
IN

T_
ST

0

24

RM
T_

CH7_
ERR_IN

T_
ST

0

23

RM
T_

CH7_
RX_

END_IN
T_

ST

0

22

RM
T_

CH7_
TX

_E
ND_IN

T_
ST

0

21

RM
T_

CH6_
ERR_IN

T_
ST

0

20

RM
T_

CH6_
RX_

END_IN
T_

ST

0

19

RM
T_

CH6_
TX

_E
ND_IN

T_
ST

0

18

RM
T_

CH5_
ERR_IN

T_
ST

0

17

RM
T_

CH5_
RX_

END_IN
T_

ST

0

16

RM
T_

CH5_
TX

_E
ND_IN

T_
ST

0

15

RM
T_

CH4_
ERR_IN

T_
ST

0

14

RM
T_

CH4_
RX_

END_IN
T_

ST

0

13

RM
T_

CH4_
TX

_E
ND_IN

T_
ST

0

12

RM
T_

CH3_
ERR_IN

T_
ST

0

11

RM
T_

CH3_
RX_

END_IN
T_

ST

0

10

RM
T_

CH3_
TX

_E
ND_IN

T_
ST

0

9

RM
T_

CH2_
ERR_IN

T_
ST

0

8

RM
T_

CH2_
RX_

END_IN
T_

ST

0

7

RM
T_

CH2_
TX

_E
ND_IN

T_
ST

0

6

RM
T_

CH1_
ERR_IN

T_
ST

0

5

RM
T_

CH1_
RX_

END_IN
T_

ST

0

4

RM
T_

CH1_
TX

_E
ND_IN

T_
ST

0

3

RM
T_

CH0_
ERR_IN

T_
ST

0

2

RM
T_

CH0_
RX_

END_IN
T_

ST

0

1

RM
T_

CH0_
TX

_E
ND_IN

T_
ST

0

0

Reset

RMT_CHn_TX_THR_EVENT_INT_ST The masked interrupt status bit for the

RMT_CHn_TX_THR_EVENT_INT interrupt. (RO)

RMT_CHn_ERR_INT_ST The masked interrupt status bit for the RMT_CHn_ERR_INT interrupt. (RO)

RMT_CHn_RX_END_INT_ST The masked interrupt status bit for the RMT_CHn_RX_END_INT inter-

rupt. (RO)

RMT_CHn_TX_END_INT_ST The masked interrupt status bit for the RMT_CHn_TX_END_INT inter-

rupt. (RO)

Espressif Systems 404
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

15 Remote Control Peripheral (RMT)

Register 15.5. RMT_INT_ENA_REG (0x00A8)

RM
T_

CH7_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

31

RM
T_

CH6_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

30

RM
T_

CH5_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

29

RM
T_

CH4_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

28

RM
T_

CH3_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

27

RM
T_

CH2_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

26

RM
T_

CH1_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

25

RM
T_

CH0_
TX

_T
HR_E

VENT_
IN

T_
ENA

0

24

RM
T_

CH7_
ERR_IN

T_
ENA

0

23

RM
T_

CH7_
RX_

END_IN
T_

ENA

0

22

RM
T_

CH7_
TX

_E
ND_IN

T_
ENA

0

21

RM
T_

CH6_
ERR_IN

T_
ENA

0

20

RM
T_

CH6_
RX_

END_IN
T_

ENA

0

19

RM
T_

CH6_
TX

_E
ND_IN

T_
ENA

0

18

RM
T_

CH5_
ERR_IN

T_
ENA

0

17

RM
T_

CH5_
RX_

END_IN
T_

ENA

0

16

RM
T_

CH5_
TX

_E
ND_IN

T_
ENA

0

15

RM
T_

CH4_
ERR_IN

T_
ENA

0

14

RM
T_

CH4_
RX_

END_IN
T_

ENA

0

13

RM
T_

CH4_
TX

_E
ND_IN

T_
ENA

0

12

RM
T_

CH3_
ERR_IN

T_
ENA

0

11

RM
T_

CH3_
RX_

END_IN
T_

ENA

0

10

RM
T_

CH3_
TX

_E
ND_IN

T_
ENA

0

9

RM
T_

CH2_
ERR_IN

T_
ENA

0

8

RM
T_

CH2_
RX_

END_IN
T_

ENA

0

7

RM
T_

CH2_
TX

_E
ND_IN

T_
ENA

0

6

RM
T_

CH1_
ERR_IN

T_
ENA

0

5

RM
T_

CH1_
RX_

END_IN
T_

ENA

0

4

RM
T_

CH1_
TX

_E
ND_IN

T_
ENA

0

3

RM
T_

CH0_
ERR_IN

T_
ENA

0

2

RM
T_

CH0_
RX_

END_IN
T_

ENA

0

1

RM
T_

CH0_
TX

_E
ND_IN

T_
ENA

0

0

Reset

RMT_CHn_TX_THR_EVENT_INT_ENA The interrupt enable bit for the

RMT_CHn_TX_THR_EVENT_INT interrupt. (R/W)

RMT_CHn_ERR_INT_ENA The interrupt enable bit for the RMT_CHn_ERROR_INT interrupt. (R/W)

RMT_CHn_RX_END_INT_ENA The interrupt enable bit for the RMT_CHn_RX_END_INT interrupt.

(R/W)

RMT_CHn_TX_END_INT_ENA The interrupt enable bit for the RMT_CHn_TX_END_INT interrupt.

(R/W)

Register 15.6. RMT_INT_CLR_REG (0x00AC)

RM
T_

CH7_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

31

RM
T_

CH6_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

30

RM
T_

CH5_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

29

RM
T_

CH4_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

28

RM
T_

CH3_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

27

RM
T_

CH2_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

26

RM
T_

CH1_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

25

RM
T_

CH0_
TX

_T
HR_E

VENT_
IN

T_
CLR

0

24

RM
T_

CH7_
ERR_IN

T_
CLR

0

23

RM
T_

CH7_
RX_

END_IN
T_

CLR

0

22

RM
T_

CH7_
TX

_E
ND_IN

T_
CLR

0

21

RM
T_

CH6_
ERR_IN

T_
CLR

0

20

RM
T_

CH6_
RX_

END_IN
T_

CLR

0

19

RM
T_

CH6_
TX

_E
ND_IN

T_
CLR

0

18

RM
T_

CH5_
ERR_IN

T_
CLR

0

17

RM
T_

CH5_
RX_

END_IN
T_

CLR

0

16

RM
T_

CH5_
TX

_E
ND_IN

T_
CLR

0

15

RM
T_

CH4_
ERR_IN

T_
CLR

0

14

RM
T_

CH4_
RX_

END_IN
T_

CLR

0

13

RM
T_

CH4_
TX

_E
ND_IN

T_
CLR

0

12

RM
T_

CH3_
ERR_IN

T_
CLR

0

11

RM
T_

CH3_
RX_

END_IN
T_

CLR

0

10

RM
T_

CH3_
TX

_E
ND_IN

T_
CLR

0

9

RM
T_

CH2_
ERR_IN

T_
CLR

0

8

RM
T_

CH2_
RX_

END_IN
T_

CLR

0

7

RM
T_

CH2_
TX

_E
ND_IN

T_
CLR

0

6

RM
T_

CH1_
ERR_IN

T_
CLR

0

5

RM
T_

CH1_
RX_

END_IN
T_

CLR

0

4

RM
T_

CH1_
TX

_E
ND_IN

T_
CLR

0

3

RM
T_

CH0_
ERR_IN

T_
CLR

0

2

RM
T_

CH0_
RX_

END_IN
T_

CLR

0

1

RM
T_

CH0_
TX

_E
ND_IN

T_
CLR

0

0

Reset

RMT_CHn_TX_THR_EVENT_INT_CLR Set this bit to clear the RMT_CHn_TX_THR_EVENT_INT in-

terrupt. (WO)

RMT_CHn_ERR_INT_CLR Set this bit to clear the RMT_CHn_ERR_INT interrupt. (WO)

RMT_CHn_RX_END_INT_CLR Set this bit to clear the RMT_CHn_RX_END_INT interrupt. (WO)

RMT_CHn_TX_END_INT_CLR Set this bit to clear the RMT_CHn_TX_END_INT interrupt. (WO)

Espressif Systems 405
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

15 Remote Control Peripheral (RMT)

Register 15.7. RMT_CHnCARRIER_DUTY_REG (n: 07) (0x00B0+4*n)

RM
T_

CARRIER_H
IG

H_C
Hn

0x00040

31 16

RM
T_

CARRIER_L
OW

_C
Hn

0x00040

15 0

Reset

RMT_CARRIER_HIGH_CHn This field is used to configure the carrier wave’s high-level clock period

for channel n. The clock source can be either REF_TICK or APB_CLK. (R/W)

RMT_CARRIER_LOW_CHn This field is used to configure the carrier wave’s low-level clock period

for channel n. The clock source can be either REF_TICK or APB_CLK. (R/W)

Register 15.8. RMT_CHn_TX_LIM_REG (n: 07) (0x00D0+4*n)

(re
se

rve
d)

0x000000

31 9

RM
T_

TX
_L

IM
_C

Hn

0x080

8 0

Reset

RMT_TX_LIM_CHn When channel n sends more entries than specified here, it produces a

TX_THR_EVENT interrupt. (R/W)

Register 15.9. RMT_APB_CONF_REG (0x00F0)

(re
se

rve
d)

0x00000000

31 2

RM
T_

M
EM

_T
X_

W
RAP_E

N

0

1

RM
T_

M
EM

_A
CCESS_E

N

0

0

Reset

RMT_MEM_TX_WRAP_EN This bit enables wraparound mode: when the transmitter of a channel

has reached the end of its memory block, it will resume sending at the start of its memory region.

(R/W)

RMT_MEM_ACCESS_EN This bit must be 1 in order to access the RMT memory.

Espressif Systems 406
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

16 Motor Control PWM (PWM)

16.1 Introduction
The Motor Control Pulse Width Modulator (MCPWM) peripheral is intended for motor and power control. It provides

six PWM outputs that can be set up to operate in several topologies. One common topology uses a pair of PWM

outputs driving an H-bridge to control motor rotation speed and rotation direction.

The timing and control resources inside are allocated into two major types of submodules: PWM timers and PWM

operators. Each PWM timer provides timing references that can either run freely or be synced to other timers or

external sources. Each PWM operator has all necessary control resources to generate waveform pairs for one

PWM channel. The MCPWM peripheral also contains a dedicated capture submodule that is used in systems

where accurate timing of external events is important.

ESP32 contains two MCPWM peripherals: MCPWM0 and MCPWM1. Their control registers are located in 4-KB

memory blocks starting at memory locations 0x3FF5E000 and 0x3FF6C000 respectively.

16.2 Features
Each MCPWM peripheral has one clock divider (prescaler), three PWM timers, three PWM operators, and a capture

module. Figure 16-1 shows the submodules inside and the signals on the interface. PWM timers are used for

generating timing references. The PWM operators generate desired waveform based on the timing references.

Any PWM operator can be configured to use the timing references of any PWM timers. Different PWM operators

can use the same PWM timer’s timing references to produce related PWM signals. PWM operators can also use

different PWM timers’ values to produce the PWM signals that work alone. Different PWM timers can also be

synced together.

Figure 161. MCPWM Module Overview

An overview of the submodules’ function in Figure 16-1 is shown below:

Espressif Systems 407
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

• PWM Timers 0, 1 and 2

– Every PWM timer has a dedicated 8-bit clock prescaler.

– The 16-bit counter in the PWM timer can work in count-up mode, count-down mode or count-up-down

mode.

– A hardware sync can trigger a reload on the PWM timer with a phase register. It will also trigger the

prescaler’ restart, so that the timer’s clock can also be synced. The source of the sync can come from

any GPIO or any other PWM timer’s sync_out.

• PWM Operators 0, 1 and 2

– Every PWM operator has two PWM outputs: PWMxA and PWMxB. They can work independently, in

symmetric and asymmetric configuration.

– Software, asynchronous override control of PWM signals.

– Configurable dead-time on rising and falling edges; each set up independently.

– All events can trigger CPU interrupts.

– Modulating of PWM output by high-frequency carrier signals, useful when gate drives are insulated with

a transformer.

– Period, time stamps and important control registers have shadow registers with flexible updating meth-

ods.

• Fault Detection Module

– Programmable fault handling allocated on fault condition in both cycle-by-cycle mode and one-shot

mode.

– A fault condition can force the PWM output to either high or low logic levels.

• Capture Module

– Speed measurement of rotating machinery

– Measurement of elapsed time between position sensor pulses

– Period and duty-cycle measurement of pulse train signals

– Decoding current or voltage amplitude derived from duty-cycle-encoded signals from current/voltage

sensors

– Three individual capture channels, each of which has a time-stamp register (32 bits)

– Selection of edge polarity and prescaling of input capture signal

– The capture timer can sync with a PWM timer or external signals.

– Interrupt on each of the three capture channels

Espressif Systems 408
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

16.3 Submodules
16.3.1 Overview
This section lists the configuration parameters of key submodules. For information on adjusting a specific param-

eter, e.g. synchronization source of PWM timer, please refer to Section 16.3.2 for details.

16.3.1.1 Prescaler Submodule

Figure 162. Prescaler Submodule

Configuration parameter:

• Scale the PWM clock according to CLK_160M.

16.3.1.2 Timer Submodule

Figure 163. Timer Submodule

Configuration parameters:

• Set the PWM timer frequency or period.

• Configure the working mode for the timer:

– Count-Up Mode: for asymmetric PWM outputs

– Count-Down Mode: for asymmetric PWM outputs

– Count-Up-Down Mode: for symmetric PWM outputs

• Configure the the reloading phase (including the value and the phase) used during software and hardware

synchronization.

Espressif Systems 409
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

• Synchronize the PWM timers with each other. Either hardware or software synchronization may be used.

• Configure the source of the PWM timer’s the synchronization input to one of the seven sources below:

– The three PWM timer’s synchronization outputs.

– Three synchronization signals from the GPIO matrix: SYNC0, SYNC1, SYNC2.

– No synchronization input signal selected

• Configure the source of the PWM timer’s synchronization output to one of the four sources below:

– Synchronization input signal

– Event generated when value of the PWM timer is equal to zero

– Event generated when value of the PWM timer is equal to period

– No synchronization output generated

• Configure the method of period updating.

16.3.1.3 Operator Submodule

Figure 164. Operator Submodule

The configuration parameters of the operator submodule are shown in Table 16-1.

Espressif Systems 410
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Table 161. Configuration Parameters of the Operator Submodule

Submodule Configuration Parameter or Option

PWM Generator

• Set up the PWM duty cycle for PWMxA and/or PWMxB out-

put.

• Set up at which time the timing events occur.

• Define what action should be taken on timing events:

– Switch high or low PWMxA and/or PWMxB outputs

– Toggle PWMxA and/or PWMxB outputs

– Take no action on outputs

• Use direct s/w control to force the state of PWM outputs

• Add a dead time to raising and / or failing edge on PWM out-

puts.

• Configure update method for this submodule.

Dead Time Generator

• Control of complementary dead time relationship between

upper and lower switches.

• Specify the dead time on rising edge.

• Specify the dead time on falling edge.

• Bypass the dead time generator module. The PWM wave-

form will pass through without inserting dead time.

• Allow PWMxB phase shifting with respect to the PWMxA out-

put.

• Configure updating method for this submodule.

PWM Carrier

• Enable carrier and set up carrier frequency.

• Configure duration of the first pulse in the carrier waveform.

• Set up the duty cycle of the following pulses.

• Bypass the PWM carrier module. The PWM waveform will be

passed through without modification.

Fault Handler

• Configure if and how the PWM module should react the fault

event signals.

• Specify the action taken when a fault event occurs:

– Force PWMxA and/or PWMxB high.

– Force PWMxA and/or PWMxB low.

– Configure PWMxA and/or PWMxB to ignore any fault

event.

• Configure how often the PWM should react to fault events:

– One-shot

– Cycle-by-cycle

• Generate interrupts.

• Bypass the fault handler submodule entirely.

• Set up an option for cycle-by-cycle actions clearing.

• If desired, independently-configured actions can be taken

when time-base counter is counting down or up.

Espressif Systems 411
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

16.3.1.4 Fault Detection Submodule

Figure 165. Fault Detection Submodule

Configuration parameters:

• Enable fault event generation and configure the polarity of fault event generation for every fault signal

• Generate fault event interrupts

16.3.1.5 Capture Submodule

Figure 166. Capture Submodule

Configuration parameters:

• Select the edge polarity and prescaling of the capture input.

• Set up a software-triggered capture.

• Configure the capture timer’s sync trigger and sync phase.

• Software syncs the capture timer.

16.3.2 PWM Timer Submodule
Each MCPWM module has three PWM timer submodules. Any of them can determine the necessary event timing

for any of the three PWM operator submodules. Built-in synchronization logic allows multiple PWM timer submod-

ules, in one or more MCPWM modules, to work together as a system, when using synchronization signals from

the GPIO matrix.

16.3.2.1 Configurations of the PWM Timer Submodule

Users can configure the following functions of the PWM timer submodule:

• Control how often events occur by specifying the PWM timer frequency or period.

• Configure a particular PWM timer to synchronize with other PWM timers or modules.

Espressif Systems 412
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

• Get a PWM timer in phase with other PWM timers or modules.

• Set one of the following timer counting modes: count-up, count-down, count-up-down.

• Change the rate of the PWM timer clock (PT_clk) with a prescaler. Each timer has its own prescaler config-

ured with PWM_TIMERx_PRESCALE of register PWM_TIMER0_CFG0_REG. The PWM timer increments or

decrements at a slower pace, depending on the setting of this register.

16.3.2.2 PWM Timer’s Working Modes and Timing Event Generation

The PWM timer has three working modes, selected by the PWMx timer mode register:

• Count-Up Mode:

In this mode, the PWM timer increments from zero until reaching the value configured in the period register.

Once done, the PWM timer returns to zero and starts increasing again. PWM period is equal to the value of

period register + 1.

Note: The period register is PWM_TIMERx_PERIOD (x = 0, 1, 2), i.e., PWM_TIMER0_PERIOD, PWM_TIMER1_PERIOD,

PWM_TIMER2_PERIOD.

• Count-Down Mode:

The PWM timer decrements to zero, starting from the value configured in the period register. After reaching

zero, it is set back to the period value. Then it starts to decrement again. In this case, the PWM period is

also equal to the value of period register + 1.

• Count-Up-Down Mode:

This is a combination of the two modes mentioned above. The PWM timer starts increasing from zero until

the period value is reached. Then, the timer decreases back to zero. This pattern is then repeated. The

PWM period is the result of (the value of period register × 2 + 1).

Figures 16-7 to 16-10 show PWM timer waveforms in different modes, including timer behavior during synchro-

nization events.

Figure 167. CountUp Mode Waveform

Espressif Systems 413
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Figure 168. CountDown Mode Waveforms

Figure 169. CountUpDown Mode Waveforms, CountDown at Synchronization Event

Figure 1610. CountUpDown Mode Waveforms, CountUp at Synchronization Event

Espressif Systems 414
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

When the PWM timer is running, it generates the following timing events periodically and automatically:

• UTEP

The timing event generated when the PWM timer’s value equals to the value of the period register

(PWM_TIMERx_PERIOD) and when the PWM timer is increasing.

• UTEZ

The timing event generated when the PWM timer’s value equals to zero and when the PWM timer is increas-

ing.

• DTEP

The timing event generated when the PWM timer’s value equals to the value of the period register

(PWM_TIMERx_PERIOD) and when the PWM timer is decreasing.

• DTEZ

The timing event generated when the PWM timer’s value equals to zero and when the PWM timer is decreas-

ing.

Figures 16-11 to 16-13 show the timing waveforms of U/DTEP and U/DTEZ.

Figure 1611. UTEP and UTEZ Generation in CountUp Mode

Espressif Systems 415
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Figure 1612. DTEP and DTEZ Generation in CountDown Mode

Figure 1613. DTEP and UTEZ Generation in CountUpDown Mode

Espressif Systems 416
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

16.3.2.3 PWM Timer Shadow Register

The PWM timer’s period register and the PWM timer’s clock prescaler register have shadow registers. The purpose

of a shadow register is to save a copy of the value to be written into the active register at a specific moment

synchronized with the hardware. Both register types are defined as follows:

• Active Register

This register is directly responsible for controlling all actions performed by hardware.

• Shadow Register

It acts as a temporary buffer for a value to be written on the active register. Before this happens, the content

of the shadow register has no direct effect on the controlled hardware. At a specific, user-configured point

in time, the value saved in the shadow register is copied to the active register. This helps to prevent spurious

operation of the hardware, which may happen when a register is asynchronously modified by software. Both

the shadow register and the active register have the same memory address. The software always writes into,

or reads from the shadow register. The moment of updating the active register is determined by its specific

update method register. The update can start when the PWM timer is equal to zero, when the PWM timer is

equal to period,at a synchronization moment, or immediately. Software can trigger a globally forced update

which will prompt all registers in the module to be updated according to shadow registers.

16.3.2.4 PWM Timer Synchronization and Phase Locking

The PWM modules adopt a flexible synchronization method. Each PWM timer has a synchronization input and a

synchronization output. The synchronization input can be selected from three synchronization outputs and three

synchronization signals from the GPIO matrix. The synchronization output can be generated from the synchroniza-

tion input signal, or when the PWM timer’s value is equal to period or zero. Thus, the PWM timers can be chained

together with their phase locked. During synchronization, the PWM timer clock prescaler will reset its counter in

order to synchronize the PWM timer clock.

16.3.3 PWM Operator Submodule
The PWM Operator submodule has the following functions:

• Generates a PWM signal pair, based on timing references obtained from the corresponding PWM timer.

• Each signal out of the PWM signal pair includes a specific pattern of dead time.

• Superimposes a carrier on the PWM signal, if configured to do so.

• Handles response under fault conditions.

Figure 16-14 shows the block diagram of a PWM operator.

Espressif Systems 417
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Figure 1614. Submodules Inside the PWM Operator

Espressif Systems 418
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

16.3.3.1 PWM Generator Submodule

Purpose of the PWM Generator Submodule

In this submodule, important timing events are generated or imported. The events are then converted into specific

actions to generate the desired waveforms at the PWMxA and PWMxB outputs.

The PWM generator submodule performs the following actions:

• Generation of timing events based on time stamps configured using the A and B registers. Events happen

when the following conditions are satisfied:

– UTEA: the PWM timer is counting up and its value is equal to register A.

– UTEB: the PWM timer is counting up and its value is equal to register B.

– DTEA: the PWM timer is counting down and its value is equal to register A.

– DTEB: the PWM timer is counting down and its value is equal to register B.

• Generation of U/DT1, U/DT2 timing events based on fault or synchronization events.

• Management of priority when these timing events occur concurrently.

• Qualification and generation of set, clear and toggle actions, based on the timing events.

• Controlling of the PWM duty cycle, depending on configuration of the PWM generator submodule.

• Handling of new time stamp values, using shadow, registers to prevent glitches in the PWM cycle.

PWM Operator Shadow Registers

The time stamp registers A and B, as well as action configuration registers PWM_GENx_A_REG and PWM_GENx_B_REG

are shadowed. Shadowing provides a way of updating registers in sync with the hardware. For a description of

the shadow registers, please see 16.3.2.3.

Timing Events

For convenience, all timing signals and events are summarized in Table 16-2.

Table 162. Timing Events Used in PWM Generator

Signal Event Description PWM Timer Operation

DTEP PWM timer value is equal to the period register value

PWM timer counts down.

DTEZ PWM timer value is equal to zero

DTEA PWM timer value is equal to A register

DTEB PWM timer value is equal to B register

DT0 event Based on fault or synchronization events

DT1 event Based on fault or synchronization events

UTEP PWM timer value is equal to the period register value

PWM timer counts up.

UTEZ PWM timer value is equal to zero

UTEA PWM timer value is equal to A register

UTEB PWM timer value is equal to B register

UT0 event Based on fault or synchronization events

UT1 event Based on fault or synchronization events

Espressif Systems 419
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Signal Event Description PWM Timer Operation

Software-force event Software-initiated asynchronous event N/A

The purpose of a software-force event is to impose non-continuous or continuous changes on the PWMxA and

PWMxB outputs. The change is done asynchronously. Software-force control is handled by the

PWM_PWM_GENx_FORCE_REG registers.

The selection and configuration of T0/T1 in the PWM generator submodule is independent of the configuration

of fault events in the fault handler submodule. A particular trip event may or may not be configured to cause trip

action in the fault handler submodule, but the same event can be used by the PWM generator to trigger T0/T1 for

controlling PWM waveforms.

It is important to know that when the PWM timer is in count-up-down mode, it will always decrement after a TEP

event, and will always increment after a TEZ event. So when the PWM timer is in count-up-down mode, DTEP

and UTEZ events will occur, while the events UTEP and DTEZ will never occur.

The PWM generator can handle multiple events at the same time. Events are prioritized by the hardware and

relevant details are provided in Table 16-3 and Table 16-4. Priority levels range from 1 (the highest) to 7 (the

lowest). Please note that the priority of TEP and TEZ events depends on the PWM timer’s direction.

If the value of A or B is set to be greater than the period, then U/DTEA and U/DTEB will never occur.

Table 163. Timing Events Priority When PWM Timer Increments

Priority Level Event

1 (highest) Software-force event

2 UTEP

3 UT0

4 UT1

5 UTEB

6 UTEA

7 (lowest) UTEZ

Table 164. Timing Events Priority when PWM Timer Decrements

Priority level Event

1 (highest) Software-force event

2 DTEZ

3 DT0

4 DT1

5 DTEB

6 DTEA

7 (lowest) DTEP

Notes:

1. UTEP and UTEZ do not happen simultaneously. When the PWM timer is in count-up mode, UTEP will always

happen one cycle earlier than UTEZ, as demonstrated in Figure 16-11, so their action on PWM signals will

Espressif Systems 420
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

not interrupt each other. When the PWM timer is in count-up-down mode, UTEP will not occur.

2. DTEP and DTEZ do not happen simultaneously. When the PWM timer is in count-down mode, DTEZ will

always happen one cycle earlier than DTEP, as demonstrated in Figure 16-12, so their action on PWM signals

will not interrupt each other. When the PWM timer is in count-up-down mode, DTEZ will not occur.

PWM Signal Generation

The PWM generator submodule controls the behavior of outputs PWMxA and PWMxB when a particular timing

event occurs. The timing events are further qualified by the PWM timer’s counting direction (up or down). Knowing

the counting direction, the submodule may then perform an independent action at each stage of the PWM timer

counting up or down.

The following actions may be configured on outputs PWMxA and PWMxB:

• Set High:

Set the output of PWMxA or PWMxB to a high level.

• Clear Low:

Clear the output of PWMxA or PWMxB by setting it to a low level.

• Toggle:

Change the current output level of PWMxA or PWMxB to the opposite value. If it is currently pulled high, pull

it low, or vice versa.

• Do Nothing:

Keep both outputs PWMxA and PWMxB unchanged. In this state, interrupts can still be triggered.

The configuration of actions on outputs is done by using registers PWN_GENx_A_REG and PWN_GENx_B_REG.

So, the action to be taken on each output is set independently. Also there is great flexibility in selecting actions

to be taken on a given output based on events. More specifically, any event listed in Table 16-2 can operate on

either output PWMxA or PWMxB. To check out registers for particular generator 0, 1 or 2, please refer to register

description in Section 16.4.

Waveforms for Common Configurations

Figure 16-15 presents the symmetric PWM waveform generated when the PWM timer is counting up and down.

DC 0%–100% modulation can be calculated via the formula below:

Duty = (Period−A)÷ Period

If A matches the PWM timer value and the PWM timer is incrementing, then the PWM output is pulled up. If A

matches the PWM timer value while the PWM timer is decrementing, then the PWM output is pulled low.

Espressif Systems 421
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Figure 1615. Symmetrical Waveform in CountUpDown Mode

The PWM waveforms in Figures 16-16 to 16-19 show some common PWM operator configurations. The following

conventions are used in the figures:

• Period A and B refer to the values written in the corresponding registers.

• PWMxA and PWMxB are the output signals of PWM Operator x.

Espressif Systems 422
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Figure 1616. CountUp, Single Edge Asymmetric Waveform, with Independent Modulation on PWMxA

and PWMxB — Active High

The duty modulation for PWMxA is set by B, active high and proportional to B.

The duty modulation for PWMxB is set by A, active high and proportional to A.

Period = (PWM_TIMERx_PERIOD + 1)× TPT _clk

Espressif Systems 423
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Figure 1617. CountUp, Pulse Placement Asymmetric Waveform with Independent Modulation on PWMxA

Pulses may be generated anywhere within the PWM cycle (zero – period).

PWMxA’s high time duty is proportional to (B – A).

Period = (PWM_TIMERx_PERIOD + 1)× TPT _clk

Espressif Systems 424
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Figure 1618. CountUpDown, Dual Edge Symmetric Waveform, with Independent Modulation on PWMxA

and PWMxB — Active High

The duty modulation for PWMxA is set by A, active high and proportional to A.

The duty modulation for PWMxB is set by B, active high and proportional to B.

Outputs PWMxA and PWMxB can drive independent switches.

Period = (2× PWM_TIMERx_PERIOD + 1)× TPT _clk

Espressif Systems 425
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Figure 1619. CountUpDown, Dual Edge Symmetric Waveform, with Independent Modulation on PWMxA

and PWMxB — Complementary

The duty modulation of PWMxA is set by A, is active high and proportional to A.

The duty modulation of PWMxB is set by B, is active low and proportional to B.

Outputs PWMx can drive upper/lower (complementary) switches.

Dead-time = B – A; Edge placement is fully programmable by software. Use the dead-time generator module if

another edge delay method is required.

Period = (2× PWM_TIMERx_PERIOD + 1)× TPT _clk

Espressif Systems 426
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

SoftwareForce Events

There are two types of software-force events inside the PWM generator:

• Non-continuous-immediate (NCI) software-force events

Such types of events are immediately effective on PWM outputs when triggered by software. The forcing is

non-continuous, meaning the next active timing events will be able to alter the PWM outputs.

• Continuous (CNTU) software-force events

Such types of events are continuous. The forced PWM outputs will continue until they are released by

software. The events’ triggers are configurable. They can be timing events or immediate events.

Figure 16-20 shows a waveform of NCI software-force events. NCI events are used to force PWMxA output low.

Forcing on PWMxB is disabled in this case.

Figure 1620. Example of an NCI SoftwareForce Event on PWMxA

Espressif Systems 427
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Figure 16-21 shows a waveform of CNTU software-force events. UTEZ events are selected as triggers for CNTU

software-force events. CNTU is used to force the PWMxB output low. Forcing on PWMxA is disabled.

Figure 1621. Example of a CNTU SoftwareForce Event on PWMxB

Espressif Systems 428
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

16.3.3.2 Dead Time Generator Submodule

Purpose of the Dead Time Generator Submodule

Several options to generate signals on PWMxA and PWMxB outputs, with a specific placement of signal edges,

have been discussed in section 16.3.3.1. The required dead time is obtained by altering the edge placement

between signals and by setting the signal’s duty cycle. Another option is to control the dead time using a specialized

submodule – the Dead Time Generator.

The key functions of the dead time generator submodule are as follows:

• Generating signal pairs (PWMxA and PWMxB) with a dead time from a single PWMxA input

• Creating a dead time by adding delay to signal edges:

– Rising edge delay (RED)

– Falling edge delay (FED)

• Configuring the signal pairs to be:

– Active high complementary (AHC)

– Active low complementary (ALC)

– Active high (AH)

– Active low (AL)

• This submodule may also be bypassed, if the dead time is configured directly in the generator submodule.

Dead Time Generator’s Shadow Registers

Delay registers RED and FED are shadowed with registers PWM_DTx_RED_CFG_REG and PWM_DTx_FED_CFG_REG.

For the description of shadow registers, please see section 16.3.2.3.

Espressif Systems 429
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Highlights for Operation of the Dead Time Generator

Options for setting up the dead-time submodule are shown in Figure 16-22.

Figure 1622. Options for Setting up the Dead Time Generator Submodule

S0-8 in the figure above are switches controlled by registers PWM_DTx_CFG_REG shown in Table 16-5.

Table 165. Dead Time Generator Switches Control Registers

Switch Register

S0 PWM_DTx_B_OUTBYPASS

S1 PWM_DTx_A_OUTBYPASS

S2 PWM_DTx_RED_OUTINVERT

S3 PWM_DTx_FED_OUTINVERT

S4 PWM_DTx_RED_INSEL

S5 PWM_DTx_FED_INSEL

S6 PWM_DTx_A_OUTSWAP

S7 PWM_DTx_B_OUTSWAP

S8 PWM_DTx_DEB_MODE

All switch combinations are supported, but not all of them represent the typical modes of use. Table 16-6 doc-

uments some typical dead time configurations. In these configurations the position of S4 and S5 sets PWMxA

as the common source of both falling-edge and rising-edge delay. The modes presented in table 16-6 may be

categorized as follows:

• Mode 1: Bypass delays on both falling (FED) as well as raising edge (RED)

In this mode the dead time submodule is disabled. Signals PWMxA and PWMxB pass through without any

modifications.

• Mode 25: Classical Dead Time Polarity Settings

These modes represent typical configurations of polarity and should cover the active-high/low modes in

available industry power switch gate drivers. The typical waveforms are shown in Figures 16-23 to 16-26.

Espressif Systems 430
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

• Modes 6 and 7: Bypass delay on falling edge (FED) or rising edge (RED)

In these modes, either RED (Rising Edge Delay) or FED (Falling Edge Delay) is bypassed. As a result, the

corresponding delay is not applied.

Table 166. Typical Dead Time Generator Operating Modes

Mode Mode Description S0 S1 S2 S3

1 PWMxA and PWMxB Pass Through/No Delay 1 1 X X

2 Active High Complementary (AHC), see Figure 16-23 0 0 0 1

3 Active Low Complementary (ALC), see Figure 16-24 0 0 1 0

4 Active High (AH), see Figure 16-25 0 0 0 0

5 Active Low (AL), see Figure 16-26 0 0 1 1

6 PWMxA Output = PWMxA In (No Delay) 0 1 0 or 1 0 or 1

PWMxB Output = PWMxA Input with Falling Edge Delay

7 PWMxA Output = PWMxA Input with Rising Edge Delay 1 0 0 or 1 0 or 1

PWMxB Output = PWMxB Input with No Delay

Note: For all the modes above, the position of the binary switches S4 to S8 is set to 0.

Figure 1623. Active High Complementary (AHC) Dead Time Waveforms

Espressif Systems 431
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Figure 1624. Active Low Complementary (ALC) Dead Time Waveforms

Figure 1625. Active High (AH) Dead Time Waveforms

Espressif Systems 432
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Figure 1626. Active Low (AL) Dead Time Waveforms

Rising edge (RED) and falling edge (FED) delays may be set up independently. The delay value is programmed

using the 16-bit registers PWM_DTx_RED and PWM_DTx_FED. The register value represents the number of clock

(DT_clk) periods by which a signal edge is delayed. DT_CLK can be selected from PWM_clk or PT_clk through

register PWM_DTx_CLK_SEL.

To calculate the delay on falling edge (FED) and rising edge (RED), use the following formulas:

FED = PWM_DT x_FED × TDT _clk

RED = PWM_DT x_RED × TDT _clk

Espressif Systems 433
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

16.3.3.3 PWM Carrier Submodule

The coupling of PWM output to a motor driver may need isolation with a transformer. Transformers deliver only AC

signals, while the duty cycle of a PWM signal may range anywhere from 0% to 100%. The PWM carrier submodule

passes such a PWM signal through a transformer by using a high frequency carrier to modulate the signal.

Function Overview

The following key characteristics of this submodule are configurable:

• Carrier frequency

• Pulse width of the first pulse

• Duty cycle of the second and the subsequent pulses

• Enabling/disabling the carrier function

Operational Highlights

The PWM carrier clock (PC_clk) is derived from PWM_clk. The frequency and duty cycle are configured by the

PWM_CARRIERx_PRESCALE and PWM_CARRIERx_DUTY bits in the PWM_CARRIERx_CFG_REG register. The

purpose of one-shot pulses is to provide high-energy impulse to reliably turn on the power switch. Subsequent

pulses sustain the power-on status. The width of a one-shot pulse is configurable with the PWM_CARRIERx_OSHTWTH

bits. Enabling/disabling of the carrier submodule is done with the PWM_CARRIERx_EN bit.

Waveform Examples

Figure 16-27 shows an example of waveforms, where a carrier is superimposed on original PWM pulses. This

figure do not show the first one-shot pulse and the duty-cycle control. Related details are covered in the following

two sections.

Espressif Systems 434
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Figure 1627. Example of Waveforms Showing PWM Carrier Action

OneShot Pulse

The width of the first pulse is configurable. It may assume one of 16 possible values and is described by the

formula below:

T1stpulse = TPWM_clk×8× (PWM_CARRIERx_PRESCALE+1)× (PWM_CARRIERx_OSHTWTH+1)

Where:

• TPMW _clk is the period of the PWM clock (PWM_clk).

• (PWM_CARRIERx_OSHTWTH + 1) is the width of the first pulse (whose value ranges from 1 to 16).

• (PWM_CARRIERx_PRESCALE + 1) is the PWM carrier clock’s (PC_clk) prescaler value.

The first one-shot pulse and subsequent sustaining pulses are shown in Figure 16-28.

Espressif Systems 435
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Figure 1628. Example of the First Pulse and the Subsequent Sustaining Pulses of the PWM Carrier Sub

module

Duty Cycle Control

After issuing the first one-shot pulse, the remaining PWM signal is modulated according to the carrier frequency.

Users can configure the duty cycle of this signal. Tuning of duty may be required, so that the signal passes

through the isolating transformer and can still operate (turn on/off) the motor drive, changing rotation speed and

direction.

The duty cycle may be set to one of seven values, using PWM_CARRIERx_DUTY, or bits [7:5] of register

PWM_CARRIERx_CFG_REG.

Below is the formula for calculating the duty cycle:

Duty = PWM_CARRIERx_DUTY ÷ 8

All seven settings of the duty cycle are shown in Figure 16-29.

Espressif Systems 436
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Figure 1629. Possible Duty Cycle Settings for Sustaining Pulses in the PWM Carrier Submodule

16.3.3.4 Fault Handler Submodule

Each MCPWM peripheral is connected to three fault signals (FAULT0, FAULT1 and FAULT2) which are sourced

from the GPIO matrix. These signals are intended to indicate external fault conditions, and may be preprocessed

by the fault detection submodule to generate fault events. Fault events can then execute the user code to control

MCPWM outputs in response to specific faults.

Function of Fault Handler Submodule

The key actions performed by the fault handler submodule are:

• Forcing outputs PWMxA and PWMxB, upon detected fault, to one of the following states:

– High

– Low

– Toggle

– No action taken

• Execution of one-shot trip (OST) upon detection of over-current conditions/short circuits.

• Cycle-by-cycle tripping (CBC) to provide current-limiting operation.

• Allocation of either one-shot or cycle-by-cycle operation for each fault signal.

• Generation of interrupts for each fault input.

• Support for software-force tripping.

• Enabling or disabling of submodule function as required.

Espressif Systems 437
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Operation and Configuration Tips

This section provides the operational tips and set-up options for the fault handler submodule.

Fault signals coming from pads are sampled and synced in the GPIO matrix. In order to guarantee the successful

sampling of fault pulses, each pulse duration must be at least two APB clock cycles. The fault detection submodule

will then sample fault signals by using PWM_clk. So, the duration of fault pulses coming from GPIO matrix must be

at least one PWM_clk cycle. Differently put, regardless of the period relation between APB clock and PWM_clk, the

width of fault signal pulses on pads must be at least equal to the sum of two APB clock cycles and one PWM_clk

cycle.

Each level of fault signals, FAULT0 to FAULT2, can be used by the fault handler submodule to generate fault events

(fault_event0 to fault_event2). Every fault event can be configured individually to provide CBC action, OST action,

or none.

• CyclebyCycle (CBC) action:

When CBC action is triggered, the state of PWMxA and PWMxB will be changed immediately according

to the configuration of registers PWM_FHx_A_CBC_U/D and PWM_FHx_B_CBC_U/D. Different actions can

be indicted when the PWM timer is incrementing or decrementing. Different CBC action interrupts can be

triggered for different fault events. Status register PWM_FHx_CBC_ON indicates whether a CBC action is

on or off. When the fault event is no longer present, CBC actions on PWMxA/B will be cleared at a specified

point, which is either a D/UTEP or D/UTEZ event. Register PWM_FHx_CBCPULSE determines at which

event PWMxA and PWMxB will be able to resume normal actions. Therefore, in this mode, the CBC action

is cleared or refreshed upon every PWM cycle.

• OneShot (OST) action:

When OST action is triggered, the state of PWMxA and PWMxB will be changed immediately, depending on

the setting of registers PWM_FHx_A_OST_U/D and PWM_FHx_B_OST_U/D. Different actions can be con-

figured when PWM timer is incrementing or decrementing. Different OST action interrupts can be triggered

form different fault events. Status register PWM_FHx_OST_ON indicates whether an OST action is on or

off. The OST actions on PWMxA/B are not automatically cleared when the fault event is no longer present.

One-shot actions must be cleared manually by negating the value stored in register PWM_FHx_CLR_OST.

16.3.4 Capture Submodule

16.3.4.1 Introduction

The capture submodule contains three complete capture channels. Channel inputs CAP0, CAP1 and CAP2 are

sourced from the GPIO matrix. Thanks to the flexibility of the GPIO matrix, CAP0, CAP1 and CAP2 can be config-

ured from any PAD input. Multiple capture channels can be sourced from the same PAD input, while prescaling for

each channel can be set differently. Also, capture channels are sourced from different PADs. This provides several

options for handling capture signals by hardware in the background, instead of having them processed directly by

the CPU. A capture submodule has the following independent key resources:

• One 32-bit timer (counter) which can be synchronized with the PWM timer, another submodule or software.

• Three capture channels, each equipped with a 32-bit time-stamp and a capture prescaler.

• Independent edge polarity (rising/falling edge) selection for any capture channel.

• Input capture signal prescaling (from 1 to 256).

• Interrupt capabilities on any of the three capture events.

Espressif Systems 438
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

16.3.4.2 Capture Timer

The capture timer is a 32-bit counter incrementing continuously, once enabled. On the input it has an APB clock

running typically at 80 MHz. At a sync event the counter is loaded with phase stored in register

PWM_CAP_TIMER_PHASE_REG. Sync events can come from PWM timers sync-out, PWM module sync-in or

software. The capture timer provides timing references for all three capture channels.

16.3.4.3 Capture Channel

The capture signal coming to a capture channel will be inverted first, if needed, and then prescaled. Finally,

specified edges of preprocessed capture signal will trigger capture events. When a capture event occurs, the

capture timer’s value is stored in time-stamp register PWM_CAP_CHx_REG. Different interrupts can be generated

for different capture channels at capture events. The edge that triggers a capture event is recorded in register

PWM_CAPx_EDGE. The capture event can be also forced by software.

Espressif Systems 439
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

16.4 Register Summary

Name Description PWM0 PWM1 Acc

Prescaler configuration

PWM_CLK_CFG_REG Configuration of the prescaler 0x3FF5E000 0x3FF6C000 R/W

PWM Timer 0 Configuration and status

PWM_TIMER0_CFG0_REG Timer period and update method 0x3FF5E004 0x3FF6C004 R/W

PWM_TIMER0_CFG1_REG Working mode and start/stop control 0x3FF5E008 0x3FF6C008 R/W

PWM_TIMER0_SYNC_REG Synchronization settings 0x3FF5E00C 0x3FF6C00C R/W

PWM_TIMER0_STATUS_REG Timer status 0x3FF5E010 0x3FF6C010 RO

PWM Timer 1 Configuration and Status

PWM_TIMER1_CFG0_REG Timer update method and period 0x3FF5E014 0x3FF6C014 R/W

PWM_TIMER1_CFG1_REG Working mode and start/stop control 0x3FF5E018 0x3FF6C018 R/W

PWM_TIMER1_SYNC_REG Synchronization settings 0x3FF5E01C 0x3FF6C01C R/W

PWM_TIMER1_STATUS_REG Timer status 0x3FF5E020 0x3FF6C020 RO

PWM Timer 2 Configuration and status

PWM_TIMER2_CFG0_REG Timer update method and period 0x3FF5E024 0x3FF6C024 R/W

PWM_TIMER2_CFG1_REG Working mode and start/stop control 0x3FF5E028 0x3FF6C028 R/W

PWM_TIMER2_SYNC_REG Synchronization settings 0x3FF5E02C 0x3FF6C02C R/W

PWM_TIMER2_STATUS_REG Timer status 0x3FF5E030 0x3FF6C030 RO

Common configuration for PWM timers

PWM_TIMER_SYNCI_CFG_REG Synchronization input selection for

timers

0x3FF5E034 0x3FF6C034 R/W

PWM_OPERATOR_TIMERSEL_REG Select specific timer for PWM opera-

tors

0x3FF5E038 0x3FF6C038 R/W

PWM Operator 0 Configuration and Status

PWM_GEN0_STMP_CFG_REG Transfer status and update method for

time stamp registers A and B

0x3FF5E03C 0x3FF6C03C R/W

PWM_GEN0_TSTMP_A_REG Shadow register for register A 0x3FF5E040 0x3FF6C040 R/W

PWM_GEN0_TSTMP_B_REG Shadow register for register B 0x3FF5E044 0x3FF6C044 R/W

PWM_GEN0_CFG0_REG Fault event T0 and T1 handling 0x3FF5E048 0x3FF6C048 R/W

PWM_GEN0_FORCE_REG Permissives to force PWM0A and

PWM0B outputs by software

0x3FF5E04C 0x3FF6C04C R/W

PWM_GEN0_A_REG Actions triggered by events on

PWM0A

0x3FF5E050 0x3FF6C050 R/W

PWM_GEN0_B_REG Actions triggered by events on

PWM0B

0x3FF5E054 0x3FF6C054 R/W

PWM_DT0_CFG_REG Dead time type selection and configu-

ration

0x3FF5E058 0x3FF6C058 R/W

PWM_DT0_FED_CFG_REG Shadow register for falling edge delay

(FED)

0x3FF5E05C 0x3FF6C05C R/W

PWM_DT0_RED_CFG_REG Shadow register for rising edge delay

(RED)

0x3FF5E060 0x3FF6C060 R/W

PWM_CARRIER0_CFG_REG Carrier enable and configuration 0x3FF5E064 0x3FF6C064 R/W

Espressif Systems 440
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Name Description PWM0 PWM1 Acc

PWM_FH0_CFG0_REG Actions on PWM0A and PWM0B on

trip events

0x3FF5E068 0x3FF6C068 R/W

PWM_FH0_CFG1_REG Software triggers for fault handler ac-

tions

0x3FF5E06C 0x3FF6C06C R/W

PWM_FH0_STATUS_REG Status of fault events 0x3FF5E070 0x3FF6C070 RO

PWM Operator 1 Configuration and Status

PWM_GEN1_STMP_CFG_REG Transfer status and update method for

time stamp registers A and B

0x3FF5E074 0x3FF6C074 R/W

PWM_GEN1_TSTMP_A_REG Shadow register for register A 0x3FF5E078 0x3FF6C078 R/W

PWM_GEN1_TSTMP_B_REG Shadow register for register B 0x3FF5E07C 0x3FF6C07C R/W

PWM_GEN1_CFG0_REG Fault event T0 and T1 handling 0x3FF5E080 0x3FF6C080 R/W

PWM_GEN1_FORCE_REG Permissives to force PWM1A and

PWM1B outputs by software

0x3FF5E084 0x3FF6C084 R/W

PWM_GEN1_A_REG Actions triggered by events on

PWM1A

0x3FF5E088 0x3FF6C088 R/W

PWM_GEN1_B_REG Actions triggered by events on

PWM1B

0x3FF5E08C 0x3FF6C08C R/W

PWM_DT1_CFG_REG Dead time type selection and configu-

ration

0x3FF5E090 0x3FF6C090 R/W

PWM_DT1_FED_CFG_REG Shadow register for FED 0x3FF5E094 0x3FF6C094 R/W

PWM_DT1_RED_CFG_REG Shadow register for RED 0x3FF5E098 0x3FF6C098 R/W

PWM_CARRIER1_CFG_REG Carrier enable and configuration 0x3FF5E09C 0x3FF6C09C R/W

PWM_FH1_CFG0_REG Actions on PWM1A and PWM1B on

fault events

0x3FF5E0A0 0x3FF6C0A0 R/W

PWM_FH1_CFG1_REG Software triggers for fault handler ac-

tions

0x3FF5E0A4 0x3FF6C0A4 R/W

PWM_FH1_STATUS_REG Status of fault events 0x3FF5E0A8 0x3FF6C0A8 RO

PWM Operator 2 Configuration and Status

PWM_GEN2_STMP_CFG_REG Transfer status and updating method

for time stamp registers A and B

0x3FF5E0AC 0x3FF6C0AC R/W

PWM_GEN2_TSTMP_A_REG Shadow register for register A 0x3FF5E0B0 0x3FF6C0B0 R/W

PWM_GEN2_TSTMP_B_REG Shadow register for register B 0x3FF5E0B4 0x3FF6C0B4 R/W

PWM_GEN2_CFG0_REG Fault event T0 and T1 handling 0x3FF5E080 0x3FF6C080 R/W

PWM_GEN2_FORCE_REG Permissives to force PWM2A and

PWM2B outputs by software

0x3FF5E0BC 0x3FF6C0BC R/W

PWM_GEN2_A_REG Actions triggered by events on

PWM2A

0x3FF5E0C0 0x3FF6C0C0 R/W

PWM_GEN2_B_REG Actions triggered by events on

PWM2B

0x3FF5E0C4 0x3FF6C0C4 R/W

PWM_DT2_CFG_REG Dead time type selection and configu-

ration

0x3FF5E0C8 0x3FF6C0C8 R/W

PWM_DT2_FED_CFG_REG Shadow register for FED 0x3FF5E0CC 0x3FF6C0CC R/W

PWM_DT2_RED_CFG_REG Shadow register for RED 0x3FF5E0D0 0x3FF6C0D0 R/W

PWM_CARRIER2_CFG_REG Carrier enable and configuration 0x3FF5E0D4 0x3FF6C0D4 R/W

Espressif Systems 441
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Name Description PWM0 PWM1 Acc

PWM_FH2_CFG0_REG Actions at PWM2A and PWM2B on

trip events

0x3FF5E0D8 0x3FF6C0D8 R/W

PWM_FH2_CFG1_REG Software triggers for fault handler ac-

tions

0x3FF5E0DC 0x3FF6C0DC R/W

PWM_FH2_STATUS_REG Status of fault events 0x3FF5E0E0 0x3FF6C0E0 RO

Fault Detection Configuration and Status

PWM_FAULT_DETECT_REG Fault detection configuration and sta-

tus

0x3FF5E0E4 0x3FF6C0E4 R/W

Capture Configuration and Status

PWM_CAP_TIMER_CFG_REG Configure capture timer 0x3FF5E0E8 0x3FF6C0E8 R/W

PWM_CAP_TIMER_PHASE_REG Phase for capture timer sync 0x3FF5E0EC 0x3FF6C0EC R/W

PWM_CAP_CH0_CFG_REG Capture channel 0 configuration and

enable

0x3FF5E0F0 0x3FF6C0F0 R/W

PWM_CAP_CH1_CFG_REG Capture channel 1 configuration and

enable

0x3FF5E0F4 0x3FF6C0F4 R/W

PWM_CAP_CH2_CFG_REG Capture channel 2 configuration and

enable

0x3FF5E0F8 0x3FF6C0F8 R/W

PWM_CAP_CH0_REG Value of last capture on channel 0 0x3FF5E0FC 0x3FF6C0FC RO

PWM_CAP_CH1_REG Value of last capture on channel 1 0x3FF5E100 0x3FF6C100 RO

PWM_CAP_CH2_REG Value of last capture on channel 2 0x3FF5E104 0x3FF6C104 RO

PWM_CAP_STATUS_REG Edge of last capture trigger 0x3FF5E108 0x3FF6C108 RO

Enable update of active registers

PWM_UPDATE_CFG_REG Enable update 0x3FF5E10C 0x3FF6C10C R/W

Manage Interrupts

INT_ENA_PWM_REG Interrupt enable bits 0x3FF5E110 0x3FF6C110 R/W

INT_RAW_PWM_REG Raw interrupt status 0x3FF5E114 0x3FF6C114 RO

INT_ST_PWM_REG Masked interrupt status 0x3FF5E118 0x3FF6C118 RO

INT_CLR_PWM_REG Interrupt clear bits 0x3FF5E11C 0x3FF6C11C WO

16.5 Registers
The addresses in parenthesis besides register names are the register addresses relative to the MCPWM base

address provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 16.4 Register Summary.

Espressif Systems 442
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.1. PWM_CLK_CFG_REG (0x0000)

(re
se

rve
d)

0 0

31 8

PW
M

_C
LK

_P
RESCALE

0x000

7 0

Reset

PWM_CLK_PRESCALE Period of PWM_clk = 6.25ns * (PWM_CLK_PRESCALE + 1). (R/W)

Register 16.2. PWM_TIMER0_CFG0_REG (0x0004)

(re
se

rve
d)

0 0 0 0 0 0

31 26

PW
M

_T
IM

ER0_
PERIO

D_U
PM

ETH
OD

0

25 24

PW
M

_T
IM

ER0_
PERIO

D

0x000FF

23 8

PW
M

_T
IM

ER0_
PRESCALE

0x000

7 0

Reset

PWM_TIMER0_PERIOD_UPMETHOD Updating method for active register of PWM timer0 period.

0: immediately, 1: update at TEZ, 2: update at sync, 3: update at TEZ or sync. TEZ here and

below means that the event that happens when the timer equals to zero. (R/W)

PWM_TIMER0_PERIOD Period shadow register of PWM timer0. (R/W)

PWM_TIMER0_PRESCALE Period of PT0_clk = Period of PWM_clk * (PWM_TIMER0_PRESCALE

+ 1). (R/W)

Espressif Systems 443
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.3. PWM_TIMER0_CFG1_REG (0x0008)

(re
se

rve
d)

0 0

31 5

PW
M

_T
IM

ER0_
M

OD

0x0

4 3

PW
M

_T
IM

ER0_
STA

RT

0x0

2 0

Reset

PWM_TIMER0_MOD PWM timer0 working mode. 0: freeze, 1: increase mode, 2: decrease mode,

3: up-down mode. (R/W)

PWM_TIMER0_START PWM timer0 start and stop control. 0: if PWM timer0 starts, then stops at

TEZ; 1: if timer0 starts, then stops at TEP; 2: PWM timer0 starts and runs on; 3: timer0 starts and

stops at the next TEZ; 4: timer0 starts and stops at the next TEP. TEP here and below means the

event that happens when the timer equals to period. (R/W)

Register 16.4. PWM_TIMER0_SYNC_REG (0x000c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

PW
M

_T
IM

ER0_
PHASE_D

IR
ECTIO

N

0

20

PW
M

_T
IM

ER0_
PHASE

0

19 4

PW
M

_T
IM

ER0_
SYNCO_S

EL

0

3 2

PW
M

_T
IM

ER0_
SYNC_S

W

0

1

PW
M

_T
IM

ER0_
SYNCI_E

N

0

0

Reset

PWM_TIMER0_PHASE_DIRECTION 0: increase; 1: decrease. (R/W)

PWM_TIMER0_PHASE Phase for timer reload at sync event. (R/W)

PWM_TIMER1_SYNCO_SEL PWM timer0 sync_out selection. 0: sync_in; 1: TEZ; 2: TEP; other-

wise: sync_out is always 0. (R/W)

PWM_TIMER1_SYNC_SW Toggling this bit will trigger a software sync. (R/W)

PWM_TIMER1_SYNCI_EN When set, timer reloading with phase on sync input event is enabled.

(R/W)

Espressif Systems 444
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.5. PWM_TIMER0_STATUS_REG (0x0010)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

PW
M

_T
IM

ER0_
DIR

ECTIO
N

0

16

PW
M

_T
IM

ER0_
VA

LU
E

0

15 0

Reset

PWM_TIMER0_DIRECTION Current direction of the PWM timer0 counter. 0: increment, 1: decre-

ment. (RO)

PWM_TIMER0_VALUE Current value of the PWM timer0 counter. (RO)

Register 16.6. PWM_TIMER1_CFG0_REG (0x0014)

(re
se

rve
d)

0 0 0 0 0 0

31 26

PW
M

_T
IM

ER1_
PERIO

D_U
PM

ETH
OD

0

25 24

PW
M

_T
IM

ER1_
PERIO

D

0x000FF

23 8

PW
M

_T
IM

ER1_
PRESCALE

0x000

7 0

Reset

PWM_TIMER1_PERIOD_UPMETHOD Updating method for the active register of PWM timer1 pe-

riod. 0: immediately, 1: update at TEZ, 2: update at sync, 3: update at TEZ or sync. (R/W)

PWM_TIMER1_PERIOD Period shadow register of the PWM timer1. (R/W)

PWM_TIMER1_PRESCALE Period of PT1_clk = Period of PWM_clk * (PWM_TIMER1_PRESCALE

+ 1) (R/W)

Espressif Systems 445
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.7. PWM_TIMER1_CFG1_REG (0x0018)

(re
se

rve
d)

0 0

31 5

PW
M

_T
IM

ER1_
M

OD

0x0

4 3

PW
M

_T
IM

ER1_
STA

RT

0x0

2 0

Reset

PWM_TIMER1_MOD PWM timer1 working mode. 0: freeze, 1: increase mode, 2: decrease mode,

3: up-down mode. (R/W)

PWM_TIMER1_START PWM timer1 start and stop control. 0: if PWM timer1 starts, then stops at

TEZ; 1: if PWM timer1 starts, then stops at TEP; 2: PWM timer1 starts and runs on; 3: PWM

timer1 starts and stops at the next TEZ; 4: PWM timer1 starts and stops at the next TEP. (R/W)

Register 16.8. PWM_TIMER1_SYNC_REG (0x001c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

PW
M

_T
IM

ER1_
PHASE_D

IR
ECTIO

N

0

20

PW
M

_T
IM

ER1_
PHASE

0

19 4

PW
M

_T
IM

ER1_
SYNCO_S

EL

0

3 2

PW
M

_T
IM

ER1_
SYNC_S

W

0

1

PW
M

_T
IM

ER1_
SYNCI_E

N

0

0

Reset

PWM_TIMER1_PHASE_DIRECTION 0: increase; 1: decrease. (R/W)

PWM_TIMER1_PHASE Phase for timer reload at sync event. (R/W)

PWM_TIMER1_SYNCO_SEL PWM timer1 sync_out selection. 0: sync_in; 1: TEZ; 2: TEP; other-

wise: sync_out is always 0. (R/W)

PWM_TIMER1_SYNC_SW Toggling this bit will trigger a software sync. (R/W)

PWM_TIMER1_SYNCI_EN When set, timer reloading with phase at a sync input event is enabled.

(R/W)

Espressif Systems 446
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.9. PWM_TIMER1_STATUS_REG (0x0020)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

PW
M

_T
IM

ER1_
DIR

ECTIO
N

0

16

PW
M

_T
IM

ER1_
VA

LU
E

0

15 0

Reset

PWM_TIMER1_DIRECTION Current direction of the PWM timer1 counter. 0: increment 1: decre-

ment. (RO)

PWM_TIMER1_VALUE Current value of the PWM timer1 counter. (RO)

Register 16.10. PWM_TIMER2_CFG0_REG (0x0024)

(re
se

rve
d)

0 0 0 0 0 0

31 26

PW
M

_T
IM

ER2_
PERIO

D_U
PM

ETH
OD

0

25 24

PW
M

_T
IM

ER2_
PERIO

D

0x000FF

23 8

PW
M

_T
IM

ER2_
PRESCALE

0x000

7 0

Reset

PWM_TIMER2_PERIOD_UPMETHOD Updating method for active register of PWM timer2 period.

0: immediately, 1: update at TEZ, 2: update at sync, 3: update at TEZ or sync. (R/W)

PWM_TIMER2_PERIOD Period shadow register of PWM timer2. (R/W)

PWM_TIMER2_PRESCALE Period of PT2_clk = Period of PWM_clk * (PWM_TIMER2_PRESCALE

+ 1). (R/W)

Espressif Systems 447
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.11. PWM_TIMER2_CFG1_REG (0x0028)

(re
se

rve
d)

0 0

31 5

PW
M

_T
IM

ER2_
M

OD

0x0

4 3

PW
M

_T
IM

ER2_
STA

RT

0x0

2 0

Reset

PWM_TIMER2_MOD PWM timer2 working mode. 0: freeze, 1: increase mode, 2: decrease mode,

3: up-down mode. (R/W)

PWM_TIMER2_START PWM timer2 start and stop control. 0: if PWM timer2 starts, then stops at

TEZ; 1: if PWM timer2 starts, then stops at TEP; 2: PWM timer2 starts and runs on; 3: PWM

timer2 starts and stops at the next TEZ; 4: PWM timer2 starts and stops at the next TEP. (R/W)

Register 16.12. PWM_TIMER2_SYNC_REG (0x002c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

PW
M

_T
IM

ER2_
PHASE_D

IR
ECTIO

N

0

20

PW
M

_T
IM

ER2_
PHASE

0

19 4

PW
M

_T
IM

ER2_
SYNCO_S

EL

0

3 2

PW
M

_T
IM

ER2_
SYNC_S

W

0

1

PW
M

_T
IM

ER2_
SYNCI_E

N

0

0

Reset

PWM_TIMER2_PHASE_DIRECTION 0: increase; 1: decrease. (R/W)

PWM_TIMER2_PHASE Phase for timer reload at sync event. (R/W)

PWM_TIMER2_SYNCO_SEL PWM timer2 sync_out selection. 0: sync_in; 1: TEZ; 2: TEP; other-

waise: sync_out is always 0. (R/W)

PWM_TIMER2_SYNC_SW Toggling this bit will trigger a software sync. (R/W)

PWM_TIMER2_SYNCI_EN When set, timer reloading with phase on sync input event is enabled.

(R/W)

Espressif Systems 448
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.13. PWM_TIMER2_STATUS_REG (0x0030)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

PW
M

_T
IM

ER2_
DIR

ECTIO
N

0

16

PW
M

_T
IM

ER2_
VA

LU
E

0

15 0

Reset

PWM_TIMER2_DIRECTION Current direction of the PWM timer2 counter. 0: increment, 1: decre-

ment. (RO)

PWM_TIMER2_VALUE Current value of the PWM timer2 counter. (RO)

Register 16.14. PWM_TIMER_SYNCI_CFG_REG (0x0034)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

PW
M

_E
XT

ERNAL_
SYNCI2_

IN
VERT

0

11

PW
M

_E
XT

ERNAL_
SYNCI1_

IN
VERT

0

10

PW
M

_E
XT

ERNAL_
SYNCI0_

IN
VERT

0

9

PW
M

_T
IM

ER2_
SYNCIS

EL

0

8 6

PW
M

_T
IM

ER1_
SYNCIS

EL

0

5 3

PW
M

_T
IM

ER0_
SYNCIS

EL

0

2 0

Reset

PWM_EXTERNAL_SYNCI2_INVERT Invert SYNC2 from GPIO matrix. (R/W)

PWM_EXTERNAL_SYNCI1_INVERT Invert SYNC1 from GPIO matrix. (R/W)

PWM_EXTERNAL_SYNCI0_INVERT Invert SYNC0 from GPIO matrix. (R/W)

PWM_TIMER2_SYNCISEL Select sync input for PWM timer2. 1: PWM timer0 sync_out, 2: PWM

timer1 sync_out, 3: PWM timer2 sync_out, 4: SYNC0 from GPIO matrix, 5: SYNC1 from GPIO

matrix, 6: SYNC2 from GPIO matrix, other values: no sync input selected. (R/W)

PWM_TIMER1_SYNCISEL Select sync input for PWM timer1. 1: PWM timer0 sync_out, 2: PWM

timer1 sync_out, 3: PWM timer2 sync_out, 4: SYNC0 from GPIO matrix, 5: SYNC1 from GPIO

matrix, 6: SYNC2 from GPIO matrix, other values: no sync input selected. (R/W)

PWM_TIMER0_SYNCISEL Select sync input for PWM timer0. 1: PWM timer0 sync_out, 2: PWM

timer1 sync_out, 3: PWM timer2 sync_out, 4: SYNC0 from GPIO matrix, 5: SYNC1 from GPIO

matrix, 6: SYNC2 from GPIO matrix, other values: no sync input selected. (R/W)

Espressif Systems 449
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.15. PWM_OPERATOR_TIMERSEL_REG (0x0038)

(re
se

rve
d)

0 0

31 6

PW
M

_O
PERAT

OR2_
TIM

ERSEL

0

5 4

PW
M

_O
PERAT

OR1_
TIM

ERSEL

0

3 2

PW
M

_O
PERAT

OR0_
TIM

ERSEL

0

1 0

Reset

PWM_OPERATOR2_TIMERSEL Select the PWM timer for PWM operator2’s timing reference. 0:

timer0, 1: timer1, 2: timer2. (R/W)

PWM_OPERATOR1_TIMERSEL Select the PWM timer for PWM operator1’s timing reference. 0:

timer0, 1: timer1, 2: timer2. (R/W)

PWM_OPERATOR0_TIMERSEL Select the PWM timer for PWM operator0’s timing reference. 0:

timer0, 1: timer1, 2: timer2. (R/W)

Register 16.16. PWM_GEN0_STMP_CFG_REG (0x003c)

(re
se

rve
d)

0 0

31 10

PW
M

_G
EN0_

B_S
HDW

_F
ULL

0

9

PW
M

_G
EN0_

A_S
HDW

_F
ULL

0

8

PW
M

_G
EN0_

B_U
PM

ETH
OD

0

7 4

PW
M

_G
EN0_

A_U
PM

ETH
OD

0

3 0

Reset

PWM_GEN0_B_SHDW_FULL Set and reset by hardware. If set, PWM generator 0 time stamp B’s

shadow register.ister is filled and to be transferred to time stamp B’s active register. If cleared, time

stamp B’s active register has been updated with Shadow register latest value. (RO)

PWM_GEN0_A_SHDW_FULL Set and reset by hardware. If set, PWM generator 0 time stamp A’s

shadow register.ister is filled and to be transferred to time stamp A’s active register. If cleared, time

stamp A’s active register has been updated with Shadow register latest value. (RO)

PWM_GEN0_B_UPMETHOD Updating method for PWM generator 0 time stamp B’s active register.

When all bits are set to 0: immediately; when bit0 is set to 1: TEZ; when bit1 is set to 1: TEP;

when bit2 is set to 1: sync; when bit3 is set to 1: disable the update. (R/W)

PWM_GEN0_A_UPMETHOD Updating method for PWM generator 0 time stamp A’s active register.

When all bits are set to 0: immediately; when bit0 is set to 1: TEZ; when bit1 is set to 1: TEP;

when bit2 is set to 1: sync; when bit3 is set to 1: disable the update. (R/W)

Espressif Systems 450
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.17. PWM_GEN0_TSTMP_A_REG (0x0040)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PW
M

_G
EN0_

A

0

15 0

Reset

PWM_GEN0_A PWM generator 0 time stamp A’s shadow register. (R/W)

Register 16.18. PWM_GEN0_TSTMP_B_REG (0x0044)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PW
M

_G
EN0_

B

0

15 0

Reset

PWM_GEN0_B PWM generator 0 time stamp B’s shadow register. (R/W)

Register 16.19. PWM_GEN0_CFG0_REG (0x0048)

(re
se

rve
d)

0 0

31 10

PW
M

_G
EN0_

T1
_S

EL

0

9 7

PW
M

_G
EN0_

T0
_S

EL

0

6 4

PW
M

_G
EN0_

CFG
_U

PM
ETH

OD

0

3 0

Reset

PWM_GEN0_T1_SEL Source selection for PWM generator 0 event_t1, taking effect immediately. 0:

fault_event0, 1: fault_event1, 2: fault_event2, 3: sync_taken, 4: none. (R/W)

PWM_GEN0_T0_SEL Source selection for PWM generator 0 event_t0, taking effect immediately, 0:

fault_event0, 1: fault_event1, 2: fault_event2, 3: sync_taken, 4: none. (R/W)

PWM_GEN0_CFG_UPMETHOD Updating method for PWM generator 0’s active register of config-

uration. When all bits are set to 0: immediately; when bit0 is set to 1: TEZ; when bit1 is set to 1:

TEP; when bit2 is set to 1: sync; when bit3 is set to 1: disable the update. (R/W)

Espressif Systems 451
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.20. PWM_GEN0_FORCE_REG (0x004c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PW
M

_G
EN0_

B_N
CIFO

RCE_M
ODE

0

15 14

PW
M

_G
EN0_

B_N
CIFO

RCE

0

13

PW
M

_G
EN0_

A_N
CIFO

RCE_M
ODE

0

12 11

PW
M

_G
EN0_

A_N
CIFO

RCE

0

10

PW
M

_G
EN0_

B_C
NTU

FO
RCE_M

ODE

0

9 8

PW
M

_G
EN0_

A_C
NTU

FO
RCE_M

ODE

0

7 6

PW
M

_G
EN0_

CNTU
FO

RCE_U
PM

ETH
OD

0x20

5 0

Reset

PWM_GEN0_B_NCIFORCE_MODE Non-continuous immediate software-force mode for PWM0B.

0: disabled, 1: low, 2: high, 3: disabled. (R/W)

PWM_GEN0_B_NCIFORCE Trigger of non-continuous immediate software-force event for PWM0B;

a toggle will trigger a force event. (R/W)

PWM_GEN0_A_NCIFORCE_MODE Non-continuous immediate software-force mode for PWM0A,

0: disabled, 1: low, 2: high, 3: disabled. (R/W)

PWM_GEN0_A_NCIFORCE Trigger of non-continuous immediate software-force event for PWM0A;

a toggle will trigger a force event. (R/W)

PWM_GEN0_B_CNTUFORCE_MODE Continuous software-force mode for PWM0B. 0: disabled,

1: low, 2: high, 3: disabled. (R/W)

PWM_GEN0_A_CNTUFORCE_MODE Continuous software-force mode for PWM0A. 0: disabled, 1:

low, 2: high, 3: disabled. (R/W)

PWM_GEN0_CNTUFORCE_UPMETHOD Updating method for continuous software force of PWM

generator0. When all bits are set to 0: immediately; when bit0 is set to 1: TEZ; when bit1 is set

to 1: TEP; when bit2 is set to 1: TEA; when bit3 is set to 1: TEB; when bit4 is set to 1: sync;

when bit5 is set to 1: disable update. (TEA/B here and below means an event generated when

the timer’s value equals to that of register A/B.) (R/W)

Espressif Systems 452
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.21. PWM_GEN0_A_REG (0x0050)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

PW
M

_G
EN0_

A_D
T1

0

23 22

PW
M

_G
EN0_

A_D
T0

0

21 20

PW
M

_G
EN0_

A_D
TE

B

0

19 18

PW
M

_G
EN0_

A_D
TE

A

0

17 16

PW
M

_G
EN0_

A_D
TE

P

0

15 14

PW
M

_G
EN0_

A_D
TE

Z

0

13 12

PW
M

_G
EN0_

A_U
T1

0

11 10

PW
M

_G
EN0_

A_U
T0

0

9 8

PW
M

_G
EN0_

A_U
TE

B

0

7 6

PW
M

_G
EN0_

A_U
TE

A

0

5 4

PW
M

_G
EN0_

A_U
TE

P

0

3 2

PW
M

_G
EN0_

A_U
TE

Z

0

1 0

Reset

PWM_GEN0_A_DT1 Action on PWM0A triggered by event_t1 when the timer decreases. 0: no

change, 1: low, 2: high, 3: toggle. (R/W)

PWM_GEN0_A_DT0 Action on PWM0A triggered by event_t0 when the timer decreases. (R/W)

PWM_GEN0_A_DTEB Action on PWM0A triggered by event TEB when the timer decreases. (R/W)

PWM_GEN0_A_DTEA Action on PWM0A triggered by event TEA when the timer decreases. (R/W)

PWM_GEN0_A_DTEP Action on PWM0A triggered by event TEP when the timer decreases. (R/W)

PWM_GEN0_A_DTEZ Action on PWM0A triggered by event TEZ when the timer decreases. (R/W)

PWM_GEN0_A_UT1 Action on PWM0A triggered by event_t1 when the timer increases. (R/W)

PWM_GEN0_A_UT0 Action on PWM0A triggered by event_t0 when the timer increases. (R/W)

PWM_GEN0_A_UTEB Action on PWM0A triggered by event TEB when the timer increases. (R/W)

PWM_GEN0_A_UTEA Action on PWM0A triggered by event TEA when the timer increases. (R/W)

PWM_GEN0_A_UTEP Action on PWM0A triggered by event TEP when the timer increases. (R/W)

PWM_GEN0_A_UTEZ Action on PWM0A triggered by event TEZ when the timer increases. (R/W)

Espressif Systems 453
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.22. PWM_GEN0_B_REG (0x0054)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

PW
M

_G
EN0_

B_D
T1

0

23 22

PW
M

_G
EN0_

B_D
T0

0

21 20

PW
M

_G
EN0_

B_D
TE

B

0

19 18

PW
M

_G
EN0_

B_D
TE

A

0

17 16

PW
M

_G
EN0_

B_D
TE

P

0

15 14

PW
M

_G
EN0_

B_D
TE

Z

0

13 12

PW
M

_G
EN0_

B_U
T1

0

11 10

PW
M

_G
EN0_

B_U
T0

0

9 8

PW
M

_G
EN0_

B_U
TE

B

0

7 6

PW
M

_G
EN0_

B_U
TE

A

0

5 4

PW
M

_G
EN0_

B_U
TE

P

0

3 2

PW
M

_G
EN0_

B_U
TE

Z

0

1 0

Reset

PWM_GEN0_B_DT1 Action on PWM0B triggered by event_t1 when the timer decreases. 0: no

change, 1: low, 2: high, 3: toggle. (R/W)

PWM_GEN0_B_DT0 Action on PWM0B triggered by event_t0 when the timer decreases. (R/W)

PWM_GEN0_B_DTEB Action on PWM0B triggered by event TEB when the timer decreases. (R/W)

PWM_GEN0_B_DTEA Action on PWM0B triggered by event TEA when the timer decreases. (R/W)

PWM_GEN0_B_DTEP Action on PWM0B triggered by event TEP when the timer decreases. (R/W)

PWM_GEN0_B_DTEZ Action on PWM0B triggered by event TEZ when the timer decreases. (R/W)

PWM_GEN0_B_UT1 Action on PWM0B triggered by event_t1 when the timer increases. (R/W)

PWM_GEN0_B_UT0 Action on PWM0B triggered by event_t0 when the timer increases. (R/W)

PWM_GEN0_B_UTEB Action on PWM0B triggered by event TEB when the timer increases. (R/W)

PWM_GEN0_B_UTEA Action on PWM0B triggered by event TEA when the timer increases. (R/W)

PWM_GEN0_B_UTEP Action on PWM0B triggered by event TEP when the timer increases. (R/W)

PWM_GEN0_B_UTEZ Action on PWM0B triggered by event TEZ when the timer increases. (R/W)

Espressif Systems 454
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.23. PWM_DT0_CFG_REG (0x0058)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

PW
M

_D
T0

_C
LK

_S
EL

0

17

PW
M

_D
T0

_B
_O

UTB
YPA

SS

1

16

PW
M

_D
T0

_A
_O

UTB
YPA

SS

1

15

PW
M

_D
T0

_F
ED_O

UTIN
VERT

0

14

PW
M

_D
T0

_R
ED_O

UTIN
VERT

0

13

PW
M

_D
T0

_F
ED_IN

SEL

0

12

PW
M

_D
T0

_R
ED_IN

SEL

0

11

PW
M

_D
T0

_B
_O

UTS
W

AP

0

10

PW
M

_D
T0

_A
_O

UTS
W

AP

0

9

PW
M

_D
T0

_D
EB_M

ODE

0

8

PW
M

_D
T0

_R
ED_U

PM
ETH

OD

0

7 4

PW
M

_D
T0

_F
ED_U

PM
ETH

OD

0

3 0

Reset

PWM_DT0_CLK_SEL Dead time generator 0 clock selection. 0: PWM_clk, 1: PT_clk. (R/W)

PWM_DT0_B_OUTBYPASS S0 in Table 16-5. (R/W)

PWM_DT0_A_OUTBYPASS S1 in Table 16-5. (R/W)

PWM_DT0_FED_OUTINVERT S3 in Table 16-5. (R/W)

PWM_DT0_RED_OUTINVERT S2 in Table 16-5. (R/W)

PWM_DT0_FED_INSEL S5 in Table 16-5. (R/W)

PWM_DT0_RED_INSEL S4 in Table 16-5. (R/W)

PWM_DT0_B_OUTSWAP S7 in Table 16-5. (R/W)

PWM_DT0_A_OUTSWAP S6 in Table 16-5. (R/W)

PWM_DT0_DEB_MODE S8 in Table 16-5, dual-edge B mode. 0: FED/RED take effect on different

paths separately, 1: FED/RED take effect on B path. (R/W)

PWM_DT0_RED_UPMETHOD Updating method for RED (rising edge delay) active register. 0: im-

mediately; when bit0 is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync; when

bit3 is set to 1: disable the update. (R/W)

PWM_DT0_FED_UPMETHOD Updating method for FED (falling edge delay) active register. 0: im-

mediately; when bit0 is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync; when

bit3 is set to 1: disable the update. (R/W)

Register 16.24. PWM_DT0_FED_CFG_REG (0x005c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PW
M

_D
T0

_F
ED

0

15 0

Reset

PWM_DT0_FED Shadow register for FED. (R/W)

Espressif Systems 455
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.25. PWM_DT0_RED_CFG_REG (0x0060)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PW
M

_D
T0

_R
ED

0

15 0

Reset

PWM_DT0_RED Shadow register for RED. (R/W)

Register 16.26. PWM_CARRIER0_CFG_REG (0x0064)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

PW
M

_C
ARRIER0_

IN
_IN

VERT

0

13

PW
M

_C
ARRIER0_

OUT_
IN

VERT

0

12

PW
M

_C
ARRIER0_

OSHW
TH

0

11 8

PW
M

_C
ARRIER0_

DUTY

0

7 5

PW
M

_C
ARRIER0_

PRESCALE

0

4 1

PW
M

_C
ARRIER0_

EN

0

0

Reset

PWM_CARRIER0_IN_INVERT When set, invert the input of PWM0A and PWM0B for this submodule.

(R/W)

PWM_CARRIER0_OUT_INVERT When set, invert the output of PWM0A and PWM0B for this sub-

module. (R/W)

PWM_CARRIER0_OSHWTH Width of the first pulse�in number of periods of the carrier. (R/W)

PWM_CARRIER0_DUTY Carrier duty selection. Duty = PWM_CARRIER0_DUTY/8. (R/W)

PWM_CARRIER0_PRESCALE PWM carrier0 clock (PC_clk) prescale value. Period of PC_clk = pe-

riod of PWM_clk * (PWM_CARRIER0_PRESCALE + 1). (R/W)

PWM_CARRIER0_EN When set, carrier0 function is enabled. When cleared, carrier0 is bypassed.

(R/W)

Espressif Systems 456
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.27. PWM_FH0_CFG0_REG (0x0068)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

PW
M

_F
H0_

B_O
ST_

U

0

23 22

PW
M

_F
H0_

B_O
ST_

D

0

21 20

PW
M

_F
H0_

B_C
BC_U

0

19 18

PW
M

_F
H0_

B_C
BC_D

0

17 16

PW
M

_F
H0_

A_O
ST_

U

0

15 14

PW
M

_F
H0_

A_O
ST_

D

0

13 12

PW
M

_F
H0_

A_C
BC_U

0

11 10

PW
M

_F
H0_

A_C
BC_D

0

9 8

PW
M

_F
H0_

F0
_O

ST

0

7

PW
M

_F
H0_

F1
_O

ST

0

6

PW
M

_F
H0_

F2
_O

ST

0

5

PW
M

_F
H0_

SW
_O

ST

0

4

PW
M

_F
H0_

F0
_C

BC

0

3

PW
M

_F
H0_

F1
_C

BC

0

2

PW
M

_F
H0_

F2
_C

BC

0

1

PW
M

_F
H0_

SW
_C

BC

0

0

Reset

PWM_FH0_B_OST_U One-shot mode action on PWM0B when a fault event occurs and the timer is

increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH0_B_OST_D One-shot mode action on PWM0B when a fault event occurs and the timer is

decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH0_B_CBC_U Cycle-by-cycle mode action on PWM0B when a fault event occurs and the

timer is increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH0_B_CBC_D Cycle-by-cycle mode action on PWM0B when a fault event occurs and the

timer is decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH0_A_OST_U One-shot mode action on PWM0A when a fault event occurs and the timer is

increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH0_A_OST_D One-shot mode action on PWM0A when a fault event occurs and the timer is

decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH0_A_CBC_U Cycle-by-cycle mode action on PWM0A when a fault event occurs and the

timer is increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH0_A_CBC_D Cycle-by-cycle mode action on PWM0A when a fault event occurs and the

timer is decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH0_F0_OST event_f0 will trigger one-shot mode action. 0: disable, 1: enable. (R/W)

PWM_FH0_F1_OST event_f1 will trigger one-shot mode action. 0: disable, 1: enable. (R/W)

PWM_FH0_F2_OST event_f2 will trigger one-shot mode action. 0: disable, 1: enable. (R/W)

PWM_FH0_SW_OST Enable register for software-forced one-shot mode action. 0: disable, 1: en-

able. (R/W)

PWM_FH0_F0_CBC event_f0 will trigger cycle-by-cycle mode action. 0: disable, 1: enable. (R/W)

PWM_FH0_F1_CBC event_f1 will trigger cycle-by-cycle mode action. 0: disable, 1: enable. (R/W)

PWM_FH0_F2_CBC event_f2 will trigger cycle-by-cycle mode action. 0: disable, 1: enable. (R/W)

PWM_FH0_SW_CBC Enable register for software-forced cycle-by-cycle mode action. 0: disable, 1:

enable. (R/W)

Espressif Systems 457
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.28. PWM_FH0_CFG1_REG (0x006c)

(re
se

rve
d)

0 0

31 5

PW
M

_F
H0_

FO
RCE_O

ST

0

4

PW
M

_F
H0_

FO
RCE_C

BC

0

3

PW
M

_F
H0_

CBCPULS
E

0

2 1

PW
M

_F
H0_

CLR
_O

ST

0

0

Reset

PWM_FH0_FORCE_OST A toggle (software negation of this bit’s value) triggers a one-shot mode

action. (R/W)

PWM_FH0_FORCE_CBC A toggle triggers a cycle-by-cycle mode action. (R/W)

PWM_FH0_CBCPULSE The cycle-by-cycle mode action refresh moment selection. When bit0 is set

to 1: TEZ; when bit1 is set to 1: TEP. (R/W)

PWM_FH0_CLR_OST A toggle will clear on-going one-shot mode action. (R/W)

Register 16.29. PWM_FH0_STATUS_REG (0x0070)

(re
se

rve
d)

0 0

31 2

PW
M

_F
H0_

OST_
ON

0

1

PW
M

_F
H0_

CBC_O
N

0

0

Reset

PWM_FH0_OST_ON Set and reset by hardware. If set, a one-shot mode action is on-going. (RO)

PWM_FH0_CBC_ON Set and reset by hardware. If set, a cycle-by-cycle mode action is on-going.

(RO)

Espressif Systems 458
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.30. PWM_GEN1_STMP_CFG_REG (0x0074)

(re
se

rve
d)

0 0

31 10

PW
M

_G
EN1_

B_S
HDW

_F
ULL

0

9

PW
M

_G
EN1_

A_S
HDW

_F
ULL

0

8

PW
M

_G
EN1_

B_U
PM

ETH
OD

0

7 4

PW
M

_G
EN1_

A_U
PM

ETH
OD

0

3 0

Reset

PWM_GEN1_B_SHDW_FULL Set and reset by hardware. If set, PWM generator 1 time stamp B’s

shadow register is filled and to be transferred to time stamp B’s active register. If cleared, time

stamp B’s active register has been updated with shadow register’s latest value. (RO)

PWM_GEN1_A_SHDW_FULL Set and reset by hardware. If set, PWM generator 1 time stamp A’s

shadow register is filled and to be transferred to time stamp A’s active register. If cleared, time

stamp A’s active register has been updated with shadow register latest value. (RO)

PWM_GEN1_B_UPMETHOD Updating method for PWM generator 1 time stamp B’s active register.

0: immediately; when bit0 is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync;

when bit3 is set to 1: disable the update. (R/W)

PWM_GEN1_A_UPMETHOD Updating method for PWM generator 1 time stamp A’s active register.

0: immediately; when bit0 is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync;

when bit3 is set to 1: disable the update. (R/W)

Register 16.31. PWM_GEN1_TSTMP_A_REG (0x0078)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PW
M

_G
EN1_

A

0

15 0

Reset

PWM_GEN1_A PWM generator 1 time stamp A’s shadow register. (R/W)

Register 16.32. PWM_GEN1_TSTMP_B_REG (0x007c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PW
M

_G
EN1_

B

0

15 0

Reset

PWM_GEN1_B PWM generator 1 time stamp B’s shadow register. (R/W)

Espressif Systems 459
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.33. PWM_GEN1_CFG0_REG (0x0080)

(re
se

rve
d)

0 0

31 10

PW
M

_G
EN1_

T1
_S

EL

0

9 7

PW
M

_G
EN1_

T0
_S

EL

0

6 4

PW
M

_G
EN1_

CFG
_U

PM
ETH

OD

0

3 0

Reset

PWM_GEN1_T1_SEL Source selection for PWM generator1 event_t1, taking effect immediately, 0:

fault_event0, 1: fault_event1, 2: fault_event2, 3: sync_taken, 4: none. (R/W)

PWM_GEN1_T0_SEL Source selection for PWM generator1 event_t0, taking effect immediately, 0:

fault_event0, 1: fault_event1, 2: fault_event2, 3: sync_taken, 4: none. (R/W)

PWM_GEN1_CFG_UPMETHOD Updating method for PWM generator1’s active register of configu-

ration. 0: immediately; when bit0 is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to

1: sync. bit3: disable the update. (R/W)

Espressif Systems 460
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.34. PWM_GEN1_FORCE_REG (0x0084)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PW
M

_G
EN1_

B_N
CIFO

RCE_M
ODE

0

15 14

PW
M

_G
EN1_

B_N
CIFO

RCE

0

13

PW
M

_G
EN1_

A_N
CIFO

RCE_M
ODE

0

12 11

PW
M

_G
EN1_

A_N
CIFO

RCE

0

10

PW
M

_G
EN1_

B_C
NTU

FO
RCE_M

ODE

0

9 8

PW
M

_G
EN1_

A_C
NTU

FO
RCE_M

ODE

0

7 6

PW
M

_G
EN1_

CNTU
FO

RCE_U
PM

ETH
OD

0x20

5 0

Reset

PWM_GEN1_B_NCIFORCE_MODE Non-continuous immediate software-force mode for PWM1B.

0: disabled, 1: low, 2: high, 3: disabled. (R/W)

PWM_GEN1_B_NCIFORCE Trigger of non-continuous immediate software-force event for PWM1B;

a toggle will trigger a force event. (R/W)

PWM_GEN1_A_NCIFORCE_MODE Non-continuous immediate software-force mode for PWM1A.

0: disabled, 1: low, 2: high, 3: disabled. (R/W)

PWM_GEN1_A_NCIFORCE Trigger of non-continuous immediate software-force event for PWM1A;

a toggle will trigger a force event. (R/W)

PWM_GEN1_B_CNTUFORCE_MODE Continuous software-force mode for PWM1B. 0: disabled,

1: low, 2: high, 3: disabled. (R/W)

PWM_GEN1_A_CNTUFORCE_MODE Continuous software-force mode for PWM1A. 0: disabled, 1:

low, 2: high, 3: disabled. (R/W)

PWM_GEN1_CNTUFORCE_UPMETHOD Updating method for continuous software force of PWM

generator1. When all bits are set to 0: immediately; when bit0 is set to 1: TEZ; when bit1 is set

to 1: TEP; when bit2 is set to 1: TEA; when bit3 is set to 1: TEB; when bit4 is set to 1: sync;

when bit5 is set to 1: disable update. (TEA/B here and below means an event generated when

the timer’s value equals to that of register A/B). (R/W)

Espressif Systems 461
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.35. PWM_GEN1_A_REG (0x0088)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

PW
M

_G
EN1_

A_D
T1

0

23 22

PW
M

_G
EN1_

A_D
T0

0

21 20

PW
M

_G
EN1_

A_D
TE

B

0

19 18

PW
M

_G
EN1_

A_D
TE

A

0

17 16

PW
M

_G
EN1_

A_D
TE

P

0

15 14

PW
M

_G
EN1_

A_D
TE

Z

0

13 12

PW
M

_G
EN1_

A_U
T1

0

11 10

PW
M

_G
EN1_

A_U
T0

0

9 8

PW
M

_G
EN1_

A_U
TE

B

0

7 6

PW
M

_G
EN1_

A_U
TE

A

0

5 4

PW
M

_G
EN1_

A_U
TE

P

0

3 2

PW
M

_G
EN1_

A_U
TE

Z

0

1 0

Reset

PWM_GEN1_A_DT1 Action on PWM1A triggered by event_t1 when the timer decreases. 0: no

change, 1: low, 2: high, 3: toggle. (R/W)

PWM_GEN1_A_DT0 Action on PWM1A triggered by event_t0 when the timer decreases. (R/W)

PWM_GEN1_A_DTEB Action on PWM1A triggered by event TEB when the timer decreases. (R/W)

PWM_GEN1_A_DTEA Action on PWM1A triggered by event TEA when the timer decreases. (R/W)

PWM_GEN1_A_DTEP Action on PWM1A triggered by event TEP when the timer decreases. (R/W)

PWM_GEN1_A_DTEZ Action on PWM1A triggered by event TEZ when the timer decreases. (R/W)

PWM_GEN1_A_UT1 Action on PWM1A triggered by event_t1 when the timer increases. (R/W)

PWM_GEN1_A_UT0 Action on PWM1A triggered by event_t0 when the timer increases. (R/W)

PWM_GEN1_A_UTEB Action on PWM1A triggered by event TEB when the timer increases. (R/W)

PWM_GEN1_A_UTEA Action on PWM1A triggered by event TEA when the timer increases. (R/W)

PWM_GEN1_A_UTEP Action on PWM1A triggered by event TEP when the timer increases. (R/W)

PWM_GEN1_A_UTEZ Action on PWM1A triggered by event TEZ when the timer increases. (R/W)

Espressif Systems 462
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.36. PWM_GEN1_B_REG (0x008c)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

PW
M

_G
EN1_

B_D
T1

0

23 22

PW
M

_G
EN1_

B_D
T0

0

21 20

PW
M

_G
EN1_

B_D
TE

B

0

19 18

PW
M

_G
EN1_

B_D
TE

A

0

17 16

PW
M

_G
EN1_

B_D
TE

P

0

15 14

PW
M

_G
EN1_

B_D
TE

Z

0

13 12

PW
M

_G
EN1_

B_U
T1

0

11 10

PW
M

_G
EN1_

B_U
T0

0

9 8

PW
M

_G
EN1_

B_U
TE

B

0

7 6

PW
M

_G
EN1_

B_U
TE

A

0

5 4

PW
M

_G
EN1_

B_U
TE

P

0

3 2

PW
M

_G
EN1_

B_U
TE

Z

0

1 0

Reset

PWM_GEN1_B_DT1 Action on PWM1B triggered by event_t1 when the timer decreases. 0: no

change, 1: low, 2: high, 3: toggle. (R/W)

PWM_GEN1_B_DT0 Action on PWM1B triggered by event_t0 when the timer decreases. (R/W)

PWM_GEN1_B_DTEB Action on PWM1B triggered by event TEB when the timer decreases. (R/W)

PWM_GEN1_B_DTEA Action on PWM1B triggered by event TEA when the timer decreases. (R/W)

PWM_GEN1_B_DTEP Action on PWM1B triggered by event TEP when the timer decreases. (R/W)

PWM_GEN1_B_DTEZ Action on PWM1B triggered by event TEZ when the timer decreases. (R/W)

PWM_GEN1_B_UT1 Action on PWM1B triggered by event_t1 when the timer increases. (R/W)

PWM_GEN1_B_UT0 Action on PWM1B triggered by event_t0 when the timer increases. (R/W)

PWM_GEN1_B_UTEB Action on PWM1B triggered by event TEB when the timer increases. (R/W)

PWM_GEN1_B_UTEA Action on PWM1B triggered by event TEA when the timer increases. (R/W)

PWM_GEN1_B_UTEP Action on PWM1B triggered by event TEP when the timer increases. (R/W)

PWM_GEN1_B_UTEZ Action on PWM1B triggered by event TEZ when the timer increases. (R/W)

Espressif Systems 463
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.37. PWM_DT1_CFG_REG (0x0090)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

PW
M

_D
T1

_C
LK

_S
EL

0

17

PW
M

_D
T1

_B
_O

UTB
YPA

SS

1

16

PW
M

_D
T1

_A
_O

UTB
YPA

SS

1

15

PW
M

_D
T1

_F
ED_O

UTIN
VERT

0

14

PW
M

_D
T1

_R
ED_O

UTIN
VERT

0

13

PW
M

_D
T1

_F
ED_IN

SEL

0

12

PW
M

_D
T1

_R
ED_IN

SEL

0

11

PW
M

_D
T1

_B
_O

UTS
W

AP

0

10

PW
M

_D
T1

_A
_O

UTS
W

AP

0

9

PW
M

_D
T1

_D
EB_M

ODE

0

8

PW
M

_D
T1

_R
ED_U

PM
ETH

OD

0

7 4

PW
M

_D
T1

_F
ED_U

PM
ETH

OD

0

3 0

Reset

PWM_DT1_CLK_SEL Dead time generator 1 clock selection. 0: PWM_clk, 1: PT_clk. (R/W)

PWM_DT1_B_OUTBYPASS S0 in Table 16-5. (R/W)

PWM_DT1_A_OUTBYPASS S1 in Table 16-5. (R/W)

PWM_DT1_FED_OUTINVERT S3 in Table 16-5. (R/W)

PWM_DT1_RED_OUTINVERT S2 in Table 16-5. (R/W)

PWM_DT1_FED_INSEL S5 in Table 16-5. (R/W)

PWM_DT1_RED_INSEL S4 in Table 16-5. (R/W)

PWM_DT1_B_OUTSWAP S7 in Table 16-5. (R/W)

PWM_DT1_A_OUTSWAP S6 in Table 16-5. (R/W)

PWM_DT1_DEB_MODE S8 in Table 16-5; dual-edge B mode. 0: FED/RED take effect on different

paths separately; 1: FED (falling edge delay)/RED (rising edge delay) take effect on B path. (R/W)

PWM_DT1_RED_UPMETHOD Updating method for RED active register. 0: immediately; when bit0

is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync; when bit3 is set to 1:

disable the update. (R/W)

PWM_DT1_FED_UPMETHOD Updating method for FED active register. 0: immediately; when bit0

is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync; when bit3 is set to 1:

disable the update. (R/W)

Register 16.38. PWM_DT1_FED_CFG_REG (0x0094)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PW
M

_D
T1

_F
ED

0

15 0

Reset

PWM_DT1_FED Shadow register for FED. (R/W)

Espressif Systems 464
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.39. PWM_DT1_RED_CFG_REG (0x0098)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PW
M

_D
T1

_R
ED

0

15 0

Reset

PWM_DT1_RED Shadow register for RED. (R/W)

Register 16.40. PWM_CARRIER1_CFG_REG (0x009c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

PW
M

_C
ARRIER1_

IN
_IN

VERT

0

13

PW
M

_C
ARRIER1_

OUT_
IN

VERT

0

12

PW
M

_C
ARRIER1_

OSHW
TH

0

11 8

PW
M

_C
ARRIER1_

DUTY

0

7 5

PW
M

_C
ARRIER1_

PRESCALE

0

4 1

PW
M

_C
ARRIER1_

EN

0

0

Reset

PWM_CARRIER1_IN_INVERT When set, invert the input of PWM1A and PWM1B for this submodule.

(R/W)

PWM_CARRIER1_OUT_INVERT When set, invert the output of PWM1A and PWM1B for this sub-

module. (R/W)

PWM_CARRIER1_OSHWTH Width of the first pulse in number of periods of the carrier. (R/W)

PWM_CARRIER1_DUTY Carrier duty selection. Duty = PWM_CARRIER1_DUTY/8. (R/W)

PWM_CARRIER1_PRESCALE PWM carrier1 clock (PC_clk) prescale value. Period of PC_clk = pe-

riod of PWM_clk * (PWM_CARRIER1_PRESCALE + 1). (R/W)

PWM_CARRIER1_EN When set, carrier1 function is enabled. When cleared, carrier1 is bypassed.

(R/W)

Espressif Systems 465
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.41. PWM_FH1_CFG0_REG (0x00a0)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

PW
M

_F
H1_

B_O
ST_

U

0

23 22

PW
M

_F
H1_

B_O
ST_

D

0

21 20

PW
M

_F
H1_

B_C
BC_U

0

19 18

PW
M

_F
H1_

B_C
BC_D

0

17 16

PW
M

_F
H1_

A_O
ST_

U

0

15 14

PW
M

_F
H1_

A_O
ST_

D

0

13 12

PW
M

_F
H1_

A_C
BC_U

0

11 10

PW
M

_F
H1_

A_C
BC_D

0

9 8

PW
M

_F
H1_

F0
_O

ST

0

7

PW
M

_F
H1_

F1
_O

ST

0

6

PW
M

_F
H1_

F2
_O

ST

0

5

PW
M

_F
H1_

SW
_O

ST

0

4

PW
M

_F
H1_

F0
_C

BC

0

3

PW
M

_F
H1_

F1
_C

BC

0

2

PW
M

_F
H1_

F2
_C

BC

0

1

PW
M

_F
H1_

SW
_C

BC

0

0

Reset

PWM_FH1_B_OST_U One-shot mode action on PWM1B when a fault event occurs and the timer is

increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_B_OST_D One-shot mode action on PWM1B when a fault event occurs and the timer is

decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_B_CBC_U Cycle-by-cycle mode action on PWM1B when a fault event occurs and the

timer is increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_B_CBC_D Cycle-by-cycle mode action on PWM1B when a fault event occurs and the

timer is decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_A_OST_U One-shot mode action on PWM1A when a fault event occurs and the timer is

increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_A_OST_D One-shot mode action on PWM1A when a fault event occurs and the timer is

decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_A_CBC_U Cycle-by-cycle mode action on PWM1A when a fault event occurs and the

timer is increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_A_CBC_D Cycle-by-cycle mode action on PWM1A when a fault event occurs and the

timer is decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH1_F0_OST Enable event_f0 to trigger one-shot mode action. 0: disable, 1: enable. (R/W)

PWM_FH1_F1_OST Enable event_f1 to trigger one-shot mode action. 0: disable, 1: enable. (R/W)

PWM_FH1_F2_OST Enable event_f2 to trigger one-shot mode action. 0: disable, 1: enable. (R/W)

PWM_FH1_SW_OST Enable the register for software-forced one-shot mode action. 0: disable, 1:

enable. (R/W)

PWM_FH1_F0_CBC Enable event_f0 to trigger cycle-by-cycle mode action. 0: disable, 1: enable.

(R/W)

PWM_FH1_F1_CBC Enable event_f1 to trigger cycle-by-cycle mode action. 0: disable, 1: enable.

(R/W)

PWM_FH1_F2_CBC Enable event_f2 to will trigger cycle-by-cycle mode action. 0: disable, 1: en-

able. (R/W)

PWM_FH1_SW_CBC Enable the register for software-forced cycle-by-cycle mode action. 0: disable,

1: enable. (R/W)

Espressif Systems 466
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.42. PWM_FH1_CFG1_REG (0x00a4)

(re
se

rve
d)

0 0

31 5

PW
M

_F
H1_

FO
RCE_O

ST

0

4

PW
M

_F
H1_

FO
RCE_C

BC

0

3

PW
M

_F
H1_

CBCPULS
E

0

2 1

PW
M

_F
H1_

CLR
_O

ST

0

0

Reset

PWM_FH1_FORCE_OST A toggle (software negation of this bit’s value) triggers a one-shot mode

action. (R/W)

PWM_FH1_FORCE_CBC A toggle triggers a cycle-by-cycle mode action. (R/W)

PWM_FH1_CBCPULSE The cycle-by-cycle mode action refresh moment selection. When bit0 is set

to 1: TEZ; when bit1 is set to 1: TEP. (R/W)

PWM_FH1_CLR_OST A toggle will clear on-going one-shot mode action. (R/W)

Register 16.43. PWM_FH1_STATUS_REG (0x00a8)

(re
se

rve
d)

0 0

31 2

PW
M

_F
H1_

OST_
ON

0

1

PW
M

_F
H1_

CBC_O
N

0

0

Reset

PWM_FH1_OST_ON Set and reset by hardware. If set, a one-shot mode action is on-going. (RO)

PWM_FH1_CBC_ON Set and reset by hardware. If set, a cycle-by-cycle mode action is on-going.

(RO)

Espressif Systems 467
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.44. PWM_GEN2_STMP_CFG_REG (0x00ac)

(re
se

rve
d)

0 0

31 10

PW
M

_G
EN2_

B_S
HDW

_F
ULL

0

9

PW
M

_G
EN2_

A_S
HDW

_F
ULL

0

8

PW
M

_G
EN2_

B_U
PM

ETH
OD

0

7 4

PW
M

_G
EN2_

A_U
PM

ETH
OD

0

3 0

Reset

PWM_GEN2_B_SHDW_FULL Set and reset by hardware. If set, PWM generator 2 time stamp B’s

shadow register is filled and to be transferred to time stamp B’s active register. If cleared, time

stamp B’s active register has been updated with shadow register’s latest value. (RO)

PWM_GEN2_A_SHDW_FULL Set and reset by hardware. If set, PWM generator 2 time stamp A’s

shadow register is filled and to be transferred to time stamp A’s active register. If cleared, time

stamp A’s active register has been updated with shadow register’s latest value. (RO)

PWM_GEN2_B_UPMETHOD Updating method for PWM generator 2 time stamp B’s active register.

0: immediately; when bit0 is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync;

when bit3 is set to 1: disable the update. (R/W)

PWM_GEN2_A_UPMETHOD Updating method for PWM generator 2 time stamp A’s active register.

0: immediately; when bit0 is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync;

when bit3 is set to 1: disable the update. (R/W)

Register 16.45. PWM_GEN2_TSTMP_A_REG (0x00b0)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PW
M

_G
EN2_

A

0

15 0

Reset

PWM_GEN2_A PWM generator 2 time stamp A’s shadow register. (R/W)

Register 16.46. PWM_GEN2_TSTMP_B_REG (0x00b4)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PW
M

_G
EN2_

B

0

15 0

Reset

PWM_GEN2_B PWM generator 2 time stamp B’s shadow register. (R/W)

Espressif Systems 468
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.47. PWM_GEN2_CFG0_REG (0x00b8)

(re
se

rve
d)

0 0

31 10

PW
M

_G
EN2_

T1
_S

EL

0

9 7

PW
M

_G
EN2_

T0
_S

EL

0

6 4

PW
M

_G
EN2_

CFG
_U

PM
ETH

OD

0

3 0

Reset

PWM_GEN2_T1_SEL Source selection for PWM generator2 event_t1, take effect immediately, 0:

fault_event0, 1: fault_event1, 2: fault_event2, 3: sync_taken, 4: none. (R/W)

PWM_GEN2_T0_SEL Source selection for PWM generator2 event_t0, take effect immediately, 0:

fault_event0, 1: fault_event1, 2: fault_event2, 3: sync_taken, 4: none. (R/W)

PWM_GEN2_CFG_UPMETHOD Updating method for PWM generator2’s active register of configu-

ration. 0: immediately; when bit0 is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to

1: sync. bit3: disable the update. (R/W)

Espressif Systems 469
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.48. PWM_GEN2_FORCE_REG (0x00bc)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PW
M

_G
EN2_

B_N
CIFO

RCE_M
ODE

0

15 14

PW
M

_G
EN2_

B_N
CIFO

RCE

0

13

PW
M

_G
EN2_

A_N
CIFO

RCE_M
ODE

0

12 11

PW
M

_G
EN2_

A_N
CIFO

RCE

0

10

PW
M

_G
EN2_

B_C
NTU

FO
RCE_M

ODE

0

9 8

PW
M

_G
EN2_

A_C
NTU

FO
RCE_M

ODE

0

7 6

PW
M

_G
EN2_

CNTU
FO

RCE_U
PM

ETH
OD

0x20

5 0

Reset

PWM_GEN2_B_NCIFORCE_MODE Non-continuous immediate software-force mode for PWM2B,

0: disabled, 1: low, 2: high, 3: disabled. (R/W)

PWM_GEN2_B_NCIFORCE Trigger of non-continuous immediate software-force event for PWM2B,

a toggle will trigger a force event. (R/W)

PWM_GEN2_A_NCIFORCE_MODE Non-continuous immediate software-force mode for PWM2A,

0: disabled, 1: low, 2: high, 3: disabled. (R/W)

PWM_GEN2_A_NCIFORCE Trigger of non-continuous immediate software-force event for PWM2A,

a toggle will trigger a force event. (R/W)

PWM_GEN2_B_CNTUFORCE_MODE Continuous software-force mode for PWM2B. 0: disabled,

1: low, 2: high, 3: disabled. (R/W)

PWM_GEN2_A_CNTUFORCE_MODE Continuous software-force mode for PWM2A. 0: disabled, 1:

low, 2: high, 3: disabled. (R/W)

PWM_GEN2_CNTUFORCE_UPMETHOD Updating method for continuous software force of PWM

generator2. 0: immediately; when bit0 is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is

set to 1: TEA; when bit3 is set to 1: TEB; when bit4 is set to 1: sync; when bit5 is set to 1: disable

update. (TEA/B here and below means an event generated when the timer value equals that of

register A/B.) (R/W)

Espressif Systems 470
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.49. PWM_GEN2_A_REG (0x00c0)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

PW
M

_G
EN2_

A_D
T1

0

23 22

PW
M

_G
EN2_

A_D
T0

0

21 20

PW
M

_G
EN2_

A_D
TE

B

0

19 18

PW
M

_G
EN2_

A_D
TE

A

0

17 16

PW
M

_G
EN2_

A_D
TE

P

0

15 14

PW
M

_G
EN2_

A_D
TE

Z

0

13 12

PW
M

_G
EN2_

A_U
T1

0

11 10

PW
M

_G
EN2_

A_U
T0

0

9 8

PW
M

_G
EN2_

A_U
TE

B

0

7 6

PW
M

_G
EN2_

A_U
TE

A

0

5 4

PW
M

_G
EN2_

A_U
TE

P

0

3 2

PW
M

_G
EN2_

A_U
TE

Z

0

1 0

Reset

PWM_GEN2_A_DT1 Action on PWM2A triggered by event_t1 when the timer decreases. 0: no

change, 1: low, 2: high, 3: toggle. (R/W)

PWM_GEN2_A_DT0 Action on PWM2A triggered by event_t0 when the timer decreases. (R/W)

PWM_GEN2_A_DTEB Action on PWM2A triggered by event TEB when the timer decreases. (R/W)

PWM_GEN2_A_DTEA Action on PWM2A triggered by event TEA when the timer decreases. (R/W)

PWM_GEN2_A_DTEP Action on PWM2A triggered by event TEP when the timer decreases. (R/W)

PWM_GEN2_A_DTEZ Action on PWM2A triggered by event TEZ when the timer decreases. (R/W)

PWM_GEN2_A_UT1 Action on PWM2A triggered by event_t1 when the timer increases. (R/W)

PWM_GEN2_A_UT0 Action on PWM2A triggered by event_t0 when the timer increases. (R/W)

PWM_GEN2_A_UTEB Action on PWM2A triggered by event TEB when the timer increases. (R/W)

PWM_GEN2_A_UTEA Action on PWM2A triggered by event TEA when the timer increases. (R/W)

PWM_GEN2_A_UTEP Action on PWM2A triggered by event TEP when the timer increases. (R/W)

PWM_GEN2_A_UTEZ Action on PWM2A triggered by event TEZ when the timer increases. (R/W)

Espressif Systems 471
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.50. PWM_GEN2_B_REG (0x00c4)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

PW
M

_G
EN2_

B_D
T1

0

23 22

PW
M

_G
EN2_

B_D
T0

0

21 20

PW
M

_G
EN2_

B_D
TE

B

0

19 18

PW
M

_G
EN2_

B_D
TE

A

0

17 16

PW
M

_G
EN2_

B_D
TE

P

0

15 14

PW
M

_G
EN2_

B_D
TE

Z

0

13 12

PW
M

_G
EN2_

B_U
T1

0

11 10

PW
M

_G
EN2_

B_U
T0

0

9 8

PW
M

_G
EN2_

B_U
TE

B

0

7 6

PW
M

_G
EN2_

B_U
TE

A

0

5 4

PW
M

_G
EN2_

B_U
TE

P

0

3 2

PW
M

_G
EN2_

B_U
TE

Z

0

1 0

Reset

PWM_GEN2_B_DT1 Action on PWM2B triggered by event_t1 when the timer decreases. 0: no

change, 1: low, 2: high, 3: toggle. (R/W)

PWM_GEN2_B_DT0 Action on PWM2B triggered by event_t0 when the timer decreases. (R/W)

PWM_GEN2_B_DTEB Action on PWM2B triggered by event TEB when the timer decreases. (R/W)

PWM_GEN2_B_DTEA Action on PWM2B triggered by event TEA when the timer decreases. (R/W)

PWM_GEN2_B_DTEP Action on PWM2B triggered by event TEP when the timer decreases. (R/W)

PWM_GEN2_B_DTEZ Action on PWM2B triggered by event TEZ when the timer decreases. (R/W)

PWM_GEN2_B_UT1 Action on PWM2B triggered by event_t1 when the timer increases. (R/W)

PWM_GEN2_B_UT0 Action on PWM2B triggered by event_t0 when the timer increases. (R/W)

PWM_GEN2_B_UTEB Action on PWM2B triggered by event TEB when the timer increases. (R/W)

PWM_GEN2_B_UTEA Action on PWM2B triggered by event TEA when the timer increases. (R/W)

PWM_GEN2_B_UTEP Action on PWM2B triggered by event TEP when the timer increases. (R/W)

PWM_GEN2_B_UTEZ Action on PWM2B triggered by event TEZ when the timer increases. (R/W)

Espressif Systems 472
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.51. PWM_DT2_CFG_REG (0x00c8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

PW
M

_D
T2

_C
LK

_S
EL

0

17

PW
M

_D
T2

_B
_O

UTB
YPA

SS

1

16

PW
M

_D
T2

_A
_O

UTB
YPA

SS

1

15

PW
M

_D
T2

_F
ED_O

UTIN
VERT

0

14

PW
M

_D
T2

_R
ED_O

UTIN
VERT

0

13

PW
M

_D
T2

_F
ED_IN

SEL

0

12

PW
M

_D
T2

_R
ED_IN

SEL

0

11

PW
M

_D
T2

_B
_O

UTS
W

AP

0

10

PW
M

_D
T2

_A
_O

UTS
W

AP

0

9

PW
M

_D
T2

_D
EB_M

ODE

0

8

PW
M

_D
T2

_R
ED_U

PM
ETH

OD

0

7 4

PW
M

_D
T2

_F
ED_U

PM
ETH

OD

0

3 0

Reset

PWM_DT2_CLK_SEL Dead time generator 1 clock selection. 0: PWM_clk; 1: PT_clk. (R/W)

PWM_DT2_B_OUTBYPASS S0 in Table 16-5. (R/W)

PWM_DT2_A_OUTBYPASS S1 in Table 16-5. (R/W)

PWM_DT2_FED_OUTINVERT S3 in Table 16-5. (R/W)

PWM_DT2_RED_OUTINVERT S2 in Table 16-5. (R/W)

PWM_DT2_FED_INSEL S5 in Table 16-5. (R/W)

PWM_DT2_RED_INSEL S4 in Table 16-5. (R/W)

PWM_DT2_B_OUTSWAP S7 in Table 16-5. (R/W)

PWM_DT2_A_OUTSWAP S6 in Table 16-5. (R/W)

PWM_DT2_DEB_MODE S8 in Table 16-5, dual-edge B mode, 0: FED/RED take effect on different

path separately, 1: FED/RED take effect on B path. (R/W)

PWM_DT2_RED_UPMETHOD Updating method for RED (rising edge delay) active register. 0: im-

mediately; when bit0 is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync; when

bit3 is set to 1: disable the update. (R/W)

PWM_DT2_FED_UPMETHOD Updating method for FED (falling edge delay) active register. 0: im-

mediately; when bit0 is set to 1: TEZ; when bit1 is set to 1: TEP; when bit2 is set to 1: sync; when

bit3 is set to 1: disable the update. (R/W)

Register 16.52. PWM_DT2_FED_CFG_REG (0x00cc)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PW
M

_D
T2

_F
ED

0

15 0

Reset

PWM_DT2_FED Shadow register for FED. (R/W)

Espressif Systems 473
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.53. PWM_DT2_RED_CFG_REG (0x00d0)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PW
M

_D
T2

_R
ED

0

15 0

Reset

PWM_DT2_RED Shadow register for RED. (R/W)

Register 16.54. PWM_CARRIER2_CFG_REG (0x00d4)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

PW
M

_C
ARRIER2_

IN
_IN

VERT

0

13

PW
M

_C
ARRIER2_

OUT_
IN

VERT

0

12

PW
M

_C
ARRIER2_

OSHW
TH

0

11 8

PW
M

_C
ARRIER2_

DUTY

0

7 5

PW
M

_C
ARRIER2_

PRESCALE

0

4 1

PW
M

_C
ARRIER2_

EN

0

0

Reset

PWM_CARRIER2_IN_INVERT When set, invert the input of PWM2A and PWM2B for this submodule.

(R/W)

PWM_CARRIER2_OUT_INVERT When set, invert the output of PWM2A and PWM2B for this sub-

module. (R/W)

PWM_CARRIER2_OSHWTH Width of the first pulse in number of periods of the carrier. (R/W)

PWM_CARRIER2_DUTY Carrier duty selection. Duty = PWM_CARRIER2_DUTY / 8. (R/W)

PWM_CARRIER2_PRESCALE PWM carrier2 clock (PC_clk) prescale value. Period of PC_clk = pe-

riod of PWM_clk * (PWM_CARRIER2_PRESCALE + 1). (R/W)

PWM_CARRIER2_EN When set, carrier2 function is enabled. When cleared, carrier2 is bypassed.

(R/W)

Espressif Systems 474
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.55. PWM_FH2_CFG0_REG (0x00d8)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

PW
M

_F
H2_

B_O
ST_

U

0

23 22

PW
M

_F
H2_

B_O
ST_

D

0

21 20

PW
M

_F
H2_

B_C
BC_U

0

19 18

PW
M

_F
H2_

B_C
BC_D

0

17 16

PW
M

_F
H2_

A_O
ST_

U

0

15 14

PW
M

_F
H2_

A_O
ST_

D

0

13 12

PW
M

_F
H2_

A_C
BC_U

0

11 10

PW
M

_F
H2_

A_C
BC_D

0

9 8

PW
M

_F
H2_

F0
_O

ST

0

7

PW
M

_F
H2_

F1
_O

ST

0

6

PW
M

_F
H2_

F2
_O

ST

0

5

PW
M

_F
H2_

SW
_O

ST

0

4

PW
M

_F
H2_

F0
_C

BC

0

3

PW
M

_F
H2_

F1
_C

BC

0

2

PW
M

_F
H2_

F2
_C

BC

0

1

PW
M

_F
H2_

SW
_C

BC

0

0

Reset

PWM_FH2_B_OST_U One-shot mode action on PWM2B when a fault event occurs and the timer is

increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_B_OST_D One-shot mode action on PWM2B when a fault event occurs and the timer is

decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_B_CBC_U Cycle-by-cycle mode action on PWM2B when a fault event occurs and the

timer is increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_B_CBC_D Cycle-by-cycle mode action on PWM2B when a fault event occurs and the

timer is decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_A_OST_U One-shot mode action on PWM2A when a fault event occurs and the timer is

increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_A_OST_D One-shot mode action on PWM2A when a fault event occurs and the timer is

decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_A_CBC_U Cycle-by-cycle mode action on PWM2A when a fault event occurs and the

timer is increasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_A_CBC_D Cycle-by-cycle mode action on PWM2A when a fault event occurs and the

timer is decreasing. 0: do nothing, 1: force low, 2: force high, 3: toggle. (R/W)

PWM_FH2_F0_OST event_f0 will trigger one-shot mode action. 0: disable, 1: enable. (R/W)

PWM_FH2_F1_OST event_f1 will trigger one-shot mode action. 0: disable, 1: enable. (R/W)

PWM_FH2_F2_OST event_f2 will trigger one-shot mode action. 0: disable, 1: enable. (R/W)

PWM_FH2_SW_OST Enable register for software-forced one-shot mode action. 0: disable, 1: en-

able. (R/W)

PWM_FH2_F0_CBC event_f0 will trigger cycle-by-cycle mode action. 0: disable, 1: enable. (R/W)

PWM_FH2_F1_CBC event_f1 will trigger cycle-by-cycle mode action. 0: disable, 1: enable. (R/W)

PWM_FH2_F2_CBC event_f2 will trigger cycle-by-cycle mode action. 0: disable, 1: enable. (R/W)

PWM_FH2_SW_CBC Enable register for software-forced cycle-by-cycle mode action. 0: disable, 1:

enable. (R/W)

Espressif Systems 475
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.56. PWM_FH2_CFG1_REG (0x00dc)

(re
se

rve
d)

0 0

31 5

PW
M

_F
H2_

FO
RCE_O

ST

0

4

PW
M

_F
H2_

FO
RCE_C

BC

0

3

PW
M

_F
H2_

CBCPULS
E

0

2 1

PW
M

_F
H2_

CLR
_O

ST

0

0

Reset

PWM_FH2_FORCE_OST A toggle (software negation of this bit’s value) triggers a one-shot mode

action. (R/W)

PWM_FH2_FORCE_CBC A toggle triggers a cycle-by-cycle mode action. (R/W)

PWM_FH2_CBCPULSE The cycle-by-cycle mode action refresh moment selection. When bit0 is set

to 1: TEZ; when bit1 is set to 1:TEP. (R/W)

PWM_FH2_CLR_OST A toggle will clear on-going one-shot mode action. (R/W)

Register 16.57. PWM_FH2_STATUS_REG (0x00e0)

(re
se

rve
d)

0 0

31 2

PW
M

_F
H2_

OST_
ON

0

1

PW
M

_F
H2_

CBC_O
N

0

0

Reset

PWM_FH2_OST_ON Set and reset by hardware. If set, a one-shot mode action is on-going. (RO)

PWM_FH2_CBC_ON Set and reset by hardware. If set, a cycle-by-cycle mode action is on-going.

(RO)

Espressif Systems 476
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.58. PWM_FAULT_DETECT_REG (0x00e4)

(re
se

rve
d)

0 0

31 9

PW
M

_E
VENT_

F2

0

8

PW
M

_E
VENT_

F1

0

7

PW
M

_E
VENT_

F0

0

6

PW
M

_F
2_

POLE

0

5

PW
M

_F
1_

POLE

0

4

PW
M

_F
0_

POLE

0

3

PW
M

_F
2_

EN

0

2

PW
M

_F
1_

EN

0

1

PW
M

_F
0_

EN

0

0

Reset

PWM_EVENT_F2 Set and reset by hardware. If set, event_f2 is on-going. (RO)

PWM_EVENT_F1 Set and reset by hardware. If set, event_f1 is on-going. (RO)

PWM_EVENT_F0 Set and reset by hardware. If set, event_f0 is on-going. (RO)

PWM_F2_POLE Set event_f2 trigger polarity on FAULT2 source from GPIO matrix. 0: level low, 1:

level high. (R/W)

PWM_F1_POLE Set event_f1 trigger polarity on FAULT2 source from GPIO matrix. 0: level low, 1:

level high. (R/W)

PWM_F0_POLE Set event_f0 trigger polarity on FAULT2 source from GPIO matrix. 0: level low, 1:

level high. (R/W)

PWM_F2_EN Set to enable the generation of event_f2. (R/W)

PWM_F1_EN Set to enable the generation of event_f1. (R/W)

PWM_F0_EN Set to enable the generation of event_f0. (R/W)

Register 16.59. PWM_CAP_TIMER_CFG_REG (0x00e8)

(re
se

rve
d)

0 0

31 6

PW
M

_C
AP_S

YNC_S
W

0

5

PW
M

_C
AP_S

YNCI_S
EL

0

4 2

PW
M

_C
AP_S

YNCI_E
N

0

1

PW
M

_C
AP_T

IM
ER_E

N

0

0

Reset

PWM_CAP_SYNC_SW Set this bit to force a capture timer sync; the capture timer is loaded with the

value in the phase register. (WO)

PWM_CAP_SYNCI_SEL Capture module sync input selection. 0: none, 1: timer0 sync_out, 2:

timer1 sync_out, 3: timer2 sync_out, 4: SYNC0 from GPIO matrix, 5: SYNC1 from GPIO ma-

trix, 6: SYNC2 from GPIO matrix. (R/W)

PWM_CAP_SYNCI_EN When set, the capture timer sync is enabled. (R/W)

PWM_CAP_TIMER_EN When set, the capture timer incrementing under APB_clk is enabled. (R/W)

Espressif Systems 477
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.60. PWM_CAP_TIMER_PHASE_REG (0x00ec)

0

31 0

Reset

PWM_CAP_TIMER_PHASE_REG Phase value for the capture timer sync operation. (R/W)

Register 16.61. PWM_CAP_CH0_CFG_REG (0x00f0)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

PW
M

_C
AP0_

SW

0

12

PW
M

_C
AP0_

IN
_IN

VERT

0

11

PW
M

_C
AP0_

PRESCALE

0

10 3

PW
M

_C
AP0_

M
ODE

0

2 1

PW
M

_C
AP0_

EN

0

0

Reset

PWM_CAP0_SW When set, a software-forced capture on channel 0 is triggered. (WO)

PWM_CAP0_IN_INVERT When set, CAP0 form GPIO matrix is inverted before prescaling. (R/W)

PWM_CAP0_PRESCALE Prescaling value on the positive edge of CAP0. Prescaling value =

PWM_CAP0_PRESCALE + 1. (R/W)

PWM_CAP0_MODE Edge of capture on channel 0 after prescaling. When bit0 is set to 1: enable

capture on the negative edge; When bit1 is set to 1: enable capture on the positive edge. (R/W)

PWM_CAP0_EN When set, capture on channel 0 is enabled. (R/W)

Register 16.62. PWM_CAP_CH1_CFG_REG (0x00f4)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

PW
M

_C
AP1_

SW

0

12

PW
M

_C
AP1_

IN
_IN

VERT

0

11

PW
M

_C
AP1_

PRESCALE

0

10 3

PW
M

_C
AP1_

M
ODE

0

2 1

PW
M

_C
AP1_

EN

0

0

Reset

PWM_CAP1_SW Write 1 will trigger a software-forced capture on channel 1. (WO)

PWM_CAP1_IN_INVERT When set, CAP1 form GPIO matrix is inverted before prescaling. (R/W)

PWM_CAP1_PRESCALE Value of prescale on the positive edge of CAP1. Prescale value =

PWM_CAP1_PRESCALE + 1. (R/W)

PWM_CAP1_MODE Edge of capture on channel 1 after prescaling. When bit0 is set to 1: enable

capture on the negative edge; When bit1 is set to 1: enable capture on the positive edge. (R/W)

PWM_CAP1_EN When set, capture on channel 1 is enabled. (R/W)

Espressif Systems 478
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.63. PWM_CAP_CH2_CFG_REG (0x00f8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

PW
M

_C
AP2_

SW

0

12

PW
M

_C
AP2_

IN
_IN

VERT

0

11

PW
M

_C
AP2_

PRESCALE

0

10 3

PW
M

_C
AP2_

M
ODE

0

2 1

PW
M

_C
AP2_

EN

0

0

Reset

PWM_CAP2_SW When set, a software-forced capture on channel 2 is triggered. (WO)

PWM_CAP2_IN_INVERT When set, CAP2 form GPIO matrix is inverted before prescaling. (R/W)

PWM_CAP2_PRESCALE Prescaling value on the positive edge of CAP2. Prescaling value =

PWM_CAP2_PRESCALE + 1. (R/W)

PWM_CAP2_MODE Edge of capture on channel 2 after prescaling. When bit0 is set to 1: enable

capture on the negative edge; when bit1 is set to 1: enable capture on the positive edge. (R/W)

PWM_CAP2_EN When set, capture on channel 2 is enabled. (R/W)

Register 16.64. PWM_CAP_CH0_REG (0x00fc)

0

31 0

Reset

PWM_CAP_CH0_REG Value of the last capture on channel 0. (RO)

Register 16.65. PWM_CAP_CH1_REG (0x0100)

0

31 0

Reset

PWM_CAP_CH1_REG Value of the last capture on channel 1. (RO)

Register 16.66. PWM_CAP_CH2_REG (0x0104)

0

31 0

Reset

PWM_CAP_CH2_REG Value of the last capture on channel 2. (RO)

Espressif Systems 479
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.67. PWM_CAP_STATUS_REG (0x0108)

(re
se

rve
d)

0 0

31 3

PW
M

_C
AP2_

EDGE

0

2

PW
M

_C
AP1_

EDGE

0

1

PW
M

_C
AP0_

EDGE

0

0

Reset

PWM_CAP2_EDGE Edge of the last capture trigger on channel 2. 0: posedge; 1: negedge. (RO)

PWM_CAP1_EDGE Edge of the last capture trigger on channel 1. 0: posedge; 1: negedge. (RO)

PWM_CAP0_EDGE Edge of the last capture trigger on channel 0. 0: posedge; 1: negedge. (RO)

Register 16.68. PWM_UPDATE_CFG_REG (0x010c)

(re
se

rve
d)

0 0

31 8

PW
M

_O
P2_

FO
RCE_U

P

0

7

PW
M

_O
P2_

UP_E
N

1

6

PW
M

_O
P1_

FO
RCE_U

P

0

5

PW
M

_O
P1_

UP_E
N

1

4

PW
M

_O
P0_

FO
RCE_U

P

0

3

PW
M

_O
P0_

UP_E
N

1

2

PW
M

_G
LO

BAL_
FO

RCE_U
P

0

1

PW
M

_G
LO

BAL_
UP_E

N

1

0

Reset

PWM_OP2_FORCE_UP A toggle (software negation of this bit’s value) will trigger a forced update of

active registers in PWM operator 2. (R/W)

PWM_OP2_UP_EN When set and PWM_GLOBAL_UP_EN is set, update of active registers in PWM

operator 2 are enabled (R/W)

PWM_OP1_FORCE_UP A toggle (software negation of this bit’s value) will trigger a forced update of

active registers in PWM operator 1. (R/W)

PWM_OP1_UP_EN When set and PWM_GLOBAL_UP_EN is set, update of active registers in PWM

operator 1 are enabled. (R/W)

PWM_OP0_FORCE_UP A toggle (software negation of this bit’s value) will trigger a forced update of

active registers in PWM operator 0. (R/W)

PWM_OP0_UP_EN When set and PWM_GLOBAL_UP_EN is set, update of active registers in PWM

operator 0 are enabled. (R/W)

PWM_GLOBAL_FORCE_UP A toggle (software negation of this bit’s value) will trigger a forced update

of all active registers in the MCPWM module. (R/W)

PWM_GLOBAL_UP_EN The global enable of update of all active registers in the MCPWM module.

(R/W)

Espressif Systems 480
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.69. INT_ENA_PWM_REG (0x0110)

(re
se

rve
d)

0 0

31 30

IN
T_

CAP2_
IN

T_
ENA

0

29

IN
T_

CAP1_
IN

T_
ENA

0

28

IN
T_

CAP0_
IN

T_
ENA

0

27

IN
T_

FH
2_

OST_
IN

T_
ENA

0

26

IN
T_

FH
1_

OST_
IN

T_
ENA

0

25

IN
T_

FH
0_

OST_
IN

T_
ENA

0

24

IN
T_

FH
2_

CBC_IN
T_

ENA

0

23

IN
T_

FH
1_

CBC_IN
T_

ENA

0

22

IN
T_

FH
0_

CBC_IN
T_

ENA

0

21

IN
T_

OP2_
TE

B_IN
T_

ENA

0

20

IN
T_

OP1_
TE

B_IN
T_

ENA

0

19

IN
T_

OP0_
TE

B_IN
T_

ENA

0

18

IN
T_

OP2_
TE

A_IN
T_

ENA

0

17

IN
T_

OP1_
TE

A_IN
T_

ENA

0

16

IN
T_

OP0_
TE

A_IN
T_

ENA

0

15

IN
T_

FA
ULT

2_
CLR

_IN
T_

ENA

0

14

IN
T_

FA
ULT

1_
CLR

_IN
T_

ENA

0

13

IN
T_

FA
ULT

0_
CLR

_IN
T_

ENA

0

12

IN
T_

FA
ULT

2_
IN

T_
ENA

0

11

IN
T_

FA
ULT

1_
IN

T_
ENA

0

10

IN
T_

FA
ULT

0_
IN

T_
ENA

0

9

IN
T_

TIM
ER2_

TE
P_IN

T_
ENA

0

8

IN
T_

TIM
ER1_

TE
P_IN

T_
ENA

0

7

IN
T_

TIM
ER0_

TE
P_IN

T_
ENA

0

6

IN
T_

TIM
ER2_

TE
Z_

IN
T_

ENA

0

5

IN
T_

TIM
ER1_

TE
Z_

IN
T_

ENA

0

4

IN
T_

TIM
ER0_

TE
Z_

IN
T_

ENA

0

3

IN
T_

TIM
ER2_

STO
P_IN

T_
ENA

0

2

IN
T_

TIM
ER1_

STO
P_IN

T_
ENA

0

1

IN
T_

TIM
ER0_

STO
P_IN

T_
ENA

0

0

Reset

INT_CAP2_INT_ENA The enable bit for the interrupt triggered by capture on channel 2. (R/W)

INT_CAP1_INT_ENA The enable bit for the interrupt triggered by capture on channel 1. (R/W)

INT_CAP0_INT_ENA The enable bit for the interrupt triggered by capture on channel 0. (R/W)

INT_FH2_OST_INT_ENA The enable bit for the interrupt triggered by a one-shot mode action on
PWM2. (R/W)

INT_FH1_OST_INT_ENA The enable bit for the interrupt triggered by a one-shot mode action on
PWM1. (R/W)

INT_FH0_OST_INT_ENA The enable bit for the interrupt triggered by a one-shot mode action on
PWM0. (R/W)

INT_FH2_CBC_INT_ENA The enable bit for the interrupt triggered by a cycle-by-cycle mode action
on PWM2. (R/W)

INT_FH1_CBC_INT_ENA The enable bit for the interrupt triggered by a cycle-by-cycle mode action
on PWM1. (R/W)

INT_FH0_CBC_INT_ENA The enable bit for the interrupt triggered by a cycle-by-cycle mode action
on PWM0. (R/W)

INT_OP2_TEB_INT_ENA The enable bit for the interrupt triggered by a PWM operator 2 TEB event
(R/W)

INT_OP1_TEB_INT_ENA The enable bit for the interrupt triggered by a PWM operator 1 TEB event
(R/W)

INT_OP0_TEB_INT_ENA The enable bit for the interrupt triggered by a PWM operator 0 TEB event
(R/W)

INT_OP2_TEA_INT_ENA The enable bit for the interrupt triggered by a PWM operator 2 TEA event
(R/W)

INT_OP1_TEA_INT_ENA The enable bit for the interrupt triggered by a PWM operator 1 TEA event
(R/W)

INT_OP0_TEA_INT_ENA The enable bit for the interrupt triggered by a PWM operator 0 TEA event
(R/W)

INT_FAULT2_CLR_INT_ENA The enable bit for the interrupt triggered when event_f2 ends. (R/W)

INT_FAULT1_CLR_INT_ENA The enable bit for the interrupt triggered when event_f1 ends. (R/W)

INT_FAULT0_CLR_INT_ENA The enable bit for the interrupt triggered when event_f0 ends. (R/W)

INT_FAULT2_INT_ENA The enable bit for the interrupt triggered when event_f2 starts. (R/W)

INT_FAULT1_INT_ENA The enable bit for the interrupt triggered when event_f1 starts. (R/W)

INT_FAULT0_INT_ENA The enable bit for the interrupt triggered when event_f0 starts. (R/W)

INT_TIMER2_TEP_INT_ENA The enable bit for the interrupt triggered by a PWM timer 2 TEP event.
(R/W)

INT_TIMER1_TEP_INT_ENA The enable bit for the interrupt triggered by a PWM timer 1 TEP event.
(R/W)

Continued on the next page...

Espressif Systems 481
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.69. INT_ENA_PWM_REG (0x0110)

Continued from the previous page...

INT_TIMER0_TEP_INT_ENA The enable bit for the interrupt triggered by a PWM timer 0 TEP event.

(R/W)

INT_TIMER2_TEZ_INT_ENA The enable bit for the interrupt triggered by a PWM timer 2 TEZ event.

(R/W)

INT_TIMER1_TEZ_INT_ENA The enable bit for the interrupt triggered by a PWM timer 1 TEZ event.

(R/W)

INT_TIMER0_TEZ_INT_ENA The enable bit for the interrupt triggered by a PWM timer 0 TEZ event.

(R/W)

INT_TIMER2_STOP_INT_ENA The enable bit for the interrupt triggered when the timer 2 stops. (R/W)

INT_TIMER1_STOP_INT_ENA The enable bit for the interrupt triggered when the timer 1 stops. (R/W)

INT_TIMER0_STOP_INT_ENA The enable bit for the interrupt triggered when the timer 0 stops. (R/W)

Espressif Systems 482
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.70. INT_RAW_PWM_REG (0x0114)

(re
se

rve
d)

0 0

31 30

IN
T_

CAP2_
IN

T_
RAW

0

29

IN
T_

CAP1_
IN

T_
RAW

0

28

IN
T_

CAP0_
IN

T_
RAW

0

27

IN
T_

FH
2_

OST_
IN

T_
RAW

0

26

IN
T_

FH
1_

OST_
IN

T_
RAW

0

25

IN
T_

FH
0_

OST_
IN

T_
RAW

0

24

IN
T_

FH
2_

CBC_IN
T_

RAW

0

23

IN
T_

FH
1_

CBC_IN
T_

RAW

0

22

IN
T_

FH
0_

CBC_IN
T_

RAW

0

21

IN
T_

OP2_
TE

B_IN
T_

RAW

0

20

IN
T_

OP1_
TE

B_IN
T_

RAW

0

19

IN
T_

OP0_
TE

B_IN
T_

RAW

0

18

IN
T_

OP2_
TE

A_IN
T_

RAW

0

17

IN
T_

OP1_
TE

A_IN
T_

RAW

0

16

IN
T_

OP0_
TE

A_IN
T_

RAW

0

15

IN
T_

FA
ULT

2_
CLR

_IN
T_

RAW

0

14

IN
T_

FA
ULT

1_
CLR

_IN
T_

RAW

0

13

IN
T_

FA
ULT

0_
CLR

_IN
T_

RAW

0

12

IN
T_

FA
ULT

2_
IN

T_
RAW

0

11

IN
T_

FA
ULT

1_
IN

T_
RAW

0

10

IN
T_

FA
ULT

0_
IN

T_
RAW

0

9

IN
T_

TIM
ER2_

TE
P_IN

T_
RAW

0

8

IN
T_

TIM
ER1_

TE
P_IN

T_
RAW

0

7

IN
T_

TIM
ER0_

TE
P_IN

T_
RAW

0

6

IN
T_

TIM
ER2_

TE
Z_

IN
T_

RAW

0

5

IN
T_

TIM
ER1_

TE
Z_

IN
T_

RAW

0

4

IN
T_

TIM
ER0_

TE
Z_

IN
T_

RAW

0

3

IN
T_

TIM
ER2_

STO
P_IN

T_
RAW

0

2

IN
T_

TIM
ER1_

STO
P_IN

T_
RAW

0

1

IN
T_

TIM
ER0_

STO
P_IN

T_
RAW

0

0

Reset

INT_CAP2_INT_RAW The raw status bit for the interrupt triggered by capture on channel 2. (RO)

INT_CAP1_INT_RAW The raw status bit for the interrupt triggered by capture on channel 1. (RO)

INT_CAP0_INT_RAW The raw status bit for the interrupt triggered by capture on channel 0. (RO)

INT_FH2_OST_INT_RAW The raw status bit for the interrupt triggered by a one-shot mode action on
PWM2. (RO)

INT_FH1_OST_INT_RAW The raw status bit for the interrupt triggered by a one-shot mode action on
PWM0. (RO)

INT_FH0_OST_INT_RAW The raw status bit for the interrupt triggered by a one-shot mode action on
PWM0. (RO)

INT_FH2_CBC_INT_RAW The raw status bit for the interrupt triggered by a cycle-by-cycle mode
action on PWM2. (RO)

INT_FH1_CBC_INT_RAW The raw status bit for the interrupt triggered by a cycle-by-cycle mode
action on PWM1. (RO)

INT_FH0_CBC_INT_RAW The raw status bit for the interrupt triggered by a cycle-by-cycle mode
action on PWM0. (RO)

INT_OP2_TEB_INT_RAW The raw status bit for the interrupt triggered by a PWM operator 2 TEB
event. (RO)

INT_OP1_TEB_INT_RAW The raw status bit for the interrupt triggered by a PWM operator 1 TEB
event. (RO)

INT_OP0_TEB_INT_RAW The raw status bit for the interrupt triggered by a PWM operator 0 TEB
event. (RO)

INT_OP2_TEA_INT_RAW The raw status bit for the interrupt triggered by a PWM operator 2 TEA
event. (RO)

INT_OP1_TEA_INT_RAW The raw status bit for the interrupt triggered by a PWM operator 1 TEA
event. (RO)

INT_OP0_TEA_INT_RAW The raw status bit for the interrupt triggered by a PWM operator 0 TEA
event. (RO)

INT_FAULT2_CLR_INT_RAW The raw status bit for the interrupt triggered when event_f2 ends. (RO)

INT_FAULT1_CLR_INT_RAW The raw status bit for the interrupt triggered when event_f1 ends. (RO)

INT_FAULT0_CLR_INT_RAW The raw status bit for the interrupt triggered when event_f0 ends. (RO)

INT_FAULT2_INT_RAW The raw status bit for the interrupt triggered when event_f2 starts. (RO)

INT_FAULT1_INT_RAW The raw status bit for the interrupt triggered when event_f1 starts. (RO)

INT_FAULT0_INT_RAW The raw status bit for the interrupt triggered when event_f0 starts. (RO)

INT_TIMER2_TEP_INT_RAW The raw status bit for the interrupt triggered by a PWM timer 2 TEP
event. (RO)

INT_TIMER1_TEP_INT_RAW The raw status bit for the interrupt triggered by a PWM timer 1 TEP
event. (RO)

Continued on the next page...

Espressif Systems 483
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.70. INT_RAW_PWM_REG (0x0114)

Continued from the previous page...

INT_TIMER0_TEP_INT_RAW The raw status bit for the interrupt triggered by a PWM timer 0 TEP

event. (RO)

INT_TIMER2_TEZ_INT_RAW The raw status bit for the interrupt triggered by a PWM timer 2 TEZ

event. (RO)

INT_TIMER1_TEZ_INT_RAW The raw status bit for the interrupt triggered by a PWM timer 1 TEZ

event. (RO)

INT_TIMER0_TEZ_INT_RAW The raw status bit for the interrupt triggered by a PWM timer 0 TEZ

event. (RO)

INT_TIMER2_STOP_INT_RAW The raw status bit for the interrupt triggered when the timer 2 stops.

(RO)

INT_TIMER1_STOP_INT_RAW The raw status bit for the interrupt triggered when the timer 1 stops.

(RO)

INT_TIMER0_STOP_INT_RAW The raw status bit for the interrupt triggered when the timer 0 stops.

(RO)

Espressif Systems 484
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.71. INT_ST_PWM_REG (0x0118)

(re
se

rve
d)

0 0

31 30

IN
T_

CAP2_
IN

T_
ST

0

29

IN
T_

CAP1_
IN

T_
ST

0

28

IN
T_

CAP0_
IN

T_
ST

0

27

IN
T_

FH
2_

OST_
IN

T_
ST

0

26

IN
T_

FH
1_

OST_
IN

T_
ST

0

25

IN
T_

FH
0_

OST_
IN

T_
ST

0

24

IN
T_

FH
2_

CBC_IN
T_

ST

0

23

IN
T_

FH
1_

CBC_IN
T_

ST

0

22

IN
T_

FH
0_

CBC_IN
T_

ST

0

21

IN
T_

OP2_
TE

B_IN
T_

ST

0

20

IN
T_

OP1_
TE

B_IN
T_

ST

0

19

IN
T_

OP0_
TE

B_IN
T_

ST

0

18

IN
T_

OP2_
TE

A_IN
T_

ST

0

17

IN
T_

OP1_
TE

A_IN
T_

ST

0

16

IN
T_

OP0_
TE

A_IN
T_

ST

0

15

IN
T_

FA
ULT

2_
CLR

_IN
T_

ST

0

14

IN
T_

FA
ULT

1_
CLR

_IN
T_

ST

0

13

IN
T_

FA
ULT

0_
CLR

_IN
T_

ST

0

12

IN
T_

FA
ULT

2_
IN

T_
ST

0

11

IN
T_

FA
ULT

1_
IN

T_
ST

0

10

IN
T_

FA
ULT

0_
IN

T_
ST

0

9

IN
T_

TIM
ER2_

TE
P_IN

T_
ST

0

8

IN
T_

TIM
ER1_

TE
P_IN

T_
ST

0

7

IN
T_

TIM
ER0_

TE
P_IN

T_
ST

0

6

IN
T_

TIM
ER2_

TE
Z_

IN
T_

ST

0

5

IN
T_

TIM
ER1_

TE
Z_

IN
T_

ST

0

4

IN
T_

TIM
ER0_

TE
Z_

IN
T_

ST

0

3

IN
T_

TIM
ER2_

STO
P_IN

T_
ST

0

2

IN
T_

TIM
ER1_

STO
P_IN

T_
ST

0

1

IN
T_

TIM
ER0_

STO
P_IN

T_
ST

0

0

Reset

INT_CAP2_INT_ST The masked status bit for the interrupt triggered by capture on channel 2. (RO)

INT_CAP1_INT_ST The masked status bit for the interrupt triggered by capture on channel 1. (RO)

INT_CAP0_INT_ST The masked status bit for the interrupt triggered by capture on channel 0. (RO)

INT_FH2_OST_INT_ST The masked status bit for the interrupt triggered by a one-shot mode action
on PWM2. (RO)

INT_FH1_OST_INT_ST The masked status bit for the interrupt triggered by a one-shot mode action
on PWM1. (RO)

INT_FH0_OST_INT_ST The masked status bit for the interrupt triggered by a one-shot mode action
on PWM0. (RO)

INT_FH2_CBC_INT_ST The masked status bit for the interrupt triggered by a cycle-by-cycle mode
action on PWM2. (RO)

INT_FH1_CBC_INT_ST The masked status bit for the interrupt triggered by a cycle-by-cycle mode
action on PWM1. (RO)

INT_FH0_CBC_INT_ST The masked status bit for the interrupt triggered by a cycle-by-cycle mode
action on PWM0. (RO)

INT_OP2_TEB_INT_ST The masked status bit for the interrupt triggered by a PWM operator 2 TEB
event. (RO)

INT_OP1_TEB_INT_ST The masked status bit for the interrupt triggered by a PWM operator 1 TEB
event. (RO)

INT_OP0_TEB_INT_ST The masked status bit for the interrupt triggered by a PWM operator 0 TEB
event. (RO)

INT_OP2_TEA_INT_ST The masked status bit for the interrupt triggered by a PWM operator 2 TEA
event. (RO)

INT_OP1_TEA_INT_ST The masked status bit for the interrupt triggered by a PWM operator 1 TEA
event. (RO)

INT_OP0_TEA_INT_ST The masked status bit for the interrupt triggered by a PWM operator 0 TEA
event. (RO)

INT_FAULT2_CLR_INT_ST The masked status bit for the interrupt triggered when event_f2 ends.
(RO)

INT_FAULT1_CLR_INT_ST The masked status bit for the interrupt triggered when event_f1 ends.
(RO)

INT_FAULT0_CLR_INT_ST The masked status bit for the interrupt triggered when event_f0 ends.
(RO)

INT_FAULT2_INT_ST The masked status bit for the interrupt triggered when event_f2 starts. (RO)

Continued on the next page...

Espressif Systems 485
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.71. INT_ST_PWM_REG (0x0118)

Continued from the previous page...

INT_FAULT1_INT_ST The masked status bit for the interrupt triggered when event_f1 starts. (RO)

INT_FAULT0_INT_ST The masked status bit for the interrupt triggered when event_f0 starts. (RO)

INT_TIMER2_TEP_INT_ST The masked status bit for the interrupt triggered by a PWM timer 2 TEP

event. (RO)

INT_TIMER1_TEP_INT_ST The masked status bit for the interrupt triggered by a PWM timer 1 TEP

event. (RO)

INT_TIMER0_TEP_INT_ST The masked status bit for the interrupt triggered by a PWM timer 0 TEP

event. (RO)

INT_TIMER2_TEZ_INT_ST The masked status bit for the interrupt triggered by a PWM timer 2 TEZ

event. (RO)

INT_TIMER1_TEZ_INT_ST The masked status bit for the interrupt triggered by a PWM timer 1 TEZ

event. (RO)

INT_TIMER0_TEZ_INT_ST The masked status bit for the interrupt triggered by a PWM timer 0 TEZ

event. (RO)

INT_TIMER2_STOP_INT_ST The masked status bit for the interrupt triggered when the timer 2 stops.

(RO)

INT_TIMER1_STOP_INT_ST The masked status bit for the interrupt triggered when the timer 1 stops.

(RO)

INT_TIMER0_STOP_INT_ST The masked status bit for the interrupt triggered when the timer 0 stops.

(RO)

Espressif Systems 486
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.72. INT_CLR_PWM_REG (0x011c)

(re
se

rve
d)

0 0

31 30

IN
T_

CAP2_
IN

T_
CLR

0

29

IN
T_

CAP1_
IN

T_
CLR

0

28

IN
T_

CAP0_
IN

T_
CLR

0

27

IN
T_

FH
2_

OST_
IN

T_
CLR

0

26

IN
T_

FH
1_

OST_
IN

T_
CLR

0

25

IN
T_

FH
0_

OST_
IN

T_
CLR

0

24

IN
T_

FH
2_

CBC_IN
T_

CLR

0

23

IN
T_

FH
1_

CBC_IN
T_

CLR

0

22

IN
T_

FH
0_

CBC_IN
T_

CLR

0

21

IN
T_

OP2_
TE

B_IN
T_

CLR

0

20

IN
T_

OP1_
TE

B_IN
T_

CLR

0

19

IN
T_

OP0_
TE

B_IN
T_

CLR

0

18

IN
T_

OP2_
TE

A_IN
T_

CLR

0

17

IN
T_

OP1_
TE

A_IN
T_

CLR

0

16

IN
T_

OP0_
TE

A_IN
T_

CLR

0

15

IN
T_

FA
ULT

2_
CLR

_IN
T_

CLR

0

14

IN
T_

FA
ULT

1_
CLR

_IN
T_

CLR

0

13

IN
T_

FA
ULT

0_
CLR

_IN
T_

CLR

0

12

IN
T_

FA
ULT

2_
IN

T_
CLR

0

11

IN
T_

FA
ULT

1_
IN

T_
CLR

0

10

IN
T_

FA
ULT

0_
IN

T_
CLR

0

9

IN
T_

TIM
ER2_

TE
P_IN

T_
CLR

0

8

IN
T_

TIM
ER1_

TE
P_IN

T_
CLR

0

7

IN
T_

TIM
ER0_

TE
P_IN

T_
CLR

0

6

IN
T_

TIM
ER2_

TE
Z_

IN
T_

CLR

0

5

IN
T_

TIM
ER1_

TE
Z_

IN
T_

CLR

0

4

IN
T_

TIM
ER0_

TE
Z_

IN
T_

CLR

0

3

IN
T_

TIM
ER2_

STO
P_IN

T_
CLR

0

2

IN
T_

TIM
ER1_

STO
P_IN

T_
CLR

0

1

IN
T_

TIM
ER0_

STO
P_IN

T_
CLR

0

0

Reset

INT_CAP2_INT_CLR Set this bit to clear interrupt triggered by capture on channel 2. (WO)

INT_CAP1_INT_CLR Set this bit to clear interrupt triggered by capture on channel 1. (WO)

INT_CAP0_INT_CLR Set this bit to clear interrupt triggered by capture on channel 0. (WO)

INT_FH2_OST_INT_CLR Set this bit to clear interrupt triggered by a one-shot mode action on PWM2.
(WO)

INT_FH1_OST_INT_CLR Set this bit to clear interrupt triggered by a one-shot mode action on PWM1.
(WO)

INT_FH0_OST_INT_CLR Set this bit to clear interrupt triggered by a one-shot mode action on PWM0.
(WO)

INT_FH2_CBC_INT_CLR Set this bit to clear interrupt triggered by a cycle-by-cycle mode action on
PWM2. (WO)

INT_FH1_CBC_INT_CLR Set this bit to clear interrupt triggered by a cycle-by-cycle mode action on
PWM1. (WO)

INT_FH0_CBC_INT_CLR Set this bit to clear interrupt triggered by a cycle-by-cycle mode action on
PWM0. (WO)

INT_OP2_TEB_INT_CLR Set this bit to clear interrupt triggered by a PWM operator 2 TEB event.
(WO)

INT_OP1_TEB_INT_CLR Set this bit to clear interrupt triggered by a PWM operator 1 TEB event.
(WO)

INT_OP0_TEB_INT_CLR Set this bit to clear interrupt triggered by a PWM operator 0 TEB event.
(WO)

INT_OP2_TEA_INT_CLR Set this bit to clear interrupt triggered by a PWM operator 2 TEA event.
(WO)

INT_OP1_TEA_INT_CLR Set this bit to clear interrupt triggered by a PWM operator 1 TEA event.
(WO)

INT_OP0_TEA_INT_CLR Set this bit to clear interrupt triggered by a PWM operator 0 TEA event.
(WO)

INT_FAULT2_CLR_INT_CLR Set this bit to clear interrupt triggered when event_f2 ends. (WO)

INT_FAULT1_CLR_INT_CLR Set this bit to clear interrupt triggered when event_f1 ends. (WO)

INT_FAULT0_CLR_INT_CLR Set this bit to clear interrupt triggered when event_f0 ends. (WO)

INT_FAULT2_INT_CLR Set this bit to clear interrupt triggered when event_f2 starts. (WO)

INT_FAULT1_INT_CLR Set this bit to clear interrupt triggered when event_f1 starts. (WO)

INT_FAULT0_INT_CLR Set this bit to clear interrupt triggered when event_f0 starts. (WO)

INT_TIMER2_TEP_INT_CLR Set this bit to clear interrupt triggered by a PWM timer 2 TEP event.
(WO)

Continued on the next page...

Espressif Systems 487
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

16 Motor Control PWM (PWM)

Register 16.72. INT_CLR_PWM_REG (0x011c)

Continued from the previous page...

INT_TIMER1_TEP_INT_CLR Set this bit to clear interrupt triggered by a PWM timer 1 TEP event.

(WO)

INT_TIMER0_TEP_INT_CLR Set this bit to clear interrupt triggered by a PWM timer 0 TEP event.

(WO)

INT_TIMER2_TEZ_INT_CLR Set this bit to clear interrupt triggered by a PWM timer 2 TEZ event.

(WO)

INT_TIMER1_TEZ_INT_CLR Set this bit to clear interrupt triggered by a PWM timer 1 TEZ event.

(WO)

INT_TIMER0_TEZ_INT_CLR Set this bit to clear interrupt triggered by a PWM timer 0 TEZ event.

(WO)

INT_TIMER2_STOP_INT_CLR Set this bit to clear interrupt triggered when the timer 2 stops. (WO)

INT_TIMER1_STOP_INT_CLR Set this bit to clear interrupt triggered when the timer 1 stops. (WO)

INT_TIMER0_STOP_INT_CLR Set this bit to clear interrupt triggered when the timer 0 stops. (WO)

Espressif Systems 488
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

17 Pulse Count Controller (PCNT)

17 Pulse Count Controller (PCNT)

17.1 Overview
The pulse counter module is designed to count the number of rising and/or falling edges of an input signal. Each

pulse counter unit has a 16-bit signed counter register and two channels that can be configured to either increment

or decrement the counter. Each channel has a signal input that accepts signal edges to be detected, as well as

a control input that can be used to enable or disable the signal input. The inputs have optional filters that can be

used to discard unwanted glitches in the signal.

The pulse counter has eight independent units, referred to as PULSE_CNT_Un.

The maximum frequency of pulses supported by ESP32’s pulse counter is 40 MHz.

17.2 Functional Description
17.2.1 Architecture

Figure 171. PULSE_CNT Architecture

The architecture of a pulse counter unit is illustrated in Figure 17-1. Each unit has two channels: ch0 and ch1,

which are functionally equivalent. Each channel has a signal input, as well as a control input, which can both be

connected to I/O pads. The counting behavior on both the positive and negative edge can be configured separately

to increase, decrease, or do nothing to the counter value. Separately, for both control signal levels, the hardware

can be configured to modify the edge action: invert it, disable it, or do nothing. The counter itself is a 16-bit signed

Espressif Systems 489
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

17 Pulse Count Controller (PCNT)

up/down counter. Its value can be read by software directly, but is also monitored by a set of comparators which

can trigger an interrupt.

17.2.2 Counter Channel Inputs
As stated before, the two inputs of a channel can affect the pulse counter in various ways. The specifics of this

behaviour are set by LCTRL_MODE and HCTRL_MODE in this case when the control signal is low or high, respec-

tively, and POS_MODE and NEG_MODE for positive and negative edges of the input signal. Setting POS_MODE

and NEG_MODE to 1 will increase the counter when an edge is detected, setting them to 2 will decrease the

counter and setting at any other value will neutralize the effect of the edge on the counter. LCTR_MODE and

HCTR_MODE modify this behaviour, when the control input has the corresponding low or high value: 0 does not

modify the NEG_MODE and POS_MODE behaviour, 1 inverts it (setting POS_MODE/NEG_MODE to increase the

counter should now decrease the counter and vice versa) and any other value disables counter effects for that

signal level.

To summarize, a few examples have been considered. In this table, the effect on the counter for a rising edge is

shown for both a low and a high control signal, as well as various other configuration options. For clarity, a short

description in brackets is added after the values. Note: x denotes ’do not care’.

POS_ MODE LCTRL_ MODE HCTRL_ MODE sig l→h when ctrl=0 sig l→h when ctrl=1

1 (inc) 0 (-) 0 (-) Inc ctr Inc ctr

2 (dec) 0 (-) 0 (-) Dec ctr Dec ctr

0 (-) x x No action No action

1 (inc) 0 (-) 1 (inv) Inc ctr Dec ctr

1 (inc) 1 (inv) 0 (-) Dec ctr Inc ctr

2 (dec) 0 (-) 1 (inv) Dec ctr Inc ctr

1 (inc) 0 (-) 2 (dis) Inc ctr No action

1 (inc) 2 (dis) 0 (-) No action Inc ctr

This table is also valid for negative edges (sig h→l) on substituting NEG_MODE for POS_MODE.

Each pulse counter unit also features a filter on each of the four inputs, adding the option to ignore short glitches

in the signals. If a PCNT_FILTER_EN_Un can be set to filter the four input signals of the unit. If this filter is enabled,

any pulses shorter than REG_FILTER_THRES_Un number of APB_CLK clock cycles will be filtered out and will

have no effect on the counter. With the filter disabled, in theory infinitely small glitches could possibly trigger pulse

counter action. However, in practice the signal inputs are sampled on APB_CLK edges and even with the filter

disabled, pulse widths lasting shorter than one APB_CLK cycle may be missed.

Apart from the input channels, software also has some control over the counter. In particular, the counter value

can be frozen to the current value by configuring PCNT_CNT_PAUSE_Un. It can also be reset to 0 by configuring

PCNT_PLUS_CNT_RST_Un.

17.2.3 Watchpoints
The pulse counters have five watchpoints that share one interrupt. Interrupt generation can be enabled or disabled

for each individual watchpoint. The watchpoints are:

• Maximum count value: Triggered when PULSE_CNT >= PCNT_CNT_H_LIM_Un. Additionally, this will reset

the counter to 0. PCNT_CNT_H_LIM_Un should be a positive number.

• Minimum count value: Triggered when PULSE_CNT <= PCNT_CNT_L_LIM_Un. Additionally, this will reset

Espressif Systems 490
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

17 Pulse Count Controller (PCNT)

the counter to 0. PCNT_CNT_L_LIM_Un should be a negative number.

• Two threshold values: Triggered when PULSE_CNT = PCNT_THR_THRES0_Un or PCNT_THR_THRES1_Un.

• Zero: Triggered when PULSE_CNT = 0.

17.2.4 Examples

Figure 172. PULSE_CNT Upcounting Diagram

Figure 17-2 shows channel 0 being used as an up-counter. The configuration of channel 0 is shown below.

• CNT_CH0_POS_MODE_Un = 1: increase counter on the rising edge of sig_ch0_un.

• PCNT_CH0_NEG_MODE_Un = 0: no counting on the falling edge of sig_ch0_un.

• PCNT_CH0_LCTRL_MODE_Un = 0: Do not modify counter mode when ctrl_ch0_un is low.

• PCNT_CH0_HCTRL_MODE_Un = 2: Do not allow counter increments/decrements when ctrl_ch0_un is high.

• PCNT_CNT_H_LIM_Un = 5: PULSE_CNT resets to 0 when the count value increases to 5.

Figure 173. PULSE_CNT Downcounting Diagram

Figure 17-3 shows channel 0 decrementing the counter. The configuration of channel 0 differs from that in Figure

17-2 in the following two aspects:

• PCNT_CH0_LCTRL_MODE_Un = 1: invert counter mode when ctrl_ch0_un is at low level, so it will decrease,

rather than increase, the counter.

• PCNT_CNT_H_LIM_Un = –5: PULSE_CNT resets to 0 when the count value decreases to –5.

17.2.5 Interrupts
PCNT_CNT_THR_EVENT_Un_INT: This interrupt gets triggered when one of the five channel comparators detects

a match.

Espressif Systems 491
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

17 Pulse Count Controller (PCNT)

17.3 Register Summary

Espressif Systems 492
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

17 Pulse Count Controller (PCNT)

Name Description Address Access

Configuration registers

PCNT_U0_CONF0_REG Configuration register 0 for unit 0 0x3FF57000 R/W

PCNT_U1_CONF0_REG Configuration register 0 for unit 1 0x3FF5700C R/W

PCNT_U2_CONF0_REG Configuration register 0 for unit 2 0x3FF57018 R/W

PCNT_U3_CONF0_REG Configuration register 0 for unit 3 0x3FF57024 R/W

PCNT_U4_CONF0_REG Configuration register 0 for unit 4 0x3FF57030 R/W

PCNT_U5_CONF0_REG Configuration register 0 for unit 5 0x3FF5703C R/W

PCNT_U6_CONF0_REG Configuration register 0 for unit 6 0x3FF57048 R/W

PCNT_U7_CONF0_REG Configuration register 0 for unit 7 0x3FF57054 R/W

PCNT_U0_CONF1_REG Configuration register 1 for unit 0 0x3FF57004 R/W

PCNT_U1_CONF1_REG Configuration register 1 for unit 1 0x3FF57010 R/W

PCNT_U2_CONF1_REG Configuration register 1 for unit 2 0x3FF5701C R/W

PCNT_U3_CONF1_REG Configuration register 1 for unit 3 0x3FF57028 R/W

PCNT_U4_CONF1_REG Configuration register 1 for unit 4 0x3FF57034 R/W

PCNT_U5_CONF1_REG Configuration register 1 for unit 5 0x3FF57040 R/W

PCNT_U6_CONF1_REG Configuration register 1 for unit 6 0x3FF5704C R/W

PCNT_U7_CONF1_REG Configuration register 1 for unit 7 0x3FF57058 R/W

PCNT_U0_CONF2_REG Configuration register 2 for unit 0 0x3FF57008 R/W

PCNT_U1_CONF2_REG Configuration register 2 for unit 1 0x3FF57014 R/W

PCNT_U2_CONF2_REG Configuration register 2 for unit 2 0x3FF57020 R/W

PCNT_U3_CONF2_REG Configuration register 2 for unit 3 0x3FF5702C R/W

PCNT_U4_CONF2_REG Configuration register 2 for unit 4 0x3FF57038 R/W

PCNT_U5_CONF2_REG Configuration register 2 for unit 5 0x3FF57044 R/W

PCNT_U6_CONF2_REG Configuration register 2 for unit 6 0x3FF57050 R/W

PCNT_U7_CONF2_REG Configuration register 2 for unit 7 0x3FF5705C R/W

Counter values

PCNT_U0_CNT_REG Counter value for unit 0 0x3FF57060 RO

PCNT_U1_CNT_REG Counter value for unit 1 0x3FF57064 RO

PCNT_U2_CNT_REG Counter value for unit 2 0x3FF57068 RO

PCNT_U3_CNT_REG Counter value for unit 3 0x3FF5706C RO

PCNT_U4_CNT_REG Counter value for unit 4 0x3FF57070 RO

PCNT_U5_CNT_REG Counter value for unit 5 0x3FF57074 RO

PCNT_U6_CNT_REG Counter value for unit 6 0x3FF57078 RO

PCNT_U7_CNT_REG Counter value for unit 7 0x3FF5707C RO

Control registers

PCNT_CTRL_REG Control register for all counters 0x3FF570B0 R/W

Interrupt registers

PCNT_INT_RAW_REG Raw interrupt status 0x3FF57080 RO

PCNT_INT_ST_REG Masked interrupt status 0x3FF57084 RO

PCNT_INT_ENA_REG Interrupt enable bits 0x3FF57088 R/W

PCNT_INT_CLR_REG Interrupt clear bits 0x3FF5708C WO

Status registers

PCNT_Un_STATUS_REG Indicate the status of counter 0x3FF57090 RO

Espressif Systems 493
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

17 Pulse Count Controller (PCNT)

17.4 Registers
The addresses in parenthesis besides register names are the register addresses relative to the PCNT base ad-

dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 17.3 Register Summary.

Espressif Systems 494
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

17 Pulse Count Controller (PCNT)

Register 17.1. PCNT_Un_CONF0_REG (n: 07) (0x0+0x0C*n)

PCNT_
CH1_

LC
TR

L_
M

ODE_U
n

0

31 30

PCNT_
CH1_

HCTR
L_

M
ODE_U

n

0

29 28

PCNT_
CH1_

POS_M
ODE_U

n

0

27 26

PCNT_
CH1_

NEG_M
ODE_U

n

0

25 24

PCNT_
CH0_

LC
TR

L_
M

ODE_U
n

0

23 22

PCNT_
CH0_

HCTR
L_

M
ODE_U

n

0

21 20

PCNT_
CH0_

POS_M
ODE_U

n

0

19 18

PCNT_
CH0_

NEG_M
ODE_U

n

0

17 16

PCNT_
TH

R_T
HRES1_

EN_U
n

0

15

PCNT_
TH

R_T
HRES0_

EN_U
n

0

14

PCNT_
TH

R_L
_L

IM
_E

N_U
n

1

13

PCNT_
TH

R_H
_L

IM
_E

N_U
n

1

12

PCNT_
TH

R_Z
ERO_E

N_U
n

1

11

PCNT_
FIL

TE
R_E

N_U
n

1

10

PCNT_
FIL

TE
R_T

HRES_U
n

0x010

9 0

Reset

PCNT_CH1_LCTRL_MODE_Un This register configures how the

CH1_POS_MODE/CH1_NEG_MODE settings will be modified when the control signal is

low. (R/W) 0: No modification; 1: Invert behaviour (increase -> decrease, decrease -> increase);

2, 3: Inhibit counter modification

PCNT_CH1_HCTRL_MODE_Un This register configures how the

CH1_POS_MODE/CH1_NEG_MODE settings will be modified when the control signal is

high. (R/W) 0: No modification; 1: Invert behaviour (increase -> decrease, decrease -> increase);

2, 3: Inhibit counter modification

PCNT_CH1_POS_MODE_Un This register sets the behaviour when the signal input of channel 1

detects a positive edge. (R/W) 1: Increment the counter; 2: Decrement the counter; 0, 3: No

effect on counter

PCNT_CH1_NEG_MODE_Un This register sets the behaviour when the signal input of channel 1

detects a negative edge. (R/W) 1: Increment the counter; 2: Decrement the counter; 0, 3: No

effect on counter

PCNT_CH0_LCTRL_MODE_Un This register configures how the

CH0_POS_MODE/CH0_NEG_MODE settings will be modified when the control signal is

low. (R/W) 0: No modification; 1: Invert behaviour (increase -> decrease, decrease -> increase);

2, 3: Inhibit counter modification

PCNT_CH0_HCTRL_MODE_Un This register configures how the

CH0_POS_MODE/CH0_NEG_MODE settings will be modified when the control signal is

high. (R/W) 0: No modification; 1: Invert behaviour (increase -> decrease, decrease -> increase);

2, 3: Inhibit counter modification

PCNT_CH0_POS_MODE_Un This register sets the behaviour when the signal input of channel 0

detects a positive edge. (R/W) 1: Increase the counter; 2: Decrease the counter; 0, 3: No effect

on counter

PCNT_CH0_NEG_MODE_Un This register sets the behaviour when the signal input of channel 0

detects a negative edge. (R/W) 1: Increase the counter; 2: Decrease the counter; 0, 3: No effect

on counter

PCNT_THR_THRES1_EN_Un This is the enable bit for unit n’s thres1 comparator. (R/W)

Continued on the next page...

Espressif Systems 495
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

17 Pulse Count Controller (PCNT)

Register 17.1. PCNT_Un_CONF0_REG (n: 07) (0x0+0x0C*n)

Continued from the previous page...

PCNT_THR_THRES0_EN_Un This is the enable bit for unit n’s thres0 comparator. (R/W)

PCNT_THR_L_LIM_EN_Un This is the enable bit for unit n’s thr_l_lim comparator. (R/W)

PCNT_THR_H_LIM_EN_Un This is the enable bit for unit n’s thr_h_lim comparator. (R/W)

PCNT_THR_ZERO_EN_Un This is the enable bit for unit n’s zero comparator. (R/W)

PCNT_FILTER_EN_Un This is the enable bit for unit n’s input filter. (R/W)

PCNT_FILTER_THRES_Un This sets the maximum threshold, in APB_CLK cycles, for the filter. Any

pulses lasting shorter than this will be ignored when the filter is enabled. (R/W)

Register 17.2. PCNT_Un_CONF1_REG (n: 07) (0x4+0x0C*n)

PCNT_
CNT_

TH
RES1_

Un

0x000

31 16

PCNT_
CNT_

TH
RES0_

Un

0x000

15 0

Reset

PCNT_CNT_THRES1_Un This register is used to configure the thres1 value for unit n. (R/W)

PCNT_CNT_THRES0_Un This register is used to configure the thres0 value for unit n. (R/W)

Register 17.3. PCNT_Un_CONF2_REG (n: 07) (0x8+0x0C*n)

PCNT_
CNT_

L_
LIM

_U
n

0x000

31 16

PCNT_
CNT_

H_L
IM

_U
n

0x000

15 0

Reset

PCNT_CNT_L_LIM_Un This register is used to configure the thr_l_lim value for unit n. (R/W)

PCNT_CNT_H_LIM_Un This register is used to configure the thr_h_lim value for unit n. (R/W)

Espressif Systems 496
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

17 Pulse Count Controller (PCNT)

Register 17.4. PCNT_Un_CNT_REG (n: 07) (0x28+0x0C*n)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

PCNT_
PLU

S_C
NT_

Un

0x00000

15 0

Reset

PCNT_PLUS_CNT_Un This register stores the current pulse count value for unit n. (RO)

Register 17.5. PCNT_INT_RAW_REG (0x0080)

(re
se

rve
d)

0x0000000

31 8

PCNT_
CNT_

TH
R_E

VENT_
U7_

IN
T_

RAW

0

7

PCNT_
CNT_

TH
R_E

VENT_
U6_

IN
T_

RAW

0

6

PCNT_
CNT_

TH
R_E

VENT_
U5_

IN
T_

RAW

0

5

PCNT_
CNT_

TH
R_E

VENT_
U4_

IN
T_

RAW

0

4

PCNT_
CNT_

TH
R_E

VENT_
U3_

IN
T_

RAW

0

3

PCNT_
CNT_

TH
R_E

VENT_
U2_

IN
T_

RAW

0

2

PCNT_
CNT_

TH
R_E

VENT_
U1_

IN
T_

RAW

0

1

PCNT_
CNT_

TH
R_E

VENT_
U0_

IN
T_

RAW

0

0

Reset

PCNT_CNT_THR_EVENT_Un_INT_RAW The raw interrupt status bit for the

PCNT_CNT_THR_EVENT_Un_INT interrupt. (RO)

Register 17.6. PCNT_INT_ST_REG (0x0084)

(re
se

rve
d)

0x0000000

31 8

PCNT_
CNT_

TH
R_E

VENT_
U7_

IN
T_

ST

0

7

PCNT_
CNT_

TH
R_E

VENT_
U6_

IN
T_

ST

0

6

PCNT_
CNT_

TH
R_E

VENT_
U5_

IN
T_

ST

0

5

PCNT_
CNT_

TH
R_E

VENT_
U4_

IN
T_

ST

0

4

PCNT_
CNT_

TH
R_E

VENT_
U3_

IN
T_

ST

0

3

PCNT_
CNT_

TH
R_E

VENT_
U2_

IN
T_

ST

0

2

PCNT_
CNT_

TH
R_E

VENT_
U1_

IN
T_

ST

0

1

PCNT_
CNT_

TH
R_E

VENT_
U0_

IN
T_

ST

0

0

Reset

PCNT_CNT_THR_EVENT_Un_INT_ST The masked interrupt status bit for the

PCNT_CNT_THR_EVENT_Un_INT interrupt. (RO)

Espressif Systems 497
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

17 Pulse Count Controller (PCNT)

Register 17.7. PCNT_INT_ENA_REG (0x0088)

(re
se

rve
d)

0x0000000

31 8

PCNT_
CNT_

TH
R_E

VENT_
U7_

IN
T_

ENA

0

7

PCNT_
CNT_

TH
R_E

VENT_
U6_

IN
T_

ENA

0

6

PCNT_
CNT_

TH
R_E

VENT_
U5_

IN
T_

ENA

0

5

PCNT_
CNT_

TH
R_E

VENT_
U4_

IN
T_

ENA

0

4

PCNT_
CNT_

TH
R_E

VENT_
U3_

IN
T_

ENA

0

3

PCNT_
CNT_

TH
R_E

VENT_
U2_

IN
T_

ENA

0

2

PCNT_
CNT_

TH
R_E

VENT_
U1_

IN
T_

ENA

0

1

PCNT_
CNT_

TH
R_E

VENT_
U0_

IN
T_

ENA

0

0

Reset

PCNT_CNT_THR_EVENT_Un_INT_ENA The interrupt enable bit for the

PCNT_CNT_THR_EVENT_Un_INT interrupt. (R/W)

Register 17.8. PCNT_INT_CLR_REG (0x008c)

(re
se

rve
d)

0x0000000

31 8

PCNT_
CNT_

TH
R_E

VENT_
U7_

IN
T_

CLR

0

7

PCNT_
CNT_

TH
R_E

VENT_
U6_

IN
T_

CLR

0

6

PCNT_
CNT_

TH
R_E

VENT_
U5_

IN
T_

CLR

0

5

PCNT_
CNT_

TH
R_E

VENT_
U4_

IN
T_

CLR

0

4

PCNT_
CNT_

TH
R_E

VENT_
U3_

IN
T_

CLR

0

3

PCNT_
CNT_

TH
R_E

VENT_
U2_

IN
T_

CLR

0

2

PCNT_
CNT_

TH
R_E

VENT_
U1_

IN
T_

CLR

0

1

PCNT_
CNT_

TH
R_E

VENT_
U0_

IN
T_

CLR

0

0

Reset

PCNT_CNT_THR_EVENT_Un_INT_CLR Set this bit to clear the PCNT_CNT_THR_EVENT_Un_INT

interrupt. (WO)

Register 17.9. PCNT_CTRL_REG (0x00b0)

(re
se

rve
d)

0x0000

31 17

(re
se

rve
d)

0

16

PCNT_
CNT_

PA
USE_U

7

0

15

PCNT_
PLU

S_C
NT_

RST_
U7

1

14

PCNT_
CNT_

PA
USE_U

6

0

13

PCNT_
PLU

S_C
NT_

RST_
U6

1

12

PCNT_
CNT_

PA
USE_U

5

0

11

PCNT_
PLU

S_C
NT_

RST_
U5

1

10

PCNT_
CNT_

PA
USE_U

4

0

9

PCNT_
PLU

S_C
NT_

RST_
U4

1

8

PCNT_
CNT_

PA
USE_U

3

0

7

PCNT_
PLU

S_C
NT_

RST_
U3

1

6

PCNT_
CNT_

PA
USE_U

2

0

5

PCNT_
PLU

S_C
NT_

RST_
U2

1

4

PCNT_
CNT_

PA
USE_U

1

0

3

PCNT_
PLU

S_C
NT_

RST_
U1

1

2

PCNT_
CNT_

PA
USE_U

0

0

1

PCNT_
PLU

S_C
NT_

RST_
U0

1

0

Reset

PCNT_CNT_PAUSE_Un Set this bit to freeze unit n’s counter. (R/W)

PCNT_PLUS_CNT_RST_Un Set this bit to clear unit n’s counter. (R/W)

Espressif Systems 498
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

17 Pulse Count Controller (PCNT)

Register 17.10. PCNT_Un_STATUS_REG (n: 07) (0x90+0x0C*n)

(re
se

rve
d)

0 0

31 7

PCNT_
TH

R_Z
ERO_L

AT
_U
n

0

6

PCNT_
TH

R_H
_L

IM
_L

AT
_U
n

0

5

PCNT_
TH

R_L
_L

IM
_L

AT
_U
n

0

4

PCNT_
TH

R_T
HRES0_

LA
T_

Un

0

3

PCNT_
TH

R_T
HRES1_

LA
T_

Un

0

2

PCNT_
TH

R_Z
ERO_M

ODE_U
n

00

1 0

Reset

PCNT_THR_ZERO_LAT_Un The last interrupt happened on counter for unit n reaching 0. (RO)

PCNT_THR_H_LIM_LAT_Un The last interrupt happened on counter for unit n reaching thr_h_lim.

(RO)

PCNT_THR_L_LIM_LAT_Un The last interrupt happened on counter for unit n reaching thr_l_lim. (RO)

PCNT_THR_THRES0_LAT_Un The last interrupt happened on counter for unit n reaching thres0.

(RO)

PCNT_THR_THRES1_LAT_Un The last interrupt happened on counter for unit n reaching thres1.

(RO)

PCNT_THR_ZERO_MODE_Un This register stores the current status of the counter. 0: counting

value is +0 (the counter values are represented by signed binary numbers); 1: counting value is -0;

2: counting value is negative; 3: counting value is positive. (RO)

Espressif Systems 499
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

18 Timer Group (TIMG)

18 Timer Group (TIMG)

18.1 Introduction
There are four general-purpose timers embedded in the ESP32. They are all 64-bit generic timers based on 16-bit

prescalers and 64-bit auto-reload-capable up/downcounters.

The ESP32 contains two timer modules, each containing two timers. The two timers in a block are indicated by

an x in TIMGn_Tx; the blocks themselves are indicated by an n.

The timers feature:

• A 16-bit clock prescaler, from 2 to 65536

• A 64-bit time-base counter

• Configurable up/down time-base counter: incrementing or decrementing

• Halt and resume of time-base counter

• Auto-reload at alarm

• Software-controlled instant reload

• Level and edge interrupt generation

18.2 Functional Description
18.2.1 16bit Prescaler
Each timer uses the APB clock (APB_CLK, normally 80 MHz) as the basic clock. This clock is then divided down

by a 16-bit precaler which generates the time-base counter clock (TB_clk). Every cycle of TB_clk causes the time-

base counter to increment or decrement by one. The timer must be disabled (TIMGn_Tx_EN is cleared) before

changing the prescaler divisor which is configured by TIMGn_Tx_DIVIDER register; changing it on an enabled timer

can lead to unpredictable results. The prescaler can divide the APB clock by a factor from 2 to 65536. Specifically,

when TIMGn_Tx_DIVIDER is either 1 or 2, the clock divisor is 2; when TIMGn_Tx_DIVIDER is 0, the clock divisor is

65536. Any other value will cause the clock to be divided by exactly that value.

18.2.2 64bit Timebase Counter
The 64-bit time-base counter can be configured to count either up or down, depending on whether TIMGn_Tx_

INCREASE is set or cleared, respectively. It supports both auto-reload and software instant reload. An alarm event

can be set when the counter reaches a value specified by the software.

Counting can be enabled and disabled by setting and clearing TIMGn_Tx_EN. Clearing this bit essentially freezes

the counter, causing it to neither count up nor count down; instead, it retains its value until TIMGn_Tx_EN is set

again. Reloading the counter when TIMGn_Tx_EN is cleared will change its value, but counting will not be resumed

until TIMGn_Tx_EN is set.

Software can set a new counter value by setting registers TIMGn_Tx_LOAD_LO and TIMGn_Tx_LOAD_HI to the in-

tended new value. The hardware will ignore these register settings until a reload; a reload will cause the contents of

these registers to be copied to the counter itself. A reload event can be triggered by an alarm (auto-reload at alarm)

or by software (software instant reload). To enable auto-reload at alarm, the register TIMGn_Tx_AUTORELOAD

should be set. If auto-reload at alarm is not enabled, the time-base counter will continue incrementing or decre-

menting after the alarm. To trigger a software instant reload, any value can be written to the register TIMGn_Tx_

Espressif Systems 500
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

18 Timer Group (TIMG)

LOAD_REG; this will cause the counter value to change instantly. Software can also change the direction of the

time-base counter instantly by changing the value of TIMGn_Tx_INCREASE.

The time-base counter can also be read by software, but because the counter is 64-bit, the CPU can only get the

value as two 32-bit values, the counter value needs to be latched onto TIMGn_TxLO_REG and TIMGn_TxHI_REG

first. This is done by writing any value to TIMGn_TxUPDATE_REG; this will instantly latch the 64-bit timer value onto

the two registers. Software can then read them at any point in time. This approach stops the timer value being

read erroneously when a carry-over happens between reading the low and high word of the timer value.

18.2.3 Alarm Generation
The timer can trigger an alarm, which can cause a reload and/or an interrupt to occur. The alarm is triggered when

the alarm registers TIMGn_Tx_ALARMLO_REG and TIMGn_Tx_ALARMHI_REG match the current timer value. In

order to simplify the scenario where these registers are set ’too late’ and the counter has already passed these

values, the alarm also triggers when the current timer value is higher (for an up-counting timer) or lower (for a

down-counting timer) than the current alarm value: if this is the case, the alarm will be triggered immediately upon

loading the alarm registers. The timer alarm enable bit is automatically cleared once an alarm occurs.

18.2.4 MWDT
Each timer module also contains a Main System Watchdog Timer and its associated registers. While these registers

are described here, their functional description can be found in the chapter entitled Watchdog Timer.

18.2.5 Interrupts
• TIMGn_Tx_INT_WDT_INT: Generated when a watchdog timer interrupt stage times out.

• TIMGn_Tx_INT_T1_INT: An alarm event on timer 1 generates this interrupt.

• TIMGn_Tx_INT_T0_INT: An alarm event on timer 0 generates this interrupt.

18.3 Register Summary

Name Description TIMG0 TIMG1 Acc

Timer 0 configuration and control registers

TIMGn_T0CONFIG_REG Timer 0 configuration register 0x3FF5F000 0x3FF60000 R/W

TIMGn_T0LO_REG Timer 0 current value, low 32 bits 0x3FF5F004 0x3FF60004 RO

TIMGn_T0HI_REG Timer 0 current value, high 32 bits 0x3FF5F008 0x3FF60008 RO

TIMGn_T0UPDATE_REG
Write to copy current timer value to

TIMGn_T0_(LO/HI)_REG
0x3FF5F00C 0x3FF6000C WO

TIMGn_T0ALARMLO_REG Timer 0 alarm value, low 32 bits 0x3FF5F010 0x3FF60010 R/W

TIMGn_T0ALARMHI_REG Timer 0 alarm value, high bits 0x3FF5F014 0x3FF60014 R/W

TIMGn_T0LOADLO_REG Timer 0 reload value, low 32 bits 0x3FF5F018 0x3FF60018 R/W

TIMGn_T0LOADHI_REG Timer 0 reload value, high 32 bits 0x3FF5F01C 0x3FF6001C R/W

TIMGn_T0LOAD_REG
Write to reload timer from

TIMGn_T0_(LOADLOLOADHI)_REG
0x3FF5F020 0x3FF60020 WO

Timer 1 configuration and control registers

TIMGn_T1CONFIG_REG Timer 1 configuration register 0x3FF5F024 0x3FF60024 R/W

TIMGn_T1LO_REG Timer 1 current value, low 32 bits 0x3FF5F028 0x3FF60028 RO

TIMGn_T1HI_REG Timer 1 current value, high 32 bits 0x3FF5F02C 0x3FF6002C RO

Espressif Systems 501
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

18 Timer Group (TIMG)

Name Description TIMG0 TIMG1 Acc

TIMGn_T1UPDATE_REG
Write to copy current timer value to

TIMGn_T1_(LO/HI)_REG
0x3FF5F030 0x3FF60030 WO

TIMGn_T1ALARMLO_REG Timer 1 alarm value, low 32 bits 0x3FF5F034 0x3FF60034 R/W

TIMGn_T1ALARMHI_REG Timer 1 alarm value, high 32 bits 0x3FF5F038 0x3FF60038 R/W

TIMGn_T1LOADLO_REG Timer 1 reload value, low 32 bits 0x3FF5F03C 0x3FF6003C R/W

TIMGn_T1LOADHI_REG Timer 1 reload value, high 32 bits 0x3FF5F040 0x3FF60040 R/W

TIMGn_T1LOAD_REG
Write to reload timer from

TIMGn_T1_(LOADLOLOADHI)_REG
0x3FF5F044 0x3FF60044 WO

System watchdog timer configuration and control registers

TIMGn_Tx_WDTCONFIG0_REG Watchdog timer configuration register 0x3FF5F048 0x3FF60048 R/W

TIMGn_Tx_WDTCONFIG1_REG Watchdog timer prescaler register 0x3FF5F04C 0x3FF6004C R/W

TIMGn_Tx_WDTCONFIG2_REG Watchdog timer stage 0 timeout value 0x3FF5F050 0x3FF60050 R/W

TIMGn_Tx_WDTCONFIG3_REG Watchdog timer stage 1 timeout value 0x3FF5F054 0x3FF60054 R/W

TIMGn_Tx_WDTCONFIG4_REG Watchdog timer stage 2 timeout value 0x3FF5F058 0x3FF60058 R/W

TIMGn_Tx_WDTCONFIG5_REG Watchdog timer stage 3 timeout value 0x3FF5F05C 0x3FF6005C R/W

TIMGn_Tx_WDTFEED_REG Write to feed the watchdog timer 0x3FF5F060 0x3FF60060 WO

TIMGn_Tx_WDTWPROTECT_REG Watchdog write protect register 0x3FF5F064 0x3FF60064 R/W

Configuration and Control Register for RTC CALI

TIMGn_RTCCALICFG_REG RTC calibration configuration register 0x3FF5F068 0x3FF60068 varies

TIMGn_RTCCALICFG1_REG RTC calibration configuration register

1

0x3FF5F06C 0x3FF6006C RO

Interrupt registers

TIMGn_Tx_INT_ENA_REG Interrupt enable bits 0x3FF5F098 0x3FF60098 R/W

TIMGn_Tx_INT_RAW_REG Raw interrupt status 0x3FF5F09C 0x3FF6009C RO

TIMGn_Tx_INT_ST_REG Masked interrupt status 0x3FF5F0A0 0x3FF600A0 RO

TIMGn_Tx_INT_CLR_REG Interrupt clear bits 0x3FF5F0A4 0x3FF600A4 WO

Espressif Systems 502
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

18 Timer Group (TIMG)

18.4 Registers
The addresses in parenthesis besides register names are the register addresses relative to the TIMG base ad-

dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 18.3 Register Summary.

Register 18.1. TIMGn_TxCONFIG_REG (x: 01) (0x0+0x24*x)

TIM
Gn

_T
x_

EN

0

31

TIM
Gn

_T
x_

IN
CREASE

1

30

TIM
Gn

_T
x_

AUTO
RELO

AD

1

29

TIM
Gn

_T
x_

DIVID
ER

0x00001

28 13

TIM
Gn

_T
x_

EDGE_IN
T_

EN

0

12

TIM
Gn

_T
x_

LE
VEL_

IN
T_

EN

0

11

TIM
Gn

_T
x_

ALA
RM

_E
N

0

10

Reset

TIMGn_Tx_EN When set, the timer x time-base counter is enabled. (R/W)

TIMGn_Tx_INCREASE When set, the timer x time-base counter will increment every clock tick. When

cleared, the timer x time-base counter will decrement. (R/W)

TIMGn_Tx_AUTORELOAD When set, timer x auto-reload at alarm is enabled. (R/W)

TIMGn_Tx_DIVIDER Timer x clock (Tx_clk) prescale value. (R/W)

TIMGn_Tx_EDGE_INT_EN When set, an alarm will generate an edge type interrupt. (R/W)

TIMGn_Tx_LEVEL_INT_EN When set, an alarm will generate a level type interrupt. (R/W)

TIMGn_Tx_ALARM_EN When set, the alarm is enabled. This bit is automatically cleared once an

alarm occurs. (R/W)

Register 18.2. TIMGn_TxLO_REG (x: 01) (0x4+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxLO_REG After writing to TIMGn_TxUPDATE_REG, the low 32 bits of the time-base counter

of timer x can be read here. (RO)

Register 18.3. TIMGn_TxHI_REG (x: 01) (0x8+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxHI_REG After writing to TIMGn_TxUPDATE_REG, the high 32 bits of the time-base counter

of timer x can be read here. (RO)

Espressif Systems 503
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

18 Timer Group (TIMG)

Register 18.4. TIMGn_TxUPDATE_REG (x: 01) (0xC+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxUPDATE_REG Write any value to trigger a timer x time-base counter value update (timer x

current value will be stored in registers above). (WO)

Register 18.5. TIMGn_TxALARMLO_REG (x: 01) (0x10+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxALARMLO_REG Timer x alarm trigger time-base counter value, low 32 bits. (R/W)

Register 18.6. TIMGn_TxALARMHI_REG (x: 01) (0x14+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxALARMHI_REG Timer x alarm trigger time-base counter value, high 32 bits. (R/W)

Register 18.7. TIMGn_TxLOADLO_REG (x: 01) (0x18+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxLOADLO_REG Low 32 bits of the value that a reload will load onto timer x time-base

counter. (R/W)

Register 18.8. TIMGn_TxLOADHI_REG (x: 01) (0x1C+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxLOADHI_REG High 32 bits of the value that a reload will load onto timer x time-base

counter. (R/W)

Espressif Systems 504
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

18 Timer Group (TIMG)

Register 18.9. TIMGn_TxLOAD_REG (x: 01) (0x20+0x24*x)

0x000000000

31 0

Reset

TIMGn_TxLOAD_REG Write any value to trigger a timer x time-base counter reload. (WO)

Register 18.10. TIMGn_Tx_WDTCONFIG0_REG (0x0048)

TIM
Gn

_T
x_

W
DT_

EN

0

31

TIM
Gn

_T
x_

W
DT_

STG
0

0

30 29

TIM
Gn

_T
x_

W
DT_

STG
1

0

28 27

TIM
Gn

_T
x_

W
DT_

STG
2

0

26 25

TIM
Gn

_T
x_

W
DT_

STG
3

0

24 23

TIM
Gn

_T
x_

W
DT_

EDGE_IN
T_

EN

0

22

TIM
Gn

_T
x_

W
DT_

LE
VEL_

IN
T_

EN

0

21

TIM
Gn

_T
x_

W
DT_

CPU_R
ESET_

LE
NGTH

0x1

20 18

TIM
Gn

_T
x_

W
DT_

SYS_R
ESET_

LE
NGTH

0x1

17 15

TIM
Gn

_T
x_

W
DT_

FL
ASHBOOT_

M
OD_E

N

1

14

Reset

TIMGn_Tx_WDT_EN When set, MWDT is enabled. (R/W)

TIMGn_Tx_WDT_STG0 Stage 0 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system.

(R/W)

TIMGn_Tx_WDT_STG1 Stage 1 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system.

(R/W)

TIMGn_Tx_WDT_STG2 Stage 2 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system.

(R/W)

TIMGn_Tx_WDT_STG3 Stage 3 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system.

(R/W)

TIMGn_Tx_WDT_EDGE_INT_EN When set, an edge type interrupt will occur at the timeout of a stage

configured to generate an interrupt. (R/W)

TIMGn_Tx_WDT_LEVEL_INT_EN When set, a level type interrupt will occur at the timeout of a stage

configured to generate an interrupt. (R/W)

TIMGn_Tx_WDT_CPU_RESET_LENGTH CPU reset signal length selection. 0: 100 ns, 1: 200 ns,

2: 300 ns, 3: 400 ns, 4: 500 ns, 5: 800 ns, 6: 1.6 µs, 7: 3.2 µs. (R/W)

TIMGn_Tx_WDT_SYS_RESET_LENGTH System reset signal length selection. 0: 100 ns, 1: 200 ns,

2: 300 ns, 3: 400 ns, 4: 500 ns, 5: 800 ns, 6: 1.6 µs, 7: 3.2 µs. (R/W)

TIMGn_Tx_WDT_FLASHBOOT_MOD_EN When set, Flash boot protection is enabled. (R/W)

Espressif Systems 505
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

18 Timer Group (TIMG)

Register 18.11. TIMGn_Tx_WDTCONFIG1_REG (0x004c)

TIM
Gn

_T
x_

W
DT_

CLK
_P

RESCALE

0x00001

31 16

Reset

TIMGn_Tx_WDT_CLK_PRESCALE MWDT clock prescale value. MWDT clock period = 12.5 ns *

TIMGn_Tx_WDT_CLK_PRESCALE. (R/W)

Register 18.12. TIMGn_Tx_WDTCONFIG2_REG (0x0050)

26000000

31 0

Reset

TIMGn_Tx_WDTCONFIG2_REG Stage 0 timeout value, in MWDT clock cycles. (R/W)

Register 18.13. TIMGn_Tx_WDTCONFIG3_REG (0x0054)

0x007FFFFFF

31 0

Reset

TIMGn_Tx_WDTCONFIG3_REG Stage 1 timeout value, in MWDT clock cycles. (R/W)

Register 18.14. TIMGn_Tx_WDTCONFIG4_REG (0x0058)

0x0000FFFFF

31 0

Reset

TIMGn_Tx_WDTCONFIG4_REG Stage 2 timeout value, in MWDT clock cycles. (R/W)

Register 18.15. TIMGn_Tx_WDTCONFIG5_REG (0x005c)

0x0000FFFFF

31 0

Reset

TIMGn_Tx_WDTCONFIG5_REG Stage 3 timeout value, in MWDT clock cycles. (R/W)

Espressif Systems 506
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

18 Timer Group (TIMG)

Register 18.16. TIMGn_Tx_WDTFEED_REG (0x0060)

0x000000000

31 0

Reset

TIMGn_Tx_WDTFEED_REG Write any value to feed the MWDT. (WO)

Register 18.17. TIMGn_Tx_WDTWPROTECT_REG (0x0064)

0x050D83AA1

31 0

Reset

TIMGn_Tx_WDTWPROTECT_REG If the register contains a different value than its reset value, write

protection is enabled. (R/W)

Register 18.18. TIMGn_RTCCALICFG_REG (0x0068)

TIM
Gn

_R
TC

_C
ALI_

STA
RT

0

31

TIM
Gn

_R
TC

_C
ALI_

M
AX

0x01

30 16

TIM
Gn

_R
TC

_C
ALI_

RDY

0

15

TIM
Gn

_R
TC

_C
ALI_

CLK
_S

EL

0x1

14 13

TIM
Gn

_R
TC

_C
ALI_

STA
RT_

CYCLIN
G

1

12

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

11 0

Reset

TIMGn_RTC_CALI_START_CYCLING Reserved. (R/W)

TIMGn_RTC_CALI_CLK_SEL Used to select the clock to be calibrated. 0: RC_SLOW_CLK. 1:

RC_FAST_DIV_CLK. 2: XTAL32K_CLK. (R/W)

TIMGn_RTC_CALI_RDY Set this bit to mark the completion of calibration. (RO)

TIMGn_RTC_CALI_MAX Calibration time, in cycles of the clock to be calibrated. (R/W)

TIMGn_RTC_CALI_START Set this bit to starts calibration. (R/W)

Espressif Systems 507
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

18 Timer Group (TIMG)

Register 18.19. TIMGn_RTCCALICFG1_REG (0x006C)

TIM
Gn

_R
TC

_C
ALI_

VA
LU

E

0x00000

31 7

(re
se

rve
d)

0 0 0 0 0 0

5 0

Reset

TIMGn_RTC_CALI_VALUE Calibration value when cycles of clock to be calibrated reach

TIMGn_RTC_CALI_MAX, in unit of XTAL_CLK clock cycles. (RO)

Register 18.20. TIMGn_Tx_INT_ENA_REG (0x0098)

(re
se

rve
d)

0 0

31 3

TIM
Gn

_T
x_

IN
T_

W
DT_

IN
T_

ENA

0

2

TIM
Gn

_T
x_

IN
T_

T1
_IN

T_
ENA

0

1

TIM
Gn

_T
x_

IN
T_

T0
_IN

T_
ENA

0

0

Reset

TIMGn_Tx_INT_WDT_INT_ENA The interrupt enable bit for the TIMGn_Tx_INT_WDT_INT interrupt.

(R/W) (R/W)

TIMGn_Tx_INT_T1_INT_ENA The interrupt enable bit for the TIMGn_Tx_INT_T1_INT interrupt. (R/W)

(R/W)

TIMGn_Tx_INT_T0_INT_ENA The interrupt enable bit for the TIMGn_Tx_INT_T0_INT interrupt. (R/W)

(R/W)

Espressif Systems 508
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

18 Timer Group (TIMG)

Register 18.21. TIMGn_Tx_INT_RAW_REG (0x009c)

(re
se

rve
d)

0 0

31 3

TIM
Gn

_T
x_

IN
T_

W
DT_

IN
T_

RAW

0

2

TIM
Gn

_T
x_

IN
T_

T1
_IN

T_
RAW

0

1

TIM
Gn

_T
x_

IN
T_

T0
_IN

T_
RAW

0

0

Reset

TIMGn_Tx_INT_WDT_INT_RAW The raw interrupt status bit for the TIMGn_Tx_INT_WDT_INT inter-

rupt. (RO)

TIMGn_Tx_INT_T1_INT_RAW The raw interrupt status bit for the TIMGn_Tx_INT_T1_INT interrupt.

(RO)

TIMGn_Tx_INT_T0_INT_RAW The raw interrupt status bit for the TIMGn_Tx_INT_T0_INT interrupt.

(RO)

Register 18.22. TIMGn_Tx_INT_ST_REG (0x00a0)

(re
se

rve
d)

0 0

31 3

TIM
Gn

_T
x_

IN
T_

W
DT_

IN
T_

ST

0

2

TIM
Gn

_T
x_

IN
T_

T1
_IN

T_
ST

0

1

TIM
Gn

_T
x_

IN
T_

T0
_IN

T_
ST

0

0

Reset

TIMGn_Tx_INT_WDT_INT_ST The masked interrupt status bit for the TIMGn_Tx_INT_WDT_INT in-

terrupt. (RO)

TIMGn_Tx_INT_T1_INT_ST The masked interrupt status bit for the TIMGn_Tx_INT_T1_INT interrupt.

(RO)

TIMGn_Tx_INT_T0_INT_ST The masked interrupt status bit for the TIMGn_Tx_INT_T0_INT interrupt.

(RO)

Espressif Systems 509
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

18 Timer Group (TIMG)

Register 18.23. TIMGn_Tx_INT_CLR_REG (0x00a4)

(re
se

rve
d)

0 0

31 3

TIM
Gn

_T
x_

IN
T_

W
DT_

IN
T_

CLR

0

2

TIM
Gn

_T
x_

IN
T_

T1
_IN

T_
CLR

0

1

TIM
Gn

_T
x_

IN
T_

T0
_IN

T_
CLR

0

0

Reset

TIMGn_Tx_INT_WDT_INT_CLR Set this bit to clear the TIMGn_Tx_INT_WDT_INT interrupt. (WO)

TIMGn_Tx_INT_T1_INT_CLR Set this bit to clear the TIMGn_Tx_INT_T1_INT interrupt. (WO)

TIMGn_Tx_INT_T0_INT_CLR Set this bit to clear the TIMGn_Tx_INT_T0_INT interrupt. (WO)

Espressif Systems 510
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

19 Watchdog Timers (WDT)

19 Watchdog Timers (WDT)

19.1 Introduction
The ESP32 has three watchdog timers: one in each of the two timer modules (called Main System Watchdog Timer,

or MWDT) and one in the RTC module (which is called the RTC Watchdog Timer, or RWDT). These watchdog

timers are intended to recover from an unforeseen fault, causing the application program to abandon its normal

sequence. A watchdog timer has four stages. Each stage may take one out of three or four actions upon the expiry

of a programmed period of time for this stage, unless the watchdog is fed or disabled. The actions are: interrupt,

CPU reset, core reset and system reset. Only the RWDT can trigger the system reset, and is able to reset the entire

chip and the main system including the RTC itself. A timeout value can be set for each stage individually.

During flash boot, the RWDT and the first MWDT start automatically in order to detect and recover from booting

problems.

19.2 Features
• Four stages, each of which can be configured or disabled separately

• Programmable time period for each stage

• One out of three or four possible actions (interrupt, CPU reset, core reset and system reset) upon the expiry

of each stage

• 32-bit expiry counter

• Write protection, to prevent the RWDT and MWDT configuration from being inadvertently altered.

• Flash boot protection

If the boot process from an SPI flash does not complete within a predetermined period of time, the watchdog

will reboot the entire main system.

19.3 Functional Description
19.3.1 Clock
The RWDT is clocked from the RTC slow clock RTC_SLOW_CLK. The MWDT clock source is derived from the

APB clock APB_CLK via a pre-MWDT 16-bit configurable prescaler. For either watchdog, the clock source is

fed into the 32-bit expiry counter. When this counter reaches the timeout value of the current stage, the action

configured for the stage will execute, the expiry counter will be reset and the next stage will become active.

19.3.1.1 Operating Procedure

When a watchdog timer is enabled, it will proceed in loops from stage 0 to stage 3, then back to stage 0 and start

again. The expiry action and time period for each stage can be configured individually.

Every stage can be configured for one of the following actions when the expiry timer reaches the stage’s timeout

value:

• Trigger an interrupt

When the stage expires an interrupt is triggered.

• Reset a CPU core

When the stage expires the designated CPU core will be reset. MWDT0 CPU reset only resets the PRO

Espressif Systems 511
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

19 Watchdog Timers (WDT)

CPU. MWDT1 CPU reset only resets the APP CPU. The RWDT CPU reset can reset either of them, or both,

or none, depending on configuration.

• Reset the main system

When the stage expires, the main system, including the MWDTs, will be reset. In this article, the main system

includes the CPU and all peripherals. The RTC is an exception to this, and it will not be reset.

• Reset the main system and RTC

When the stage expires the main system and the RTC will both be reset. This action is only available in the

RWDT.

• Disabled

This stage will have no effects on the system.

When software feeds the watchdog timer, it returns to stage 0 and its expiry counter restarts from 0.

19.3.1.2 Write Protection

Both the MWDTs, as well as the RWDT, can be protected from accidental writing. To accomplish this, they have a

write-key register (TIMERS_WDT_WKEY for the MWDT, RTC_CNTL_WDT_WKEY for the RWDT.) On reset, these

registers are initialized to the value 0x50D83AA1. When the value in this register is changed from 0x50D83AA1,

write protection is enabled. Writes to any WDT register, including the feeding register (but excluding the write-key

register itself), are ignored. The recommended procedure for accessing a WDT is:

1. Disable the write protection

2. Make the required modification or feed the watchdog

3. Re-enable the write protection

19.3.1.3 Flash Boot Protection

During flash booting, the MWDT in timer group 0 (TIMG0), as well as the RWDT, are automatically enabled. Stage

0 for the enabled MWDT is automatically configured to reset the system upon expiry; stage 0 for the RWDT resets

the RTC when it expires. After booting, the register TIMERS_WDT_FLASHBOOT_MOD_EN should be cleared to

stop the flash boot protection procedure for the MWDT, and RTC_CNTL_WDT_FLASHBOOT_MOD_EN should be

cleared to do the same for the RWDT. After this, the MWDT and RWDT can be configured by software.

19.3.1.4 Registers

The MWDT registers are part of the timer submodule and are described in the Timer Registers section. The RWDT

registers are part of the RTC submodule and are described in the RTC Registers section.

Espressif Systems 512
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

20 eFuse Controller

20.1 Introduction
The ESP32 has a number of eFuses which store system parameters. Fundamentally, an eFuse is a single bit of

non-volatile memory with the restriction that once an eFuse bit is programmed to 1, it can never be reverted to 0.

Software can instruct the eFuse Controller to program each bit for each system parameter as needed.

Some of these system parameters can be read by software using the eFuse Controller. Some of the system

parameters are also directly used by hardware modules.

20.2 Features
• Configuration of 33 system parameters

• Optional write-protection

• Optional software-read-protection

20.3 Functional Description
20.3.1 Structure
Thirty-three system parameters with different bit width are stored in the eFuses. The name of each system pa-

rameter and the corresponding bit width are shown in Table 20-1. Among those parameters, efuse_wr_disable,

efuse_rd_disable, BLK3_part_reserve and coding_scheme are directly used by the eFuse Controller.

Table 201. System Parameters

Program Software-Read

-Protection by -Protection byName Bit width

efuse_wr_disable efuse_rd_disable

Description

efuse_wr_disable 16 1 - controls the eFuse Controller

efuse_rd_disable 4 0 - controls the eFuse Controller

flash_crypt_cnt 7 2 -
governs the flash encryption/

decryption

WIFI_MAC_Address 56 3 - Wi-Fi MAC address and CRC

SPI_pad_config_hd 5 3 -
configures the SPI I/O to a cer-

tain pad

XPD_SDIO_REG 1 5 - powers up the flash regulator

SDIO_TIEH 1 5 -

configures the flash regulator

voltage: set to 1 for 3.3 V

and set to 0 for 1.8 V

sdio_force 1 5 -

determines whether

XPD_SDIO_REG

and SDIO_TIEH can

control the flash regulator

BLK3_part_reserve 2 10 3 controls the eFuse controller

SPI_pad_config_clk 5 6 -
configures the SPI I/O to a cer-

tain pad

Espressif Systems 513
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

Program Software-Read

-Protection by -Protection byName Bit width

efuse_wr_disable efuse_rd_disable

Description

SPI_pad_config_q 5 6 -
configures the SPI I/O to a cer-

tain pad

SPI_pad_config_d 5 6 -
configures the SPI I/O to a cer-

tain pad

SPI_pad_config_cs0 5 6 -
configures the SPI I/O to a cer-

tain pad

flash_crypt_config 4 10 3
governs flash encryption/

decryption

coding_scheme* 2 10 3 controls the eFuse Controller

console_debug_disable 1 15 -

disables the ROM BASIC

debug console fallback

mode when set to 1

abstract_done_0 1 12 -
determines the status of

Secure Boot

abstract_done_1 1 13 -
determines the status of

Secure Boot

JTAG_disable 1 14 -

disables access to the

JTAG controllers so as to

effectively disable external

use of JTAG

download_dis_encrypt 1 15 -
governs flash encryption/

decryption

download_dis_decrypt 1 15 -
governs flash encryption/

decryption

download_dis_cache 1 15 -
disables cache when boot

mode is the Download Mode

key_status 1 10 3
determines whether BLOCK3

is deployed for user purposes

BLOCK1* 256/192/128 7 0
governs flash encryption/

decryption

BLOCK2* 256/192/128 8 1 key for Secure Boot

BLOCK3* 256/192/128 9 2 key for user purposes

disable_app_cpu 1 3 - disables APP CPU

disable_bt 1 3 - disables Bluetooth

pkg_version 4 3 - packaging version

disable_cache 1 3 - disables cache

CK8M Frequency 8 4 - RC_FAST_CLK frequency

vol_level_hp_inv 2 3 -

stores the voltage level for

CPU to run at 240 MHz, or for

flash/PSRAM to run at 80 MHz

Espressif Systems 514
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

Program Software-Read

-Protection by -Protection byName Bit width

efuse_wr_disable efuse_rd_disable

Description

dig_vol_l6 4 11 -

stores the difference between

the digital regulator voltage at

level 6 and 1.2 V.

uart_download_dis 1 2 -

permanently disables Down-

load Boot mode when set to

1. Valid only for ESP32 ECO

V3.

20.3.1.1 System Parameter efuse_wr_disable

The system parameter efuse_wr_disable determines whether all of the system parameters are write-protected.

Since efuse_wr_disable is a system parameter as well, it also determines whether itself is write-protected.

If a system parameter is not write-protected, its unprogrammed bits can be programmed from 0 to 1. The bits

previously programmed to 1 will remain 1. When a system parameter is write-protected, none of its bits can be

programmed: The unprogrammed bits will always remain 0 and the programmed bits will always remain 1.

The write-protection status of each system parameter corresponds to a bit in efuse_wr_disable. When the cor-

responding bit is set to 0, the system parameter is not write-protected. When the corresponding bit is set to 1,

the system parameter is write-protected. If a system parameter is already write-protected, it will remain write-

protected. The column entitled “Program-Protection by efuse_wr_disable” in Table 20-1 lists the corresponding

bits that determine the write-protection status of each system parameter.

20.3.1.2 System Parameter efuse_rd_disable

Of the 33 system parameters, 27 are not constrained by software-read-protection. These are marked by “-” in the

column entitled “Software-Read-Protection by efuse_rd_disable” in Table 20-1. Those system parameters, some

of which are used by software and hardware modules at the same time, can be read by software via the eFuse

Controller at any time.

When not software-read-protected, the other six system parameters can both be read by software and used

by hardware modules. When they are software-read-protected, they can only be used by the hardware mod-

ules.

The column “Software-Read-Protection by efuse_rd_disable” in Table 20-1 lists the corresponding bits in efuse_rd

_disable that determine the software read-protection status of the six system parameters. If a bit in the system

parameter efuse_rd_disable is 0, the system parameter controlled by the bit is not software-read-protected. If a

bit in the system parameter efuse_rd_disable is 1, the system parameter controlled by the bit is software-read-

protected. If a system parameter is software-read-protected, it will remain in this state.

20.3.1.3 System Parameter coding_scheme

As Table 20-1 shows, only three system parameters, BLOCK1, BLOCK2, and BLOCK3, have variable bit widths.

Their bit widths are controlled by another system parameter, coding_scheme. Despite their variable bit widths,

BLOCK1, BLOCK2, and BLOCK3 are assigned a fixed number of bits in eFuse. There is an encoding mapping

Espressif Systems 515
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

between these three system parameters and their corresponding stored values in eFuse. For details please see

Table 20-2.

Table 202. BLOCK1/2/3 Encoding

coding_scheme[1:0] Width of BLOCK1/2/3 Coding scheme Number of bits in eFuse

00/11 256 None 256

01 192 3/4 256

10 128 Repeat 256

The three coding schemes are explained as follows:

• BLOCKN represents any of the following three system parameters: BLOCK1, BLOCK2 or BLOCK3.

• BLOCKN [255 : 0], BLOCKN [191 : 0], and BLOCKN [127 : 0] represent each bit of the three system

parameters in the three encoding schemes.

• e
BLOCKN [255 : 0] represents each corresponding bit of those system parameters in eFuse after being

encoded.

None
e
BLOCKN [255 : 0] = BLOCKN [255 : 0]

3/4

BLOCKN j
i [7 : 0] = BLOCKN [48i+ 8j + 7 : 48i+ 8j] i ∈ {0, 1, 2, 3} j ∈ {0, 1, 2, 3, 4, 5}

eBLOCKN j
i [7 : 0] = eBLOCKN [64i+ 8j + 7 : 64i+ 8j] i ∈ {0, 1, 2, 3} j ∈ {0, 1, 2, 3, 4, 5, 6, 7}

eBLOCKN j
i [7 : 0] =

BLOCKN j
i [7 : 0] j ∈ {0, 1, 2, 3, 4, 5}

BLOCKN0
i [7 : 0]⊕BLOCKN1

i [7 : 0]

⊕BLOCKN2
i [7 : 0]⊕BLOCKN3

i [7 : 0]

⊕BLOCKN4
i [7 : 0]⊕BLOCKN5

i [7 : 0]

j ∈ {6}

5∑
l=0

(l + 1)

7∑
k=0

BLOCKN l
i [k] j ∈ {7}

i ∈ {0, 1, 2, 3}

⊕ means bitwise XOR∑
and + mean summation

Repeat
e
BLOCKN [255 : 128] =

e
BLOCKN [127 : 0] = BLOCKN [127 : 0]

20.3.1.4 BLK3_part_reserve

System parameters coding_scheme, BLOCK1, BLOCK2, and BLOCK3 are controlled by the parameter BLK3_part

_reserve.

When the value of BLK3_part_reserve is 0, coding_scheme, BLOCK1, BLOCK2, and BLOCK3 can be set to any

value.

When the value of BLK3_part_reserve is 1, coding_scheme�BLOCK1�BLOCK2 and BLOCK3 are controlled by 3/4

coding scheme. Meanwhile, BLOCK3[143 : 96], namely, e
BLOCK3[191 : 128] is unavailable.

Espressif Systems 516
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

20.3.2 Programming of System Parameters
The programming of variable-length system parameters BLOCK1, BLOCK2, and BLOCK3 is different from that

of the fixed-length system parameters. We program the e
BLOCKN [255 : 0] value of encoded system pa

rameters BLOCK1, BLOCK2, and BLOCK3 instead of directly programming the system parameters. The

bit width of e
BLOCKN [255 : 0] is always 256. Fixed-length system parameters, in contrast, are programmed

without encoding them first.

Each bit of the 30 fixed-length system parameters and the three encoded variable-length system parameters

corresponds to a program register bit, as shown in Table 20-3. The register bits will be used when programming

system parameters.

Table 203. Program Registers

System parameter Register

Name Width Bit Name Bit

efuse_wr_disable 16 [15:0]

EFUSE_BLK0_WDATA0_REG

[15:0]

efuse_rd_disable 4 [3:0] [19:16]

flash_crypt_cnt 7 [6:0] [26:20]

uart_download_dis 1 [0] [27]

WIFI_MAC_Address 56
[31:0] EFUSE_BLK0_WDATA1_REG [31:0]

[55:32] EFUSE_BLK0_WDATA2_REG [23:0]

disable_app_cpu 1 [0]

EFUSE_BLK0_WDATA3_REG

[0]

disable_bt 1 [0] [1]

pkg_version 4 [3:0] [2], [11:9]

disable_cache 1 [0] [3]

SPI_pad_config_hd 5 [4:0] [8:4]

BLK3_part_reserve 1 [0] [14]

CK8M Frequency 8 [7:0]

EFUSE_BLK0_WDATA4_REG

[7:0]

XPD_SDIO_REG 1 [0] [14]

SDIO_TIEH 1 [0] [15]

sdio_force 1 [0] [16]

SPI_pad_config_clk 5 [4:0]

EFUSE_BLK0_WDATA5_REG

[4:0]

SPI_pad_config_q 5 [4:0] [9:5]

SPI_pad_config_d 5 [4:0] [14:10]

SPI_pad_config_cs0 5 [4:0] [19:15]

vol_level_hp_inv 2 [1:0] [23:22]

dig_vol_l6 4 [3:0] [27:24]

flash_crypt_config 4 [3:0] [31:28]

Espressif Systems 517
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

System parameter Register

Name Width Bit Name Bit

coding_scheme 2 [1:0]

EFUSE_BLK0_WDATA6_REG

[1:0]

console_debug_disable 1 [0] [2]

abstract_done_0 1 [0] [4]

abstract_done_1 1 [0] [5]

JTAG_disable 1 [0] [6]

download_dis_encrypt 1 [0] [7]

download_dis_decrypt 1 [0] [8]

download_dis_cache 1 [0] [9]

key_status 1 [0] [10]

BLOCK1 256/192/128 [31:0] EFUSE_BLK1_WDATA0_REG [31:0]

[63:32] EFUSE_BLK1_WDATA1_REG [31:0]

[95:64] EFUSE_BLK1_WDATA2_REG [31:0]

[127:96] EFUSE_BLK1_WDATA3_REG [31:0]

[159:128] EFUSE_BLK1_WDATA4_REG [31:0]

[191:160] EFUSE_BLK1_WDATA5_REG [31:0]

[223:192] EFUSE_BLK1_WDATA6_REG [31:0]

[255:224] EFUSE_BLK1_WDATA7_REG [31:0]

BLOCK2 256/192/128

[31:0] EFUSE_BLK2_WDATA0_REG [31:0]

[63:32] EFUSE_BLK2_WDATA1_REG [31:0]

[95:64] EFUSE_BLK2_WDATA2_REG [31:0]

[127:96] EFUSE_BLK2_WDATA3_REG [31:0]

[159:128] EFUSE_BLK2_WDATA4_REG [31:0]

[191:160] EFUSE_BLK2_WDATA5_REG [31:0]

[223:192] EFUSE_BLK2_WDATA6_REG [31:0]

[255:224] EFUSE_BLK2_WDATA7_REG [31:0]

BLOCK3 256/192/128

[31:0] EFUSE_BLK3_WDATA0_REG [31:0]

[63:32] EFUSE_BLK3_WDATA1_REG [31:0]

[95:64] EFUSE_BLK3_WDATA2_REG [31:0]

[127:96] EFUSE_BLK3_WDATA3_REG [31:0]

[159:128] EFUSE_BLK3_WDATA4_REG [31:0]

[191:160] EFUSE_BLK3_WDATA5_REG [31:0]

[223:192] EFUSE_BLK3_WDATA6_REG [31:0]

[255:224] EFUSE_BLK3_WDATA7_REG [31:0]

The process of programming system parameters is as follows:

1. Configure EFUSE_CLK_SEL0 bit, EFUSE_CLK_SEL1 bit of register EFUSE_CLK, and EFUSE_DAC_CLK_DIV

bit of register EFUSE_DAC_CONF.

2. Set the corresponding register bit of the system parameter bit to be programmed to 1.

3. Write 0x5A5A into register EFUSE_CONF.

4. Write 0x2 into register EFUSE_CMD.

5. Poll register EFUSE_CMD until it is 0x0, or wait for a program-done interrupt.

Espressif Systems 518
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

6. Write 0x5AA5 into register EFUSE_CONF.

7. Write 0x1 into register EFUSE_CMD.

8. Poll register EFUSE_CMD until it is 0x0, or wait for a read-done interrupt.

9. Set the corresponding register bit of the programmed bit to 0.

The configuration values of the EFUSE_CLK_SEL0 bit, EFUSE_CLK_SEL1 bit of register EFUSE_CLK, and the

EFUSE_DAC_CLK_DIV bit of register EFUSE_DAC_CONF are based on the current APB_CLK frequency, as is

shown in Table 20-4.

Table 204. Timing Configuration

APB_CLK Frequency
Register Configuration Value

26 MHz 40 MHz 80 MHz

EFUSE_CLK
EFUSE_CLK_SEL0[7:0] 250 160 80

EFUSE_CLK_SEL1[7:0] 255 255 128

EFUSE_DAC_CONF EFUSE_DAC_CLK_DIV[7:0] 52 80 100

The two methods to identify the generation of program/read-done interrupts are as follows:

Method One:

1. Poll bit 1/0 in register EFUSE_INT_RAW until bit 1/0 is 1, which represents the generation of an program/read-

done interrupt.

2. Set the bit 1/0 in register EFUSE_INT_CLR to 1 to clear the program/read-done interrupts.

Method Two:

1. Set bit 1/0 in register EFUSE_INT_ENA to 1 to enable eFuse Controller to post a program/read-done interrupt.

2. Configure Interrupt Matrix to enable the CPU to respond to an EFUSE_INT interrupt.

3. A program/read-done interrupt is generated.

4. Read bit 1/0 in register EFUSE_INT_ST to identify the generation of the program/read-done interrupt.

5. Set bit 1/0 in register EFUSE_INT_CLR to 1 to clear the program/read-done interrupt.

The programming of different system parameters and even the programming of different bits of the same system

parameter can be completed separately in multiple programmings. It is, however, recommended that users min-

imize programming cycles, and program all the bits that need to be programmed in a system parameter in one

programming action. In addition, after all system parameters controlled by a certain bit of efuse_wr_disable are

programmed, that bit should be immediately programmed. The programming of system parameters controlled

by a certain bit of efuse_wr_disable, and the programming of that bit can even be completed at the same time.

Repeated programming of programmed bits is strictly forbidden.

20.3.3 Software Reading of System Parameters
Each bit of the 30 fixed-length system parameters and the three variable-length system parameters corresponds

to a software-read register bit, as shown in Table 20-5. Software can use the value of each system parameter by

reading the value in the corresponding register.

The bit width of system parameters BLOCK1, BLOCK2, and BLOCK3 is variable. Although 256 register bits have

been assigned to each of the three parameters, as shown in Table 20-5, some of the 256 register bits are useless

Espressif Systems 519
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

in the 3/4 coding and the Repeat coding scheme. In the None coding scheme, the corresponding register bit

of each bit of BLOCKN [255 : 0] is used. In the 3/4 coding scheme, only the corresponding register bits of

BLOCKN [191 : 0] are useful. In Repeat coding scheme, only the corresponding bits of BLOCKN [127 : 0]

are useful. In different coding schemes, the values of useless register bits read by software are invalid. The

values of useful register bits read by software are the system parameters BLOCK1, BLOCK2, and BLOCK3

themselves instead of their values after being encoded.

Table 205. Software Read Registers

System parameter Register

Name Bit Width Bit Name Bit

efuse_wr_disable 16 [15:0]

EFUSE_BLK0_RDATA0_REG

[15:0]

efuse_rd_disable 4 [3:0] [19:16]

flash_crypt_cnt 7 [6:0] [26:20]

uart_download_dis 1 [0] [27]

WIFI_MAC_Address 56
[31:0] EFUSE_BLK0_RDATA1_REG [31:0]

[55:32] EFUSE_BLK0_RDATA2_REG [23:0]

disable_app_cpu 1 [0]

EFUSE_BLK0_RDATA3_REG

[0]

disable_bt 1 [0] [1]

pkg_version 4 [3:0] [2], [11:9]

disable_cache 1 [0] [3]

SPI_pad_config_hd 5 [4:0] [8:4]

BLK3_part_reserve 1 [0] [14]

CK8M Frequency 8 [7:0]

EFUSE_BLK0_RDATA4_REG

[7:0]

XPD_SDIO_REG 1 [0] [14]

SDIO_TIEH 1 [0] [15]

sdio_force 1 [0] [16]

SPI_pad_config_clk 5 [4:0]

EFUSE_BLK0_RDATA5_REG

[4:0]

SPI_pad_config_q 5 [4:0] [9:5]

SPI_pad_config_d 5 [4:0] [14:10]

SPI_pad_config_cs0 5 [4:0] [19:15]

vol_level_hp_inv 2 [1:0] [23:22]

dig_vol_l6 4 [3:0] [27:24]

flash_crypt_config 4 [3:0] [31:28]

coding_scheme 2 [1:0]

EFUSE_BLK0_RDATA6_REG

[1:0]

console_debug_disable 1 [0] [2]

abstract_done_0 1 [0] [4]

abstract_done_1 1 [0] [5]

JTAG_disable 1 [0] [6]

download_dis_encrypt 1 [0] [7]

download_dis_decrypt 1 [0] [8]

download_dis_cache 1 [0] [9]

key_status 1 [0] [10]

Espressif Systems 520
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

System parameter Register

Name Bit Width Bit Name Bit

BLOCK1 256/192/128

[31:0] EFUSE_BLK1_RDATA0_REG [31:0]

[63:32] EFUSE_BLK1_RDATA1_REG [31:0]

[95:64] EFUSE_BLK1_RDATA2_REG [31:0]

[127:96] EFUSE_BLK1_RDATA3_REG [31:0]

[159:128] EFUSE_BLK1_RDATA4_REG [31:0]

[191:160] EFUSE_BLK1_RDATA5_REG [31:0]

[223:192] EFUSE_BLK1_RDATA6_REG [31:0]

[255:224] EFUSE_BLK1_RDATA7_REG [31:0]

BLOCK2 256/192/128 [31:0] EFUSE_BLK2_RDATA0_REG [31:0]

[63:32] EFUSE_BLK2_RDATA1_REG [31:0]

[95:64] EFUSE_BLK2_RDATA2_REG [31:0]

[127:96] EFUSE_BLK2_RDATA3_REG [31:0]

[159:128] EFUSE_BLK2_RDATA4_REG [31:0]

[191:160] EFUSE_BLK2_RDATA5_REG [31:0]

[223:192] EFUSE_BLK2_RDATA6_REG [31:0]

[255:224] EFUSE_BLK2_RDATA7_REG [31:0]

BLOCK3 256/192/128

[31:0] EFUSE_BLK3_RDATA0_REG [31:0]

[63:32] EFUSE_BLK3_RDATA1_REG [31:0]

[95:64] EFUSE_BLK3_RDATA2_REG [31:0]

[127:96] EFUSE_BLK3_RDATA3_REG [31:0]

[159:128] EFUSE_BLK3_RDATA4_REG [31:0]

[191:160] EFUSE_BLK3_RDATA5_REG [31:0]

[223:192] EFUSE_BLK3_RDATA6_REG [31:0]

[255:224] EFUSE_BLK3_RDATA7_REG [31:0]

20.3.4 The Use of System Parameters by Hardware Modules
Hardware modules are directly hardwired to the ESP32 in order to use the system parameters. Software cannot

change this behaviour. Hardware modules use the decoded values of system parameters BLOCK1, BLOCK2,

and BLOCK3, not their encoded values.

20.3.5 Interrupts
• EFUSE_PGM_DONE_INT: Triggered when eFuse programming has finished.

• EFUSE_READ_DONE_INT: Triggered when eFuse reading has finished.

20.4 Register Summary
The addresses in this section are relative to the eFuse Controller base address provided in Table 1-6 Peripheral

Address Mapping in Chapter 1 System and Memory.

Name Description Address Access

eFuse data read registers

EFUSE_BLK0_RDATA0_REG Returns data word 0 in eFuse BLOCK 0 0x3FF5A000 RO

EFUSE_BLK0_RDATA1_REG Returns data word 1 in eFuse BLOCK 0 0x3FF5A004 RO

EFUSE_BLK0_RDATA2_REG Returns data word 2 in eFuse BLOCK 0 0x3FF5A008 RO

Espressif Systems 521
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

Name Description Address Access

EFUSE_BLK0_RDATA3_REG Returns data word 3 in eFuse BLOCK 0 0x3FF5A00C RO

EFUSE_BLK0_RDATA4_REG Returns data word 4 in eFuse BLOCK 0 0x3FF5A010 RO

EFUSE_BLK0_RDATA5_REG Returns data word 5 in eFuse BLOCK 0 0x3FF5A014 RO

EFUSE_BLK0_RDATA6_REG Returns data word 6 in eFuse BLOCK 0 0x3FF5A018 RO

EFUSE_BLK1_RDATA0_REG Returns data word 0 in eFuse BLOCK 1 0x3FF5A038 RO

EFUSE_BLK1_RDATA1_REG Returns data word 1 in eFuse BLOCK 1 0x3FF5A03C RO

EFUSE_BLK1_RDATA2_REG Returns data word 2 in eFuse BLOCK 1 0x3FF5A040 RO

EFUSE_BLK1_RDATA3_REG Returns data word 3 in eFuse BLOCK 1 0x3FF5A044 RO

EFUSE_BLK1_RDATA4_REG Returns data word 4 in eFuse BLOCK 1 0x3FF5A048 RO

EFUSE_BLK1_RDATA5_REG Returns data word 5 in eFuse BLOCK 1 0x3FF5A04C RO

EFUSE_BLK1_RDATA6_REG Returns data word 6 in eFuse BLOCK 1 0x3FF5A050 RO

EFUSE_BLK1_RDATA7_REG Returns data word 7 in eFuse BLOCK 1 0x3FF5A054 RO

EFUSE_BLK2_RDATA0_REG Returns data word 0 in eFuse BLOCK 2 0x3FF5A058 RO

EFUSE_BLK2_RDATA1_REG Returns data word 1 in eFuse BLOCK 2 0x3FF5A05C RO

EFUSE_BLK2_RDATA2_REG Returns data word 2 in eFuse BLOCK 2 0x3FF5A060 RO

EFUSE_BLK2_RDATA3_REG Returns data word 3 in eFuse BLOCK 2 0x3FF5A064 RO

EFUSE_BLK2_RDATA4_REG Returns data word 4 in eFuse BLOCK 2 0x3FF5A068 RO

EFUSE_BLK2_RDATA5_REG Returns data word 5 in eFuse BLOCK 2 0x3FF5A06C RO

EFUSE_BLK2_RDATA6_REG Returns data word 6 in eFuse BLOCK 2 0x3FF5A070 RO

EFUSE_BLK2_RDATA7_REG Returns data word 7 in eFuse BLOCK 2 0x3FF5A074 RO

EFUSE_BLK3_RDATA0_REG Returns data word 0 in eFuse BLOCK 3 0x3FF5A078 RO

EFUSE_BLK3_RDATA1_REG Returns data word 1 in eFuse BLOCK 3 0x3FF5A07C RO

EFUSE_BLK3_RDATA2_REG Returns data word 2 in eFuse BLOCK 3 0x3FF5A080 RO

EFUSE_BLK3_RDATA3_REG Returns data word 3 in eFuse BLOCK 3 0x3FF5A084 RO

EFUSE_BLK3_RDATA4_REG Returns data word 4 in eFuse BLOCK 3 0x3FF5A088 RO

EFUSE_BLK3_RDATA5_REG Returns data word 5 in eFuse BLOCK 3 0x3FF5A08C RO

EFUSE_BLK3_RDATA6_REG Returns data word 6 in eFuse BLOCK 3 0x3FF5A090 RO

EFUSE_BLK3_RDATA7_REG Returns data word 7 in eFuse BLOCK 3 0x3FF5A094 RO

eFuse data write registers

EFUSE_BLK0_WDATA0_REG Writes data to word 0 in eFuse BLOCK 0 0x3FF5A01c R/W

EFUSE_BLK0_WDATA1_REG Writes data to word 1 in eFuse BLOCK 0 0x3FF5A020 R/W

EFUSE_BLK0_WDATA2_REG Writes data to word 2 in eFuse BLOCK 0 0x3FF5A024 R/W

EFUSE_BLK0_WDATA3_REG Writes data to word 3 in eFuse BLOCK 0 0x3FF5A028 R/W

EFUSE_BLK0_WDATA4_REG Writes data to word 4 in eFuse BLOCK 0 0x3FF5A02c R/W

EFUSE_BLK0_WDATA5_REG Writes data to word 5 in eFuse BLOCK 0 0x3FF5A030 R/W

EFUSE_BLK0_WDATA6_REG Writes data to word 6 in eFuse BLOCK 0 0x3FF5A034 R/W

EFUSE_BLK1_WDATA0_REG Writes data to word 0 in eFuse BLOCK 1 0x3FF5A098 R/W

EFUSE_BLK1_WDATA1_REG Writes data to word 1 in eFuse BLOCK 1 0x3FF5A09c R/W

EFUSE_BLK1_WDATA2_REG Writes data to word 2 in eFuse BLOCK 1 0x3FF5A0a0 R/W

EFUSE_BLK1_WDATA3_REG Writes data to word 3 in eFuse BLOCK 1 0x3FF5A0a4 R/W

EFUSE_BLK1_WDATA4_REG Writes data to word 4 in eFuse BLOCK 1 0x3FF5A0a8 R/W

EFUSE_BLK1_WDATA5_REG Writes data to word 5 in eFuse BLOCK 1 0x3FF5A0ac R/W

EFUSE_BLK1_WDATA6_REG Writes data to word 6 in eFuse BLOCK 1 0x3FF5A0b0 R/W

Espressif Systems 522
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

Name Description Address Access

EFUSE_BLK1_WDATA7_REG Writes data to word 7 in eFuse BLOCK 1 0x3FF5A0b4 R/W

EFUSE_BLK2_WDATA0_REG Writes data to word 0 in eFuse BLOCK 2 0x3FF5A0b8 R/W

EFUSE_BLK2_WDATA1_REG Writes data to word 1 in eFuse BLOCK 2 0x3FF5A0bc R/W

EFUSE_BLK2_WDATA2_REG Writes data to word 2 in eFuse BLOCK 2 0x3FF5A0c0 R/W

EFUSE_BLK2_WDATA3_REG Writes data to word 3 in eFuse BLOCK 2 0x3FF5A0c4 R/W

EFUSE_BLK2_WDATA4_REG Writes data to word 4 in eFuse BLOCK 2 0x3FF5A0c8 R/W

EFUSE_BLK2_WDATA5_REG Writes data to word 5 in eFuse BLOCK 2 0x3FF5A0cc R/W

EFUSE_BLK2_WDATA6_REG Writes data to word 6 in eFuse BLOCK 2 0x3FF5A0d0 R/W

EFUSE_BLK2_WDATA7_REG Writes data to word 7 in eFuse BLOCK 2 0x3FF5A0d4 R/W

EFUSE_BLK3_WDATA0_REG Writes data to word 0 in eFuse BLOCK 3 0x3FF5A0d8 R/W

EFUSE_BLK3_WDATA1_REG Writes data to word 1 in eFuse BLOCK 3 0x3FF5A0dc R/W

EFUSE_BLK3_WDATA2_REG Writes data to word 2 in eFuse BLOCK 3 0x3FF5A0e0 R/W

EFUSE_BLK3_WDATA3_REG Writes data to word 3 in eFuse BLOCK 3 0x3FF5A0e4 R/W

EFUSE_BLK3_WDATA4_REG Writes data to word 4 in eFuse BLOCK 3 0x3FF5A0e8 R/W

EFUSE_BLK3_WDATA5_REG Writes data to word 5 in eFuse BLOCK 3 0x3FF5A0ec R/W

EFUSE_BLK3_WDATA6_REG Writes data to word 6 in eFuse BLOCK 3 0x3FF5A0f0 R/W

EFUSE_BLK3_WDATA7_REG Writes data to word 7 in eFuse BLOCK 3 0x3FF5A0f4 R/W

Control registers

EFUSE_CLK_REG Timing configuration register 0x3FF5A0F8 R/W

EFUSE_CONF_REG Opcode register 0x3FF5A0FC R/W

EFUSE_CMD_REG Read/write command register 0x3FF5A104 R/W

Interrupt registers

EFUSE_INT_RAW_REG Raw interrupt status 0x3FF5A108 RO

EFUSE_INT_ST_REG Masked interrupt status 0x3FF5A10C RO

EFUSE_INT_ENA_REG Interrupt enable bits 0x3FF5A110 R/W

EFUSE_INT_CLR_REG Interrupt clear bits 0x3FF5A114 WO

Misc registers

EFUSE_DAC_CONF_REG Efuse timing configuration 0x3FF5A118 R/W

EFUSE_DEC_STATUS_REG Status of 3/4 coding scheme 0x3FF5A11C RO

Espressif Systems 523
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

20.5 Registers
The addresses in this section are relative to the eFuse Controller base address provided in Table 1-6 Peripheral

Address Mapping in Chapter 1 System and Memory.

Register 20.1. EFUSE_BLK0_RDATA0_REG (0x000)

(re
se

rve
d)

0 0 0 0

31 28

EFU
SE_R

D_U
ART_

DOW
NLO

AD_D
IS

0

27

EFU
SE_R

D_F
LA

SH_C
RYPT_

CNT

0 0 0 0 0 0 0 0

26 20

EFU
SE_R

D_E
FU

SE_R
D_D

IS

0 0 0 0

19 16

EFU
SE_R

D_E
FU

SE_W
R_D

IS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

EFUSE_RD_UART_DOWNLOAD_DIS This bit returns the value of uart_download_dis. Valid only for

ESP32 . (RO)

EFUSE_RD_FLASH_CRYPT_CNT This field returns the value of flash_crypt_cnt. (RO)

EFUSE_RD_EFUSE_RD_DIS This field returns the value of efuse_rd_disable. (RO)

EFUSE_RD_EFUSE_WR_DIS This field returns the value of efuse_wr_disable. (RO)

Register 20.2. EFUSE_BLK0_RDATA1_REG (0x004)

0 0

31 0

Reset

EFUSE_BLK0_RDATA1_REG This field returns the value of the lower 32 bits of WIFI_MAC_Address.

(RO)

Register 20.3. EFUSE_BLK0_RDATA2_REG (0x008)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

EFU
SE_R

D_W
IFI

_M
AC_C

RC_H
IG

H

0 0

23 0

Reset

EFUSE_RD_WIFI_MAC_CRC_HIGH This field returns the value of the higher 24 bits of

WIFI_MAC_Address. (RO)

Espressif Systems 524
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

Register 20.4. EFUSE_BLK0_RDATA3_REG (0x00c)

(re
se

rve
d)

0 0

31 12

EFU
SE_R

D_C
HIP

_V
ER_P

KG

0 0 0

11 9

EFU
SE_R

D_S
PI_P

AD_C
ONFIG

_H
D

0 0 0 0 0

8 4

EFU
SE_R

D_C
HIP

_V
ER_D

IS
_C

ACHE

0

3

EFU
SE_R

D_C
HIP

_V
ER_P

KG

0

2

EFU
SE_R

D_C
HIP

_V
ER_D

IS
_B

T

0

1

EFU
SE_R

D_C
HIP

_V
ER_D

IS
_A

PP_C
PU

0

0

Reset

EFUSE_RD_CHIP_VER_PKG These are the first three identification bits of chip packaging version

among the four identification bits. (RO)

EFUSE_RD_SPI_PAD_CONFIG_HD This field returns the value of SPI_pad_config_hd. (RO)

EFUSE_RD_CHIP_VER_DIS_CACHE Disables cache. (RO)

EFUSE_RD_CHIP_VER_PKG This is the fourth identification bit of chip packaging version among the

four identification bits. (RO)

EFUSE_RD_CHIP_VER_DIS_BT Disables Bluetooth. (RO)

EFUSE_RD_CHIP_VER_DIS_APP_CPU Disables APP CPU. (RO)

Register 20.5. EFUSE_BLK0_RDATA4_REG (0x010)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

EFU
SE_R

D_S
DIO

_F
ORCE

0

16

EFU
SE_R

D_S
DIO

_T
IEH

0

15

EFU
SE_R

D_X
PD_S

DIO

0

14

(re
se

rve
d)

0 0 0 0 0 0

13 8

ESFU
SE_R

D_C
K8M

_F
REQ

0 0 0 0 0 0 0 0

7 0

Reset

EFUSE_RD_SDIO_FORCE This field returns the value of sdio_force. (RO)

EFUSE_RD_SDIO_TIEH This field returns the value of SDIO_TIEH. (RO)

EFUSE_RD_XPD_SDIO This field returns the value of XPD_SDIO_REG. (RO)

ESFUSE_RD_CK8M_FREQ RC_FAST_CLK frequency. (RO)

Espressif Systems 525
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

Register 20.6. EFUSE_BLK0_RDATA5_REG (0x014)

EFU
SE_R

D_F
LA

SH_C
RYPT_

CONFIG

0 0 0 0

31 28

EFU
SE_R

D_D
IG

_V
OL_

L6

0 0 0 0

27 24

EFU
SE_R

D_V
OL_

LE
VEL_

HP_IN
V

0 0

23 22

(re
se

rve
d)

0 0

21 20

EFU
SE_R

D_S
PI_P

AD_C
ONFIG

_C
S0

0 0 0 0 0

19 15

EFU
SE_R

D_S
PI_P

AD_C
ONFIG

_D

0 0 0 0 0

14 10

EFU
SE_R

D_S
PI_P

AD_C
ONFIG

_Q

0 0 0 0 0

9 5

EFU
SE_R

D_S
PI_P

AD_C
ONFIG

_C
LK

0 0 0 0 0

4 0

Reset

EFUSE_RD_FLASH_CRYPT_CONFIG This field returns the value of flash_crypt_config. (RO)

EFUSE_RD_DIG_VOL_L6 This field stores the difference between the digital regulator voltage at level

6 and 1.2 V. (RO)

EFUSE_RD_VOL_LEVEL_HP_INV This field stores the voltage level for CPU to run at 240 MHz, or

for flash/PSRAM to run at 80 MHz. 0x0: level 7; 0x1: level 6; 0x2: level 5; 0x3: level 4. (RO)

EFUSE_RD_SPI_PAD_CONFIG_CS0 This field returns the value of SPI_pad_config_cs0. (RO)

EFUSE_RD_SPI_PAD_CONFIG_D This field returns the value of SPI_pad_config_d. (RO)

EFUSE_RD_SPI_PAD_CONFIG_Q This field returns the value of SPI_pad_config_q. (RO)

EFUSE_RD_SPI_PAD_CONFIG_CLK This field returns the value of SPI_pad_config_clk. (RO)

Espressif Systems 526
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

Register 20.7. EFUSE_BLK0_RDATA6_REG (0x018)

(re
se

rve
d)

0 0

31 11

EFU
SE_R

D_K
EY_S

TA
TU

S

0

10

EFU
SE_R

D_D
IS

ABLE
_D

L_
CACHE

0

9

EFU
SE_R

D_D
IS

ABLE
_D

L_
DECRYPT

0

8

EFU
SE_R

D_D
IS

ABLE
_D

L_
ENCRYPT

0

7

EFU
SE_R

D_D
IS

ABLE
_J

TA
G

0

6

EFU
SE_R

D_A
BS_D

ONE_1

0

5

EFU
SE_R

D_A
BS_D

ONE_0

0

4

(re
se

rve
d)

0

3

EFU
SE_R

D_C
ONSOLE

_D
EBUG_D

IS
ABLE

0

2

EFU
SE_R

D_C
ODIN

G_S
CHEM

E

0 0

1 0

Reset

EFUSE_RD_KEY_STATUS This field returns the value of key_status. (RO)

EFUSE_RD_DISABLE_DL_CACHE This field returns the value of download_dis_cache. (RO)

EFUSE_RD_DISABLE_DL_DECRYPT This field returns the value of download_dis_decrypt. (RO)

EFUSE_RD_DISABLE_DL_ENCRYPT This field returns the value of download_dis_encrypt. (RO)

EFUSE_RD_DISABLE_JTAG This field returns the value of JTAG_disable. (RO)

EFUSE_RD_ABS_DONE_1 This field returns the value of abstract_done_1. (RO)

EFUSE_RD_ABS_DONE_0 This field returns the value of abstract_done_0. (RO)

EFUSE_RD_CONSOLE_DEBUG_DISABLE This field returns the value of console_debug_disable.

(RO)

EFUSE_RD_CODING_SCHEME This field returns the value of coding_scheme. (RO)

Register 20.8. EFUSE_BLK0_WDATA0_REG (0x01c)

(re
se

rve
d)

0 0 0 0

31 28

EFU
SE_U

ART_
DOW

NLO
AD_D

IS

0

27

EFU
SE_F

LA
SH_C

RYPT_
CNT

0 0 0 0 0 0 0 0

26 20

EFU
SE_R

D_D
IS

0 0 0 0

19 16

EFU
SE_W

R_D
IS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

EFUSE_UART_DOWNLOAD_DIS This bit programs the value of uart_download_dis. Valid only for

ESP32 ECO V3. (R/W)

EFUSE_FLASH_CRYPT_CNT This field programs the value of flash_crypt_cnt. (R/W)

EFUSE_RD_DIS This field programs the value of efuse_rd_disable. (R/W)

EFUSE_WR_DIS This field programs the value of efuse_wr_disable. (R/W)

Espressif Systems 527
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

Register 20.9. EFUSE_BLK0_WDATA1_REG (0x020)

0 0

31 0

Reset

EFUSE_BLK0_WDATA1_REG This field programs the value of lower 32 bits of WIFI_MAC_Address.

(R/W)

Register 20.10. EFUSE_BLK0_WDATA2_REG (0x024)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

EFU
SE_W

IFI
_M

AC_C
RC_H

IG
H

0 0

23 0

Reset

EFUSE_WIFI_MAC_CRC_HIGH This field programs the value of higher 24 bits of

WIFI_MAC_Address. (R/W)

Register 20.11. EFUSE_BLK0_WDATA3_REG (0x028)

(re
se

rve
d)

0 0

31 12

EFU
SE_C

HIP
_V

ER_P
KG

0 0 0

11 9

EFU
SE_S

PI_P
AD_C

ONFIG
_H

D

0 0 0 0 0

8 4

EFU
SE_C

HIP
_V

ER_D
IS

_C
ACHE

0

3

EFU
SE_C

HIP
_V

ER_P
KG

0

2

EFU
SE_C

HIP
_V

ER_D
IS

_B
T

0

1

EFU
SE_C

HIP
_V

ER_D
IS

_A
PP_C

PU

0

0

Reset

EFUSE_CHIP_VER_PKG These are the first three bits among the four bits to program chip packaging

version. (R/W)

EFUSE_SPI_PAD_CONFIG_HD This field programs the value of SPI_pad_config_hd. (R/W)

EFUSE_CHIP_VER_DIS_CACHE This field is programmed to disable cache. (R/W)

EFUSE_CHIP_VER_PKG This is the fourth bit among the four bits to program chip packaging version.

(R/W)

EFUSE_CHIP_VER_DIS_BT This field is programmed to disable Bluetooth. (R/W)

EFUSE_CHIP_VER_DIS_APP_CPU This field is programmed to disable APP CPU. (R/W)

Espressif Systems 528
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

Register 20.12. EFUSE_BLK0_WDATA4_REG (0x02c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

EFU
SE_S

DIO
_F

ORCE

0

16

EFU
SE_S

DIO
_T

IEH

0

15

EFU
SE_X

PD_S
DIO

0

14

(re
se

rve
d)

0 0 0 0 0 0

13 8

ESFU
SE_C

K8M
_F

REQ

0 0 0 0 0 0 0 0

7 0

Reset

EFUSE_SDIO_FORCE This field programs the value of SDIO_TIEH. (R/W)

EFUSE_SDIO_TIEH This field programs the value of SDIO_TIEH. (R/W)

EFUSE_XPD_SDIO This field programs the value of XPD_SDIO_REG. (R/W)

ESFUSE_CK8M_FREQ This field programs the frequency of RC_FAST_CLK. (R/W)

Register 20.13. EFUSE_BLK0_WDATA5_REG (0x030)

EFU
SE_F

LA
SH_C

RYPT_
CONFIG

0 0 0 0

31 28

EFU
SE_D

IG
_V

OL_
L6

0 0 0 0

27 24

EFU
SE_V

OL_
LE

VEL_
HP_IN

V

0 0

23 22

(re
se

rve
d)

0 0

21 20

EFU
SE_S

PI_P
AD_C

ONFIG
_C

S0

0 0 0 0 0

19 15

EFU
SE_S

PI_P
AD_C

ONFIG
_D

0 0 0 0 0

14 10

EFU
SE_S

PI_P
AD_C

ONFIG
_Q

0 0 0 0 0

9 5

EFU
SE_S

PI_P
AD_C

ONFIG
_C

LK

0 0 0 0 0

4 0

Reset

EFUSE_FLASH_CRYPT_CONFIG This field programs the value of flash_crypt_config. (R/W)

EFUSE_DIG_VOL_L6 This field stores the difference between the digital regulator voltage at level 6

and 1.2 V. (R/W)

EFUSE_VOL_LEVEL_HP_INV These bits store the voltage level for CPU to run at 240 MHz, or for

flash/PSRAM to run at 80 MHz. 0x0: level 7; 0x1: level 6; 0x2: level 5; 0x3: level 4. (R/W)

EFUSE_SPI_PAD_CONFIG_CS0 This field programs the value of SPI_pad_config_cs0. (R/W)

EFUSE_SPI_PAD_CONFIG_D This field programs the value of SPI_pad_config_d. (R/W)

EFUSE_SPI_PAD_CONFIG_Q This field programs the value of SPI_pad_config_q. (R/W)

EFUSE_SPI_PAD_CONFIG_CLK This field programs the value of SPI_pad_config_clk. (R/W)

Espressif Systems 529
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

Register 20.14. EFUSE_BLK0_WDATA6_REG (0x034)

(re
se

rve
d)

0 0

31 11

EFU
SE_K

EY_S
TA

TU
S

0

10

EFU
SE_D

IS
ABLE

_D
L_

CACHE

0

9

EFU
SE_D

IS
ABLE

_D
L_

DECRYPT

0

8

EFU
SE_D

IS
ABLE

_D
L_

ENCRYPT

0

7

EFU
SE_D

IS
ABLE

_J
TA

G

0

6

EFU
SE_A

BS_D
ONE_1

0

5

EFU
SE_A

BS_D
ONE_0

0

4

(re
se

rve
d)

0

3

EFU
SE_C

ONSOLE
_D

EBUG_D
IS

ABLE

0

2

EFU
SE_C

ODIN
G_S

CHEM
E

0 0

1 0

Reset

EFUSE_KEY_STATUS This field programs the value of key_status. (R/W)

EFUSE_DISABLE_DL_CACHE This field programs the value of download_dis_cache. (R/W)

EFUSE_DISABLE_DL_DECRYPT This field programs the value of download_dis_decrypt. (R/W)

EFUSE_DISABLE_DL_ENCRYPT This field programs the value of download_dis_encrypt. (R/W)

EFUSE_DISABLE_JTAG This field programs the value of JTAG_disable. (R/W)

EFUSE_ABS_DONE_1 This field programs the value of abstract_done_1. (R/W)

EFUSE_ABS_DONE_0 This field programs the value of abstract_done_0. (R/W)

EFUSE_CONSOLE_DEBUG_DISABLE This field programs the value of console_debug_disable.

(R/W)

EFUSE_CODING_SCHEME This field programs the value of coding_scheme. (R/W)

Register 20.15. EFUSE_BLK1_RDATAn_REG (n: 07) (0x38+4*n)

0x000000000

31 0

Reset

EFUSE_BLK1_RDATAn_REG This field returns the value of word n in BLOCK1. (RO)

Register 20.16. EFUSE_BLK2_RDATAn_REG (n: 07) (0x58+4*n)

0x000000000

31 0

Reset

EFUSE_BLK2_RDATAn_REG This field returns the value of word n in BLOCK2. (RO)

Espressif Systems 530
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

Register 20.17. EFUSE_BLK3_RDATAn_REG (n: 07) (0x78+4*n)

0x000000000

31 0

Reset

EFUSE_BLK3_RDATAn_REG This field returns the value of word n in BLOCK3. (RO)

Register 20.18. EFUSE_BLK1_WDATAn_REG (n: 07) (0x98+4*n)

0x000000000

31 0

Reset

EFUSE_BLK1_WDATAn_REG This field programs the value of word n in of BLOCK1. (R/W)

Register 20.19. EFUSE_BLK2_WDATAn_REG (n: 07) (0xB8+4*n)

0x000000000

31 0

Reset

EFUSE_BLK2_WDATAn_REG This field programs the value of word n in of BLOCK2. (R/W)

Register 20.20. EFUSE_BLK3_WDATAn_REG (n: 07) (0xD8+4*n)

0x000000000

31 0

Reset

EFUSE_BLK3_WDATAn_REG This field programs the value of word n in of BLOCK3. (R/W)

Register 20.21. EFUSE_CLK_REG (0x0f8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

EFU
SE_C

LK
_S

EL1

0x040

15 8

EFU
SE_C

LK
_S

EL0

0x052

7 0

Reset

EFUSE_CLK_SEL1 eFuse clock configuration field. (R/W)

EFUSE_CLK_SEL0 eFuse clock configuration field. (R/W)

Espressif Systems 531
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

Register 20.22. EFUSE_CONF_REG (0x0fc)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

EFU
SE_O

P_C
ODE

0x00000

15 0

Reset

EFUSE_OP_CODE eFuse operation code register. (R/W)

Register 20.23. EFUSE_CMD_REG (0x104)

(re
se

rve
d)

0 0

31 2

EFU
SE_P

GM
_C

M
D

0

1

EFU
SE_R

EAD_C
M

D

0

0

Reset

EFUSE_PGM_CMD Set this to 1 to start a program operation. Reverts to 0 when the program op-

eration is done. (R/W)

EFUSE_READ_CMD Set this to 1 to start a read operation. Reverts to 0 when the read operation is

done. (R/W)

Register 20.24. EFUSE_INT_RAW_REG (0x108)

(re
se

rve
d)

0 0

31 2

EFU
SE_P

GM
_D

ONE_IN
T_

RAW

0

1

EFU
SE_R

EAD_D
ONE_IN

T_
RAW

0

0

Reset

EFUSE_PGM_DONE_INT_RAW The raw interrupt status bit for the EFUSE_PGM_DONE_INT inter-

rupt. (RO)

EFUSE_READ_DONE_INT_RAW The raw interrupt status bit for the EFUSE_READ_DONE_INT in-

terrupt. (RO)

Espressif Systems 532
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

Register 20.25. EFUSE_INT_ST_REG (0x10c)

(re
se

rve
d)

0 0

31 2

EFU
SE_P

GM
_D

ONE_IN
T_

ST

0

1

EFU
SE_R

EAD_D
ONE_IN

T_
ST

0

0

Reset

EFUSE_PGM_DONE_INT_ST The masked interrupt status bit for the EFUSE_PGM_DONE_INT in-

terrupt. (RO)

EFUSE_READ_DONE_INT_ST The masked interrupt status bit for the EFUSE_READ_DONE_INT in-

terrupt. (RO)

Register 20.26. EFUSE_INT_ENA_REG (0x110)

(re
se

rve
d)

0 0

31 2

EFU
SE_P

GM
_D

ONE_IN
T_

ENA

0

1

EFU
SE_R

EAD_D
ONE_IN

T_
ENA

0

0

Reset

EFUSE_PGM_DONE_INT_ENA The interrupt enable bit for the EFUSE_PGM_DONE_INT interrupt.

(R/W)

EFUSE_READ_DONE_INT_ENA The interrupt enable bit for the EFUSE_READ_DONE_INT interrupt.

(R/W)

Register 20.27. EFUSE_INT_CLR_REG (0x114)

(re
se

rve
d)

0 0

31 2

EFU
SE_P

GM
_D

ONE_IN
T_

CLR

0

1

EFU
SE_R

EAD_D
ONE_IN

T_
CLR

0

0

Reset

EFUSE_PGM_DONE_INT_CLR Set this bit to clear the EFUSE_PGM_DONE_INT interrupt. (WO)

EFUSE_READ_DONE_INT_CLR Set this bit to clear the EFUSE_READ_DONE_INT interrupt. (WO)

Espressif Systems 533
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

20 eFuse Controller

Register 20.28. EFUSE_DAC_CONF_REG (0x118)

(re
se

rve
d)

0 0

31 8

EFU
SE_D

AC_C
LK

_D
IV

40

7 0

Reset

EFUSE_DAC_CLK_DIV eFuse timing configuration register. (R/W)

Register 20.29. EFUSE_DEC_STATUS_REG (0x11c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

EFU
SE_D

EC_W
ARNIN

GS

0 0 0 0 0 0 0 0 0 0 0 0

11 0

Reset

EFUSE_DEC_WARNINGS If a bit is set in this register, it means some errors were corrected while

decoding the 3/4 encoding scheme. (RO)

Espressif Systems 534
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

21 Twowire Automotive Interface (TWAI)

21.1 Overview
The Two-wire Automotive Interface (TWAI®) is a multi-master, multi-cast communication protocol with error de-

tection and signaling and inbuilt message priorities and arbitration.The TWAI protocol is suited for automotive and

industrial applications (Please see TWAI Protocol Description).

ESP32 contains a TWAI controller that can be connected to a TWAI bus via an external transceiver. The TWAI con-

troller contains numerous advanced features, and can be utilized in a wide range of use cases such as automotive

products, industrial automation controls, building automation etc.

21.2 Features
ESP32 TWAI controller supports the following features:

• compatible with ISO 11898-1 protocol (CAN Specification 2.0)

• Supports Standard Frame Format (11-bit ID) and Extended Frame Format (29-bit ID)

• Bit rates:

– from 25 Kbit/s to 1 Mbit/s in chip revision v0.0/v1.0/v1.1

– from 12.5 Kbit/s to 1 Mbit/s in chip revision v3.0/v3.1

• Multiple modes of operation

– Normal

– Listen Only (no influence on bus)

– Self Test (transmissions do not require acknowledgment)

• 64-byte Receive FIFO

• Special transmissions

– Single-shot transmissions (does not automatically re-transmit upon error)

– Self Reception (the TWAI controller transmits and receives messages simultaneously)

• Acceptance Filter (supports single and dual filter modes)

• Error detection and handling

– Error counters

– Configurable Error Warning Limit

– Error Code Capture

– Arbitration Lost Capture

21.3 Functional Protocol
21.3.1 TWAI Properties
The TWAI protocol connects two or more nodes in a bus network, and allows for nodes to exchange messages

in a latency bounded manner. A TWAI bus will has a following properties.

Espressif Systems 535
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Single Channel and NonReturntoZero: The bus consists of a single channel to carry bits, thus communication

is half-duplex. Synchronization is also derived from this channel, thus extra channels (e.g., clock or enable) are not

required. The bit stream of a TWAI message is encoded using the Non-Return-to-Zero (NRZ) method.

Bit Values: The single channel can either be in a Dominant or Recessive state, representing a logical 0 and a

logical 1 respectively. A node transmitting a Dominant state will always override a another node transmitting a

Recessive state. The physical implementation on the bus is left to the application level to decide (e.g., differential

wiring).

BitStuffing: Certain fields of TWAI messages are bit-stuffed. A Transmitter that transmits five consecutive bits of

the same value should automatically insert a complementary bit. Likewise, a Receiver that receives five consecutive

bits should treat the next bit as a stuff bit. Bit stuffing is applied to the following fields: SOF, Arbitration Field, Control

Field, Data Field, and CRC Sequence (see Section 21.3.2 for more details).

Multicast: All nodes receive the same bits as they are connected to the same bus. Data is consistent across all

nodes unless there is a bus error (See Section 21.3.3).

Multimaster: Any node can initiate a transmission. If a transmission is already ongoing, a node will wait until the

current transmission is over before beginning its own transmission.

MessagePriorities and Arbitration: If two or more nodes simultaneously initiate a transmission, the TWAI proto-

col ensures that one node will win arbitration of the bus. The Arbitration Field of the message transmitted by each

node is used to determine which node will win arbitration.

Error Detection and Signaling: Each node will actively monitor the bus for errors, and signal the detection errors

by transmitting an Error Frame.

Fault Confinement: Each node will maintain a set of error counts that are incremented/decremented according

to a set of rules. When the error counts surpass a certain threshold, a node will automatically eliminate itself from

the network by switching itself off.

Configurable Bit Rate: The bit rate for a single TWAI bus is configurable. However, all nodes within the same bus

must operate at the same bit rate.

Transmitters and Receivers: At any point in time, a TWAI node can either be a Transmitter or a Receiver.

• A node originating a message is a Transmitter. The node remains a Transmitter until the bus is idle or until

the node loses arbitration. Note that multiple nodes can be Transmitter if they have yet to lose arbitration.

• All nodes that are not Transmitters are Receivers.

21.3.2 TWAI Messages
TWAI nodes use messages to transmit data, and signal errors to other nodes. Messages are split into various

frame types, and some frame types will have different frame formats. The TWAI protocol has of the following frame

types:

• Data Frames

• Remote Frames

• Error Frames

• Overload Frames

• Interframe Space

Espressif Systems 536
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

The TWAI protocol has the following frame formats:

• Standard Frame Format (SFF) that consists of a 11-bit identifier

• Extended Frame Format (EFF) that consists of a 29-bit identifier

21.3.2.1 Data Frames and Remote Frames

Data Frames are used by nodes to send data to other nodes, and can have a payload of 0 to 8 data bytes.

Remote Frames are used to nodes to request a Data Frame with the same Identifier from another node, thus does

not contain any data bytes. However, Data Frames and Remote Frames share many common fields. Figure 21-1

illustrates the fields and sub fields of the different frames and formats.

Figure 211. The bit fields of Data Frames and Remote Frames

Arbitration Field

When two or more nodes transmits a Data or Remote Frame simultaneously, the Arbitration Field is used to deter-

mine which node will win arbitration of the bus. During the Arbitration Field, if a node transmits a Recessive bit but

observes a Dominant bit, this indicates that another node has overridden its Recessive bit. Therefore, the node

transmitting the Recessive bit has lost arbitration of the bus and should immediately become a Receiver.

The Arbitration Field primarily consists of the Frame Identifier that is transmitted most significant bit first. Given that

a Dominant bit represents a logical 0, and a Recessive bit represents a logical 1:

• A frame with the smallest ID value will always win arbitration.

Espressif Systems 537
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

• Given the same ID and format, Data Frames will always prevail over RTR Frames.

• Given the same first 11 bits of ID, a Standard Format Data Frame will prevail over an Extended Format Data

Frame due to the SRR being recessive.

Control Field

The control field primarily consists of the DLC (Data Length Code) which indicates the number of payload data

bytes for a Data Frame, or the number of requested data bytes for a Remote Frame. The DLC is transmitted most

significant bit first.

Data Field

The Data Field contains the actual payload data bytes of a Data Frame. Remote Frames do not contain a Data

Field.

CRC Field

The CRC Field primarily consists of a a CRC Sequence. The CRC Sequence is a 15-bit cyclic redundancy code

calculated form the de-stuffed contents (everything from the SOF to the end of the Data Field) of a Data or Remote

Frame.

ACK Field

The ACK Field primarily consists of an ACK Slot and an ACK Delim. The ACK Field is mainly intended for the

receiver to send a message to a transmitter, indicating it has received an effective message.

Table 211. Data Frames and Remote Frames in SFF and EFF

Data/Remote Frames Description

SOF The SOF (Start of Frame) is a single Dominant bit used to synchronize nodes on

the bus.

Base ID The Base ID (ID.28 to ID.18) is the 11-bit Identifier for SFF, or the first 11-bits of

the 29-bit Identifier for EFF.

RTR The RTR (Remote Transmission Request) bit indicates whether the message is

a Data Frame (Dominant) or a Remote Frame (Recessive). This means that a

Remote Frame will always lose arbitration to a Data Frame given they have the

same ID.

SRR The SRR (Substitute Remote Request) bit is transmitted in EFF to substitute for

the RTR bit at the same position in SFF.

IDE The IDE (Identifier Extension) bit indicates whether the message is SFF (Dominant)

or EFF (Recessive). This means that a SFF frame will always win arbitration over

an EFF frame given they have the same Base ID.

Extd ID The Extended ID (ID.17 to ID.0) is the remaining 18-bits of the 29-bit identifier for

EFF.

r1 The r1 (reserved bit 1) is always Dominant.

r0 The r0 (reserved bit 0) is always Dominant.

Espressif Systems 538
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Data/Remote Frames Description

DLC The DLC (Data Length Code) is 4-bits and should have a value from 0 to 8.

Data Frames use the DLC to indicate the number data bytes in the Data Frame.

Remote Frames used the DLC to indicate the number of data bytes to request

from another node.

Data Bytes The data payload of Data Frames. The number of bytes should match the value

of DLC. Data byte 0 is transmitted first, and each data byte is transmitted most

significant bit first.

CRC Sequence The CRC sequence is a 15-bit cyclic redundancy code.

CRC Delim The CRC Delim (CRC Delimeter) is a single Recessive bit that follows the CRC

sequence.

ACK Slot The ACK Slot (Acknowledgment Slot) that intended for Receiver nodes to indicate

that the Data or Remote Frame was received without issue. The Transmitter node

will send a Recessive bit in the ACK Slot and Receiver nodes should override the

ACK Slot with a Dominant bit if the frame was received without errors.

ACK Delim The ACK Delim (Acknowledgment Delimeter) is a single Recessive bit.

EOF The EOF (End of Frame) marks the end of a Data or Remote Frame, and consists

of seven Recessive bits.

21.3.2.2 Error and Overload Frames

Error Frames

Error Frames are transmitted when a node detects a Bus Error. Error Frames notably consist of an Error Flag which

is made up of 6 consecutive bits of the same value, thus violating the bit-stuffing rule. Therefore, when a particular

node detects a Bus Error and transmits an Error Frame, all other nodes will then detect a Stuff Error and transmit

their own Error Frames in response. This has the effect of propagating the detection of a Bus Error across all nodes

on the bus. When a node detects a Bus Error, it will transmit an Error Frame starting on the next bit. However,

if the type of Bus Error was a CRC Error, then the Error Frame will start at the bit following the ACK Delim (see

Section 21.3.3). The following Figure 21-2 shows the various fields of an Error Frame:

Figure 212. Various Fields of an Error Frame

Table 212. Error Frame

Error Frame Description

Error Flag The Error Flag has two forms, the Active Error Flag consisting of 6 Domi-

nant bits and the Passive Error Flag consisting of 6 Recessive bits (unless

overridden by Dominant bits of other nodes). Active Error Flags are sent

by Error Active nodes, whilst Passive Error Flags are sent by Error Passive

nodes.

Espressif Systems 539
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Error Frame Description

Error Flag Superposition The Error Flag Superposition field meant to allow for other nodes on the

bus to transmit their respective Active Error Flags. The superposition field

can range from 0 to 6 bits, and ends when the first Recessive bit is de-

tected (i.e., the first it of the Delimeter).

Error Delimeter The Delimeter field marks the end of the Error/Overload Frame, and con-

sists of 8 Recessive bits.

Overload Frames

An Overload Frame has the same bit fields as an Error Frame containing an Active Error Flag. The key difference

is in the conditions that can trigger the transmission of an Overload Frame. Figure 21-3 below shows the bit fields

of an Overload Frame.

Figure 213. The Bit Fields of an Overload Frame

Table 213. Overload Frame

Overload Frame Description

Overload Flag Consists of 6 Dominant bits. Same as an Active Error Flag.

Overload Flag Superposi-

tion

Allows for the superposition of Overload Flags from other nodes, similar to

an Error Flag Superposition.

Overload Delimeter Consists of 8 Recessive. Same as an Error Delimeter.

Overload Frames will be transmitted under the following conditions:

1. The internal conditions of a Receiver requires a delay of the next Data or Remote Frame.

2. Detection of a Dominant bit at the first and second bit of Intermission.

3. If a Dominant bit is detected at the eighth (last) bit of an Error Delimeter. Note that in this case, TEC and REC

will not be incremented (See Section 21.3.3).

Transmitting an overload frame due to one of the conditions must also satisfy the following rules:

• Transmitting an Overload Frame due to condition 1 must only be started at the first bit of Intermission.

• Transmitting an Overload Frame due to condition 2 and 3 must start one bit after the detecting the Dominant

bit of the condition.

• A maximum of two Overload frames may be generated in order to delay the next Data or Remote Frame.

Espressif Systems 540
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

21.3.2.3 Interframe Space

The Interframe Space acts as a separator between frames. Data Frames and Remote Frames must be separated

from preceding frames by an Interframe Space, regardless of the preceding frame’s type (Data Frame, Remote

Frame, Error Frame, Overload Frame). However, Error Frames and Overload Frames do not need to be separated

from preceding frames.

Figure 21-4 shows the fields within an Interframe Space:

Figure 214. The Fields within an Interframe Space

Table 214. Interframe Space

Interframe Space Description

Intermission The Intermission consists of 3 Recessive bits.

Suspend Transmission An Error Passive node that has just transmitted a message must include a

Suspend Transmission field. This field consists of 8 Recessive bits. Error

Active nodes should not include this field.

Bus Idle The Bus Idle field is of arbitrary length. Bus Idle ends when an SOF is

transmitted. If a node has a pending transmission, the SOF should be

transmitted at the first bit following Intermission.

21.3.3 TWAI Errors

21.3.3.1 Error Types

Bus Errors in TWAI are categorized into one of the following types:

Bit Error

A Bit Error occurs when a node transmits a bit value (i.e., Dominant or Recessive) but the opposite bit is detected

(e.g., a Dominant bit is transmitted but a Recessive is detected). However, if the transmitted bit is Recessive

and is located in the Arbitration Field or ACK Slot or Passive Error Flag, then detecting a Dominant bit will not be

considered a Bit Error.

Stuff Error

A stuff error is detected when 6 consecutive bits of the same value are detected (thus violating the bit-stuffing

encoding).

CRC Error

A Receiver of a Data or Remote Frame will calculate a CRC based on the bits it has received. A CRC error occurs

when the CRC calculated by the Receiver does not match the CRC sequence in the received Data or Remote

Frame.

Form Error

A Form Error is detected when a fixed-form bit field of a message contains an illegal bit. For example, the r1 and

Espressif Systems 541
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

r0 fields must be Dominant.

Acknowledgement Error

An Acknowledgment Error occurs when a Transmitter does not detect a Dominant bit at the ACK Slot.

21.3.3.2 Error States

TWAI nodes implement fault confinement by each maintaining two error counters, where the counter values de-

termine the error state. The two error counters are known as the Transmit Error Counter (TEC) and Receive Error

Counter (REC). TWAI has the following error states.

Error Active

An Error Active node is able to participate in bus communication and transmit an Active Error Flag when it detects

an error.

Error Passive

An Error Passive node is able to participate in bus communication, but can only transmit an Passive Error Flag

when it detects an error. Error Passive nodes that have transmitted a Data or Remote Frame must also include

the Suspend Transmission field in the subsequent Interframe Space.

Bus Off

A Bus Off node is not permitted to influence the bus in any way (i.e., is not allowed to transmit anything).

21.3.3.3 Error Counters

The TEC and REC are incremented/decremented according to the following rules. Note that more than one rule

can apply for a given message transfer.

1. When a Receiver detects an error, the REC will be increased by 1, except when the detected error was a Bit

Error during the transmission of an Active Error Flag or an Overload Flag.

2. When a Receiver detects a Dominant bit as the first bit after sending an Error Flag, the REC will be increased

by 8.

3. When a Transmitter sends an Error Flag the TEC is increased by 8. However, the following scenarios are

exempt form this rule:

• If a Transmitter is Error Passive that detects an Acknowledgment Error due to not detecting a Dominant

bit in the ACK slot, it should send a Passive Error Flag. If no Dominant bit is detected in that Passive

Error Flag, the TEC should not be increased.

• A Transmitter transmits an Error Flag due to a Stuff Error during Arbitration. If the offending bit should

have been Recessive but was monitored as Dominant, then the TEC should not be increased.

4. If a Transmitter detects a Bit Error whilst sending an Active Error Flag or Overload Flag, the REC is increased

by 8.

5. If a Receiver detects a Bit Error while sending an Active Error Flag or Overload Flag, the REC is increased by

8.

6. Any node tolerates up to 7 consecutive Dominant bits after sending an Active/Passive Error Flag, or Overload

Flag. After detecting the 14th consecutive Dominant bit (when sending an Active Error Flag or Overload Flag),

or the 8th consecutive Dominant bit following a Passive Error Flag, a Transmitter will increase its TEC by 8

Espressif Systems 542
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

and a Receiver will increase its REC by 8. Each additional eight consecutive Dominant bits will also increase

the TEC (for Transmitters) or REC (for Receivers) by 8 as well.

7. When a Transmitter successfully transmits a message (getting ACK and no errors until the EOF is complete),

the TEC is decremented by 1, unless the TEC is already at 0.

8. When a Receiver successfully receives a message (no errors before ACK Slot, and successful sending of

ACK), the REC is decremented.

• If the REC was between 1 and 127, the REC is decremented by 1.

• If the REC was greater than 127, the REC is set to 127.

• If the REC was 0, the REC remains 0.

9. A node becomes Error Passive when its TEC and/or REC is greater than or equal to 128. The error condition

that causes a node to become Error Passive will cause the node to send an Active Error Flag. Note that

once the REC has reached to 128, any further increases to its value are irrelevant until the REC returns to a

value less than 128.

10. A node becomes Bus Off when its TEC is greater than or equal to 256.

11. An Error Passive node becomes Error Active when both the TEC and REC are less than or equal to 127.

12. A Bus Off node can become Error Active (with both its TEC and REC reset to 0) after it monitors 128 occur-

rences of 11 consecutive Recessive bits on the bus.

21.3.4 TWAI Bit Timing

21.3.4.1 Nominal Bit

The TWAI protocol allows a TWAI bus to operate at a particular bit rate. However, all nodes within a TWAI bus

must operate at the same bit rate.

• The Nominal Bit Rate is defined as number of bits transmitted per second from an ideal Transmitter and

without any synchronization.

• The Nominal Bit Time is defined as 1/Nominal Bit Rate.

A single Nominal Bit Time is divided into multiple segments, and each segment is made up of multiple Time Quanta.

A Time Quantum is a fixed unit of time, and is implemented as some form of prescaled clock signal in each node.

Figure 21-5 illustrates the segments within a single Nominal Bit Time.

TWAI Controllers will operate in time steps of one Time Quanta where the state of the TWAI bus is analyzed at

every Time Quanta. If two consecutive Time Quantas have different bus states (i.e., Recessive to Dominant or vice

versa), this will be considered an edge. When the bus is analyzed at the intersection of PBS1 and PBS2, this is

considered the Sample Point and the sampled bus value is considered the value of that bit.

Table 215. Segments of a Nominal Bit Time

Segment Description

SS The SS (Synchronization Segment) is 1 Time Quantum long. If all nodes are perfectly

synchronized, the edge of a bit will lie in the SS.

PBS1 PBS1 (Phase Buffer Segment 1) can be 1 to 16 Time Quanta long. PBS1 is meant

to compensate for the physical delay times within the network. PBS1 can also be

lengthened for synchronization purposes.

Espressif Systems 543
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Segment Description

PBS2 PBS2 (Phase Buffer Segment 2) can be 1 to 8 Time Quanta long. PBS2 is meant to

compensate for the information processing time of nodes. PBS2 can also be shortened

for synchronization purposes.

21.3.4.2 Hard Synchronization and Resynchronization

Due to clock skew and jitter, the bit timing of nodes on the same bus may become out of phase. Therefore, a bit

edge may come before or after the SS. To ensure that the internal bit timing clocks of each node are kept in phase,

TWAI has various methods of synchronization. The Phase Error “e” is measured in the number of Time Quanta

and relative to the SS.

• A positive Phase Error (e > 0) is when the edge lies after the SS and before the Sample Point (i.e., the edge

is late).

• A negative Phase Error (e < 0) is when the edge lies after the Sample Point of the previous bit and before SS

(i.e., the edge is early).

To correct for Phase Errors, there are two forms of synchronization, known as Hard Synchronization and Resyn

chronization. Hard Synchronization and Resynchronization obey the following rules.

• Only one synchronization may occur in a single bit time.

• Synchronizations only occurs on Recessive to Dominant edges.

Hard Synchronization

Hard Synchronization occurs on the Recessive to Dominant edges during Bus Idle (i.e., the SOF bit). All nodes

will restart their internal bit timings such that the Recessive to Dominant edge lies within the SS of the restarted bit

timing.

Resynchronization

Resynchronization occurs on Recessive to Dominant edges not during Bus Idle. If the edge has a positive Phase

Error (e > 0), PBS1 is lengthened by a certain number of Time Quanta. If the edge has a negative Phase Error (e

< 0), PBS2 will be shortened by a certain number of Time Quanta.

The number of Time Quanta to lengthen or shorten depends on the magnitude of the Phase Error, and is also

limited by the Synchronization Jump Width (SJW) value which is a programmable.

• When the magnitude of the Phase Error is less than or equal to the SJW, PBS1/PBS2 are lengthened/shortened

by e number of Time Quanta. This has a same effect as Hard Synchronization.

• When the magnitude of the Phase Error is greater to the SJW, PBS1/PBS2 are lengthened/shortened by the

SJW number of Time Quanta. This means it may take multiple bits of synchronization before the Phase Error

is entirely corrected.

21.4 Architectural Overview
The ESP32 contains a TWAI Controller. Figure 21-6 shows the major functional blocks of the TWAI Controller.

21.4.1 Registers Block
The ESP32 CPU accesses peripherals as 32-bit aligned words. However, the majority of registers in the TWAI

controller only contain useful data at the least significant byte (bits [7:0]). Therefore, in these registers, bits [31:8]

are ignored on writes, and return 0 on reads.

Espressif Systems 544
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Figure 215. Layout of a Bit

Figure 216. TWAI Overview Diagram

Configuration Registers

The configuration registers store various configuration options for the TWAI controller such as bit rates, operating

mode, Acceptance Filter etc. Configuration registers can only be modified whilst the TWAI controller is in Reset

Mode (See Section 21.5.1).

Command Register

The command register is used by the CPU to drive the TWAI controller to initiate certain actions such as transmitting

a message or clearing the Receive Buffer. The command register can only be modified when the TWAI controller

is in Operation Mode (see section 21.5.1).

Interrupt & Status Registers

The interrupt register indicates what events have occurred in the TWAI controller (each event is represented by a

separate bit). The status register indicates the current status of the TWAI controller.

Espressif Systems 545
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Error Management Registers

The error management registers include error counters and capture registers. The error counter registers represent

TEC and REC values. The capture registers will record information about instances where TWAI controller detects

a bus error, or when it loses arbitration.

Transmit Buffer Registers

The transmit buffer is a 13-byte buffer used to store a TWAI message to be transmitted.

Receive Buffer Registers

The Receive Buffer is a 13-byte buffer which stores a single message. The Receive Buffer acts as a window into

Receive FIFO mapping to the first received message in the Receive FIFO to the Receive Buffer.

Note that the Transmit Buffer registers, Receive Buffer registers, and the Acceptance Filter registers share the same

address range (offset 0x0040 to 0x0070). Their access is governed by the following rules:

• When the TWAI controller is in Reset Mode, the address range maps to the Acceptance Filter registers.

• When the TWAI controller is in Operation Mode:

– All reads to the address range maps to the Receive Buffer registers.

– All writes to the address range maps to the Transmit Buffer registers.

21.4.2 Bit Stream Processor
The Bit Stream Processing (BSP) module is responsible for framing data from the Transmit Buffer (e.g. bit stuffing

and additional CRC fields) and generating a bit stream for the Bit Timing Logic (BTL) module. At the same time, the

BSP module is also responsible for processing the received bit stream (e.g., de-stuffing and verifying CRC) from

the BTL module and placing the message into the Receive FIFO. The BSP will also detect errors on the TWAI bus

and report them to the Error Management Logic (EML).

21.4.3 Error Management Logic
The Error Management Logic (EML) module is responsible for updating the TEC and REC, recording error informa-

tion like error types and positions, and updating the error state of the TWAI Controller such that the BSP module

generates the correct Error Flags. Furthermore, this module also records the bit position when the TWAI controller

loses arbitration.

21.4.4 Bit Timing Logic
The Bit Timing Logic (BTL) module is responsible for transmitting and receiving messages at the configured bit

rate. The BTL module also handles synchronization of out of phase bits such that communication remains stable.

A single bit time consists of multiple programmable segments that allows users to set the length of each segment

to account for factors such as propagation delay and controller processing time etc.

21.4.5 Acceptance Filter
The Acceptance Filter is a programmable message filtering unit that allows the TWAI controller to accept or reject

a received message based on the message’s ID field. Only accepted messages will be stored in the Receive FIFO.

The Acceptance Filter’s registers can be programmed to specify a single filter, or specify two separate filters (dual

filter mode).

Espressif Systems 546
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

21.4.6 Receive FIFO
The Receive FIFO is a 64-byte buffer (internal to the TWAI controller) that stores received messages accepted by

the Acceptance Filter. Messages in the Receive FIFO can vary in size (between 3 to 13-bytes). When the Receive

FIFO is full (or does not have enough space to store the next received message in its entirety), the Overrun Interrupt

will be triggered, and any subsequent received messages will be lost until adequate space is cleared in the Receive

FIFO. The first message in the Receive FIFO will be mapped to the 13-byte Receive Buffer until that message is

cleared (using the Release Receive Buffer command bit). After clearing, the Receive Buffer will map to the next

message in the Receive FIFO, and the space occupied by the previous message in the Receive FIFO can be used

to receive new messages.

21.5 Functional Description
21.5.1 Modes
The ESP32 TWAI controller has two working modes: Reset Mode and Operation Mode. Reset Mode and Operation

Mode are entered by setting the TWAI_RESET_MODE bit to 1 or 0 respectively.

21.5.1.1 Reset Mode

Entering Reset Mode is required in order to modify the various configuration registers of the TWAI controller. When

entering Reset Mode, the TWAI controller is essentially disconnected from the TWAI bus. When in Reset Mode, the

TWAI controller will not be able to transmit any messages (including error signaling). Any transmission in progress

is immediately terminated. Likewise, the TWAI controller will also not be able to receive any messages.

21.5.1.2 Operation Mode

Entering Operation Mode essentially connects the TWAI controller to the TWAI bus, and write protects the TWAI

controller’s configuration registers ensuring the configuration stays consistent during operation. When in Operation

Mode, the TWAI controller can transmit and receive messages (including error signaling) depending on which

operating sub-mode the TWAI controller was configured with. The TWAI controller supports the following operating

sub-modes:

• Normal Mode: The TWAI controller can transmit and receive messages including error signaling (such as

Error and Overload Frames).

• Self Test Mode: Like Normal Mode, but the TWAI controller will consider the transmission of a Data or

RTR Frame successful even if it was not acknowledged. This is commonly used when self testing the TWAI

controller.

• Listen Only Mode: The TWAI controller will be able to receive messages, but will remain completely passive

on the TWAI bus. Thus, the TWAI controller will not be able to transmit any messages, acknowledgments,

or error signals. The error counters will remain frozen. This mode is useful for TWAI bus monitors.

Note that when exiting Reset Mode (i.e., entering Operation Mode), the TWAI controller must wait for 11 consecutive

Recessive bits to occur before being able to fully connect the TWAI bus (i.e., be able to transmit or receive).

21.5.2 Bit Timing
The operating bit rate of the TWAI controller must be configured whilst the TWAI controller is in Reset Mode.

The bit rate configuration is located in TWAI_BUS_TIMING_0_REG and TWAI_BUS_TIMING_1_REG, and the two

registers contain the following fields:

Espressif Systems 547
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

The following Table 21-6 illustrates the bit fields of TWAI_BUS_TIMING_0_REG.

Table 216. Bit Information of TWAI_CLOCK_DIVIDER_REG; TWAI Address 0x18

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved SJW.1 SJW.0 BRP.5 BRP.4 BRP.3 BRP.2 BRP.1 BRP.0

Notes:

• SJW: Synchronization Jump Width (SJW) is configured in SJW.0 and SJW.1 where SJW = (2 x SJW.1 +

SJW.0 + 1).

• BRP: The TWAI Time Quanta clock is derived from a prescaled version of the APB clock that is usually 80

MHz. The Baud Rate Prescaler (BRP) field is used to define the prescaler according to the equation below,

where tTq is the Time Quanta clock period and tCLK is APB clock period :

tTq = 2 × tCLK × (25 × BRP.5 + 24 × BRP.4 + 23 × BRP.3 + 22 × BRP.2 + 21 × BRP.1 + 20 × BRP.0 + 1)

The following Table 21-7 illustrates the bit fields of TWAI_BUS_TIMING_1_REG.

Table 217. Bit Information of TWAI_BUS_TIMING_1_REG; TWAI Address 0x1c

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved SAM PBS2.2 PBS2.1 PBS2.0 PBS1.3 PBS1.2 PBS1.1 PBS1.0

Notes:

• PBS1: The number of Time Quanta in Phase Buffer Segment 1 is defined according to the following equation:

(8 x PBS1.3 + 4 x PBS1.2 + 2 x PBS1.1 + PBS1.0 + 1).

• PBS2: The number of Time Quanta in Phase Buffer Segment 2 is defined according to the following equation:

(4 x PBS2.2 + 2 x PBS2.1 + PBS2.0 + 1).

• SAM: Enables triple sampling if set to 1. This is useful for low/medium speed buses where filtering spikes on

the bus line is beneficial.

21.5.3 Interrupt Management
The ESP32 TWAI controller provides seven interrupts, each represented by a single bit in the TWAI_INT_RAW_REG.

For a particular interrupt to be triggered (i.e., its bit in TWAI_INT_RAW_REG set to 1), the interrupt’s corresponding

enable bit in TWAI_INT ENA_REG must be set.

The TWAI controller provides the seven following interrupts:

• Receive Interrupt

• Transmit Interrupt

• Error Warning Interrupt

• Data Overrun Interrupt

• Error Passive Interrupt

• Arbitration Lost Interrupt

Espressif Systems 548
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

• Bus Error Interrupt

The TWAI controller’s interrupt signal to the interrupt matrix will be asserted whenever one or more interrupt bits are

set in the TWAI_INT_RAW_REG, and deasserted when all bits in TWAI_INT_RAW_REG are cleared. The majority

of interrupt bits in TWAI_INT_RAW_REG are automatically cleared when the register is read. However, the Receive

Interrupt is an exception and can only be cleared the Receive FIFO is empty.

21.5.3.1 Receive Interrupt (RXI)

The Receive Interrupt (RXI) is asserted whenever the TWAI controller has received messages that are pending

to read from the Receive Buffer (i.e., when TWAI_RX_MESSAGE_CNT_REG > 0). Pending received messages

includes valid messages in the Receive FIFO and also overrun messages. The RXI will not be deasserted until all

pending received messages are cleared using the TWAI_RELEASE_BUF command bit.

21.5.3.2 Transmit Interrupt (TXI)

The Transmit Interrupt (TXI) is triggered whenever Transmit Buffer becomes free, indicating another message can

be loaded into the Transmit Buffer to be transmitted. The Transmit Buffer becomes free under the following sce-

narios:

• A message transmission has completed successfully (i.e., Acknowledged without any errors). Any failed

messages will automatically be retried.

• A single shot transmission has completed (successfully or unsuccessfully, indicated by the TWAI_TX_COMPLETE

bit).

• A message transmission was aborted using the TWAI_ABORT_TX command bit.

21.5.3.3 Error Warning Interrupt (EWI)

The Error Warning Interrupt (EWI) is triggered whenever there is a change to the TWAI_ERR_ST and TWAI_BUS_OFF_ST

bits of the TWAI_STATUS_REG (i.e., transition from 0 to 1 or vice versa). Thus, an EWI could indicate one of the

following events, depending on the values TWAI_ERR_ST and TWAI_BUS_OFF_ST at the moment the EWI is

triggered.

• If TWAI_ERR_ST = 0 and TWAI_BUS_OFF_ST = 0:

– If the TWAI controller was in the Error Active state, it indicates both the TEC and REC have returned

below the threshold value set by TWAI_ERR_WARNING_LIMIT_REG.

– If the TWAI controller was previously in the Bus Recovery state, it indicates that Bus Recovery has

completed successfully.

• If TWAI_ERR_ST = 1 and TWAI_BUS_OFF_ST = 0: The TEC or REC error counters have exceeded the

threshold value set by TWAI_ERR_WARNING_LIMIT_REG.

• If TWAI_ERR_ST = 1 and TWAI_BUS_OFF_ST = 1: The TWAI controller has entered the BUS_OFF state

(due to the TEC >= 256).

• If TWAI_ERR_ST = 0 and TWAI_BUS_OFF_ST = 1: The TWAI controller’s TEC has dropped below the

threshold value set by TWAI_ERR_WARNING_LIMIT_REG during BUS_OFF recovery.

Espressif Systems 549
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

21.5.3.4 Data Overrun Interrupt (DOI)

The Data Overrun Interrupt (DOI) is triggered when the message being read is overrun and invalid.

The DOI is only triggered on the first message that causes the Receive FIFO to overrun (i.e., the transition from the

Receive FIFO not being full to the Receive FIFO overrunning). Any subsequent overrun messages will not trigger

the DOI again. The DOI will only be able to trigger again when all received messages (valid or overrun) have been

cleared.

21.5.3.5 Error Passive Interrupt (TXI)

The Error Passive Interrupt (EPI) is triggered whenever the TWAI controller transitions from Error Active to Error

Passive, or vice versa.

21.5.3.6 Arbitration Lost Interrupt (ALI)

The Arbitration Lost Interrupt (ALI) is triggered whenever the TWAI controller is attempting to transmit a message

and loses arbitration. The bit position where the TWAI controller lost arbitration is automatically recorded in Arbitra-

tion Lost Capture register (TWAI_ARB LOST CAP_REG). When the ALI occurs again, the Arbitration Lost Capture

register will no longer record new bit location until it is cleared (via a read from the CPU).

21.5.3.7 Bus Error Interrupt (BEI)

The Bus Error Interrupt (BEI) is triggered whenever TWAI controller observes an error on the TWAI bus. When a bus

error occurs, the Bus Error type and its bit position are automatically recorded in the Error Code Capture register

(TWAI_ERR_CODE_CAP_REG). When the BEI occurs again, the Error Code Capture register will no longer record

new error information until it is cleared (via a read from the CPU).

21.5.4 Transmit and Receive Buffers

21.5.4.1 Overview of Buffers

Table 218. Buffer Layout for Standard Frame Format and Extended Frame Format

Standard Frame Format (SFF) Extended Frame Format (EFF)

TWAI address Content TWAI address Content

0x40 TX/RX frame information 0x40 TX/RX frame information

0x44 TX/RX identifier 1 0x44 TX/RX identifier 1

0x48 TX/RX identifier 2 0x48 TX/RX identifier 2

0x4c TX/RX data byte 1 0x4c TX/RX identifier 3

0x50 TX/RX data byte 2 0x50 TX/RX identifier 4

0x54 TX/RX data byte 3 0x54 TX/RX data byte 1

0x58 TX/RX data byte 4 0x58 TX/RX data byte 2

0x5c TX/RX data byte 5 0x5c TX/RX data byte 3

0x60 TX/RX data byte 6 0x60 TX/RX data byte 4

0x64 TX/RX data byte 7 0x64 TX/RX data byte 5

0x68 TX/RX data byte 8 0x68 TX/RX data byte 6

0x6c reserved 0x6c TX/RX data byte 7

0x70 reserved 0x70 TX/RX data byte 8

Espressif Systems 550
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Table 21-8 illustrates the layout of the Transmit Buffer and Receive Buffer registers. Both the Transmit and Receive

Buffer registers share the same address space and are only accessible when the TWAI controller is in Operation

Mode. CPU write operations will access the Transmit Buffer registers, and CPU read operations will access the

Receive Buffer registers. However, both buffers share the exact same register layout and fields to represent a

message (received or to be transmitted). The Transmit Buffer registers are used to configure a TWAI message to

be transmitted. The CPU would write to the Transmit Buffer registers specifying the message’s frame type, frame

format, frame ID, and frame data (payload). Once the Transmit Buffer is configured, the CPU would then initiate

the transmission by setting the TWAI_TX_REQ bit in TWAI_CMD_REG.

• For a self-reception request, set the TWAI_SELF_RX_REQ bit instead.

• For a single-shot transmission, set both the TWAI_TX_REQ and the TWAI_ABORT_TX simultaneously.

The Receive Buffer registers map to the first message in the Receive FIFO. The CPU would read the Receive

Buffer registers to obtain the first message’s frame type, frame format, frame ID, and frame data (payload). Once

the message has been read from the Receive Buffer registers, the CPU can set the TWAI_RELEASE_BUF bit in

TWAI_CMD_REG so that the next message in the Receive FIFO will be loaded in to the Receive Buffer regis-

ters.

21.5.4.2 Frame Information

The frame information is one byte long and specifies a message’s frame type, frame format, and length of data.

The frame information fields are shown in Table 21-9.

Table 219. TX/RX Frame Information (SFF/EFF)�TWAI Address 0x40

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved FF1 RTR2 X3 X3 XDLC.34 DLC.24 DLC.14 DLC.04

Notes:

• FF: The Frame Format (FF) bit specifies whether the message is Extended Frame Format (EFF) or Standard

Frame Format (SFF). The message is EFF when FF bit is 1, and SFF when FF bit is 0.

• RTR: The Remote Transmission Request (RTR) bit specifies whether the message is a Data Frame or a

Remote Frame. The message is a Remote Frame when the RTR bit is 1, and a Data Frame when the RTR

bit is 0.

• DLC: The Data Length Code (DLC) field specifies the number of data bytes for a Data Frame, or the number

of data bytes to request in a Remote Frame. TWAI Data Frames are limited to a maximum payload of 8 data

bytes, thus the DLC should range anywhere from 0 to 8.

• X: Don’t care, can be any value.

21.5.4.3 Frame Identifier

The Frame Identifier fields is 2 bytes (11-bits) if the message is SFF, and 4 bytes (29-bits) if the message is

EFF.

The Frame Identifier fields for an SFF (11-bits) message is shown in Table 21-10-21-11.

Espressif Systems 551
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Table 2110. TX/RX Identifier 1 (SFF); TWAI Address 0x44

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

Table 2111. TX/RX Identifier 2 (SFF); TWAI Address 0x48

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.20 ID.19 ID.18 X1 X2 X2 X2 X2

The Frame Identifier fields for an EFF (29-bits) message is shown in Table 21-12-21-15.

Table 2112. TX/RX Identifier 1 (EFF); TWAI Address 0x44

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

Table 2113. TX/RX Identifier 2 (EFF); TWAI Address 0x48

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

Table 2114. TX/RX Identifier 3 (EFF); TWAI Address 0x4c

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5

Table 2115. TX/RX Identifier 4 (EFF); TWAI Address 0x50

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ID.4 ID.3 ID.2 ID.1 ID.0 X1 X2 X2

21.5.4.4 Frame Data

The Frame Data fields contains the payload of transmitted or received a Data Frame, and can range from 0 to 8

bytes. The number of valid bytes should be equal to the DLC. However, if the DLC is larger than 8, the number of

valid bytes would still be limited to 8. Remote Frames do not have data payloads, thus the Frame Data fields will

be unused.

For example, when transmitting a Data Frame with 5 data bytes, the CPU should write a value of 5 to the DLC

field, and then fill in data bytes 1 to 5 in the Frame Data fields. Likewise, when receiving a Data Frame with a DLC

of 5, only data bytes 1 to 5 will contain valid payload data for the CPU to read.

21.5.5 Receive FIFO and Data Overruns
The Receive FIFO is a 64-byte internal buffer used to store received messages in First In First Out order. A single

received message can occupy between 3 to 13-bytes of space in the Receive FIFO, and their byte layout is identical

Espressif Systems 552
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

to the register layout of the Receive Buffer registers. The Receive Buffer registers are mapped to the bytes of the

first message in the Receive FIFO. When the TWAI controller receives a message, it will increment the value of

TWAI_RX_MESSAGE_COUNTER up to a maximum of 64. If there is adequate space in the Receive FIFO, the

message contents will be written into the Receive FIFO. Once a message has been read from the Receive Buffer,

the TWAI_RELEASE_BUF bit should be set. This will decrement TWAI_RX_MESSAGE_COUNTER and free the

space occupied by the first message in the Receive FIFO. The Receive Buffer will then map to the next message

in the Receive FIFO.

When the TWAI controller receives a message, but the Receive FIFO lacks the adequate free space to store

the received message in its entirety (either due to the message contents being larger than the free space in the

Receive FIFO, or the Receive FIFO being completely full), the Receive FIFO will internally mark overrun messages as

invalid. Subsequent overrun messages will still increment the TWAI_RX_MESSAGE_COUNTER up to a maximum

of 64.

To clear an overrun Receive FIFO, the TWAI_RELEASE_BUF must be called repeatedly called until TWAI_RX_

MESSAGE_COUNTER is 0. This has the effect of freeing all valid messages in the Receive FIFO and clearing all

overrun messages.

21.5.6 Acceptance Filter
The Acceptance Filter allows the TWAI controller to filter out received messages based on their ID (and optionally

their first data byte and frame type). Only accepted messages are passed on to the Receive FIFO. The use of

Acceptance Filters allows for a more lightweight operation of the TWAI controller (e.g., less use of Receive FIFO,

fewer Receive Interrupts) due to the TWAI Controller only needing to handle a subset of messages.

The Acceptance Filter configuration registers can only be accessed whilst the TWAI controller is in Reset Mode,

due to those registers sharing the same address space as the Transmit Buffer and Receive Buffer registers.

The registers consist of a 32-bit Acceptance Code Value and a 32-bit Acceptance Mask Value. The Code value

specifies a bit pattern in which each filtered bit of the message must match in order for the message to be accepted.

The Mask value is able to mask out certain bits of the Code value (i.e., set as “Don’t Care” bits). Each filtered bit

of the message must either match the acceptance code or be masked in order for the message to be accepted,

as demonstrated in Figure 21-7.

The TWAI Controller Acceptance Filter allows the 32-bit Code and Mask values to either define a single filter (i.e.,

Single Filter Mode), or two filters (i.e., Dual Filter Mode). How the Acceptance Filter interprets the 32-bit code

and mask values is dependent on whether Single Filter Mode is enabled, and the received message (i.e., SFF or

EFF).

Figure 217. Acceptance Filter

21.5.6.1 Single Filter Mode

Single Filter Mode is enabled by setting the TWAI_RX_FILTER_MODE bit to 1. This will cause the 32-bit code and

mask values to define a single filter. The single filter can filter the following bits of a Data or Remote Frame:

• SFF

Espressif Systems 553
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

– The entire 11-bit ID

– RTR bit

– Data byte 1 and Data byte 2

• EFF

– The entire 29-bit ID

– RTR bit

The following Figure 21-8 illustrates how the 32-bit code and mask values will be interpreted under Single Filter

Mode.

Figure 218. Single Filter Mode

21.5.6.2 Dual FIlter Mode

Dual Filter Mode is enabled by setting the TWAI_RX_FILTER_MODE bit to 0. This will cause the 32-bit code and

mask values to define a two separate filters, referred to as filter 1 or two. Under Dual Filter Mode, a message will

be accepted if it is accepted by one of the two filters.

The two filters can filter the following bits of a Data or Remote Frame:

• SFF

– The entire 11-bit ID

– RTR bit

– Data byte 1 (for filter 1 only)

• EFF

– The first 16 bits of the 29-bit ID

The following Figure 21-9 illustrates how the 32-bit code and mask values will be interpreted under Dual Filter

Mode.

Espressif Systems 554
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Figure 219. Dual Filter Mode

21.5.7 Error Management
The TWAI protocol requires that each TWAI node maintains the Transmit Error Count (TEC) and Receive Error Count

(REC). The value of both error counts determine the current error state of the TWAI controller (i.e., Error Active,

Error Passive, Bus-Off). The TWAI controller stores the TEC and REC values in the TWAI_TX_ERR_CNT_REG and

TWAI_RX_ERR_CNT_REG respectively, and can be read by the CPU at anytime. In addition to the error states, the

TWAI controller also offers an Error Warning Limit (EWL) feature that can warn the user regarding the occurrence

of severe bus errors before the TWAI controller enters the Error Passive state.

The current error state of the TWAI controller is indicated via a combination of the following values and status bits:

TEC, REC, TWAI_ERR_ST, and TWAI_BUS_OFF_ST. Certain changes to these values and bits will also trigger

interrupts, thus allowing the users to be notified of error state transitions (see section 21.5.3). The following figure

Espressif Systems 555
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

21-10 shows the relation between the error states, values and bits, and error state related interrupts.

Figure 2110. Error State Transition

21.5.7.1 Error Warning Limit

The Error Warning Limit (EWL) feature is a configurable threshold value for the TEC and REC, where if exceeded, will

trigger an interrupt. The EWL is intended to serve as a warning about severe TWAI bus errors, and is triggered be-

fore the TWAI controller enters the Error Passive state. The EWL is configured in the TWAI_ERR_WARNING_LIMIT_REG

and can only be configured whilst the TWAI controller is in Reset Mode. The TWAI_ERR_WARNING_LIMIT_REG

has a default value of 96. When the values of TEC and/or REC are larger than or equal to the EWL value, the

TWAI_ERR_ST bit is immediately set to 1. Likewise, when the values of both the TEC and REC are smaller than

the EWL value, the TWAI_ERR_ST bit is immediately reset to 0. The Error Warning Interrupt is triggered whenever

the value of the TWAI_ERR_ST bit (or the TWAI_BUS_OFF_ST) changes.

21.5.7.2 Error Passive

The TWAI controller is in the Error Passive state when the TEC or REC value exceeds 127. Likewise, when both

the TEC and REC are less than or equal to 127, the TWAI controller enters the Error Active state. The Error Passive

Interrupt is triggered whenever the TWAI controller transitions from the Error Active state to the Error Passive state

or vice versa.

21.5.7.3 BusOff and BusOff Recovery

The TWAI controller enters the Bus-Off state when the TEC value exceeds 255. On entering the Bus-Off state, the

TWAI controller will automatically do the following:

• Set REC to 0

• Set TEC to 127

• Set the TWAI_BUS_OFF_ST bit to 1

• Enter Reset Mode

The Error Warning Interrupt is triggered whenever the value of the TWAI_BUS_OFF_ST bit (or the TWAI_ERR_ST

bit) changes.

Espressif Systems 556
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

To return to the Error Active state, the TWAI controller must undergo Bus-Off recovery. Bus-Off recovery requires

the TWAI controller to observe 128 occurrences of 11 consecutive Recessive bits on the bus. To initiate Bus-

Off recovery (after entering the Bus-Off state), the TWAI controller should enter Operation Mode by setting the

TWAI_RESET_MODE bit to 0. The TEC tracks the progress of Bus-Off recovery by decrementing the TEC each

time the TWAI controller observes 11 consecutive Recessive bits. When Bus-Off recovery has completed (i.e.,

TEC has decremented from 127 to 0), the TWAI_BUS_OFF_ST bit will automatically be reset to 0, thus triggering

the Error Warning Interrupt.

21.5.8 Error Code Capture
The Error Code Capture (ECC) feature allows the TWAI controller to record the error type and bit position of a

TWAI bus error in the form of an error code. Upon detecting a TWAI bus error, the Bus Error Interrupt is trig-

gered and the error code is recorded in the TWAI_ERR_CODE_CAP_REG. Subsequent bus errors will trigger

the Bus Error Interrupt, but their error codes will not be recorded until the current error code is read from the

TWAI_ERR_CODE_CAP_REG.

The following Table 21-16 shows the fields of the TWAI_ERR_CODE_CAP_REG:

Table 2116. Bit Information of TWAI_ERR_CODE_CAP_REG; TWAI Address 0x30

Bit 31-8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ERRC.11 ERRC.01 DIR2 SEG.43 SEG.33 SEG.23 SEG.13 SEG.03

Notes:

• ERRC: The Error Code (ERRC) indicates the type of bus error: 00 for bit error, 01 for form error, 10 for stuff

error, 11 for other type of error.

• DIR: The Direction (DIR) indicates whether the TWAI controller was transmitting or receiving when the bus

error: 0 for Transmitter, 1 for Receiver.

• SEG: The Error Segment (SEG) indicates which segment of the TWAI message (i.e., bit position) the bus

error occurred at.

The following Table 21-17 shows how to interpret the SEG.0 to SEG.4 bits.

Table 2117. Bit Information of Bits SEG.4 SEG.0

Bit SEG.4 Bit SEG.3 Bit SEG.2 Bit SEG.1 Bit SEG.0 Description

0 0 0 1 1 start of frame

0 0 0 1 0 ID.28 to ID.21

0 0 1 1 0 ID.20 to ID.18

0 0 1 0 0 bit SRTR1

0 0 1 0 1 bit IDE2

0 0 1 1 1 ID.17 to ID.13

0 1 1 1 1 ID.12 to ID.5

0 1 1 1 0 ID.4 to ID.0

0 1 1 0 0 bit RTR

0 1 1 0 1 reserved bit 1

0 1 0 0 1 reserved bit 0

0 1 0 1 1 data length code

Espressif Systems 557
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Bit SEG.4 Bit SEG.3 Bit SEG.2 Bit SEG.1 Bit SEG.0 Description

0 1 0 1 0 data field

0 1 0 0 0 CRC sequence

1 1 0 0 0 CRC delimeter

1 1 0 0 1 acknowledge slot

1 1 0 1 1 acknowledge delimeter

1 1 0 1 0 end of frame

1 0 0 1 0 intermission

1 0 0 0 1 active error flag

1 0 1 1 0 passive error flag

1 0 0 1 1 tolerate dominant bits

1 0 1 1 1 error delimeter

1 1 1 0 0 overload flag

Notes:

• Bit RTR: under Standard Frame Format.

• Identifier Extension Bit: 0 for Standard Frame Format.

21.5.9 Arbitration Lost Capture
The Arbitration Lost Capture (ALC) feature allows the TWAI controller to record the bit position where it loses arbi-

tration. When the TWAI controller loses arbitration, the bit position is recorded in the TWAI_ARB LOST CAP_REG

and the Arbitration Lost Interrupt is triggered.

Subsequent loses in arbitration will trigger the Arbitration Lost Interrupt, but will not be recorded in the TWAI_ARB

LOST CAP_REG until the current Arbitration Lost Capture is read from the TWAI_ERR_CODE_CAP_REG.

Table 21-18 illustrates the bit fields of the TWAI_ERR_CODE_CAP_REG whilst Figure 21-11 illustrates the bit

positions of a TWAI message.

Table 2118. Bit Information of TWAI_ARB LOST CAP_REG; TWAI Address 0x2c

Bit 31-5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved BITNO.41 BITNO.31 BITNO.21 BITNO.11 BITNO.01

Notes:

• BITNO: Bit Number (BITNO) indicates the nth bit of a TWAI message where arbitration was lost.

Figure 2111. Positions of Arbitration Lost Bits

21.6 Register Summary

Espressif Systems 558
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Name Description Address Access

Configuration Registers

TWAI_MODE_REG Mode Register 0x3FF6B000 R/W

TWAI_BUS_TIMING_0_REG Bus Timing Register 0 0x3FF6B018 RO | R/W

TWAI_BUS_TIMING_1_REG Bus Timing Register 1 0x3FF6B01C RO | R/W

TWAI_ERR_WARNING_LIMIT_REG Error Warning Limit Register 0x3FF6B034 RO | R/W

TWAI_DATA_0_REG Data Register 0 0x3FF6B040 WO | R/W

TWAI_DATA_1_REG Data Register 1 0x3FF6B044 WO | R/W

TWAI_DATA_2_REG Data Register 2 0x3FF6B048 WO | R/W

TWAI_DATA_3_REG Data Register 3 0x3FF6B04C WO | R/W

TWAI_DATA_4_REG Data Register 4 0x3FF6B050 WO | R/W

TWAI_DATA_5_REG Data Register 5 0x3FF6B054 WO | R/W

TWAI_DATA_6_REG Data Register 6 0x3FF6B058 WO | R/W

TWAI_DATA_7_REG Data Register 7 0x3FF6B05C WO | R/W

TWAI_DATA_8_REG Data Register 8 0x3FF6B060 WO | RO

TWAI_DATA_9_REG Data Register 9 0x3FF6B064 WO | RO

TWAI_DATA_10_REG Data Register 10 0x3FF6B068 WO | RO

TWAI_DATA_11_REG Data Register 11 0x3FF6B06C WO | RO

TWAI_DATA_12_REG Data Register 12 0x3FF6B070 WO | RO

TWAI_CLOCK_DIVIDER_REG Clock Divider Register 0x3FF6B07C varies

Control Registers

TWAI_CMD_REG Command Register 0x3FF6B004 WO

Status Registers

TWAI_STATUS_REG Status Register 0x3FF6B008 RO

TWAI_ARB_LOST_CAP_REG Arbitration Lost Capture Register 0x3FF6B02C RO

TWAI_ERR_CODE_CAP_REG Error Code Capture Register 0x3FF6B030 RO

TWAI_RX_ERR_CNT_REG Receive Error Counter Register 0x3FF6B038 RO | R/W

TWAI_TX_ERR_CNT_REG Transmit Error Counter Register 0x3FF6B03C RO | R/W

TWAI_RX_MESSAGE_CNT_REG Receive Message Counter Regis-

ter

0x3FF6B074 RO

Interrupt Registers

TWAI_INT_RAW_REG Interrupt Register 0x3FF6B00C RO

TWAI_INT_ENA_REG Interrupt Enable Register 0x3FF6B010 R/W

21.7 Registers
The addresses in parenthesis besides register names are the register addresses relative to the TWAI base ad-

dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 21.6 Register Summary.

Espressif Systems 559
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Register 21.1. TWAI_MODE_REG (0x0000)

(re
se

rve
d)

0 0

31 4

TW
AI_R

X_
FIL

TE
R_M

ODE

0

3

TW
AI_S

ELF
_T

EST_
M

ODE

0

2

TW
AI_L

IS
TE

N_O
NLY

_M
ODE

0

1

TW
AI_R

ESET_
M

ODE

1

0

Reset

TWAI_RESET_MODE This bit is used to configure the operating mode of the TWAI Controller. 1:

Reset mode; 0: Operating mode (R/W)

TWAI_LISTEN_ONLY_MODE 1: Listen only mode. In this mode the nodes will only receive messages

from the bus, without generating the acknowledge signal nor updating the RX error counter. (R/W)

TWAI_SELF_TEST_MODE 1: Self test mode. In this mode the TX nodes can perform a successful

transmission without receiving the acknowledge signal. This mode is often used to test a single

node with the self reception request command. (R/W)

TWAI_RX_FILTER_MODE This bit is used to configure the filter mode. 0: Dual filter mode; 1: Single

filter mode (R/W)

Register 21.2. TWAI_BUS_TIMING_0_REG (0x0018)

(re
se

rve
d)

0 0

31 8

TW
AI_S

YNC_J
UM

P_W
ID

TH

0x0

7 6

TW
AI_B

AUD_P
RESC

0x00

5 0

Reset

TWAI_BAUD_PRESC Baud Rate Prescaler, determines the frequency dividing ratio. (RO | R/W)

TWAI_SYNC_JUMP_WIDTH Synchronization Jump Width (SJW), 1 ~ 4 Tq wide. (RO | R/W)

Espressif Systems 560
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Register 21.3. TWAI_BUS_TIMING_1_REG (0x001C)

(re
se

rve
d)

0 0

31 8

TW
AI_T

IM
E_S

AM
P

0

7

TW
AI_T

IM
E_S

EG2

0x0

6 4

TW
AI_T

IM
E_S

EG1

0x0

3 0

Reset

TWAI_TIME_SEG1 The width of PBS1. (RO | R/W)

TWAI_TIME_SEG2 The width of PBS2. (RO | R/W)

TWAI_TIME_SAMP The number of sample points. 0: the bus is sampled once; 1: the bus is sampled

three times (RO | R/W)

Register 21.4. TWAI_ERR_WARNING_LIMIT_REG (0x0034)

(re
se

rve
d)

0 0

31 8

TW
AI_E

RR_W
ARNIN

G_L
IM

IT

0x60

7 0

Reset

TWAI_ERR_WARNING_LIMIT Error warning threshold. In the case when any of a error counter value

exceeds the threshold, or all the error counter values are below the threshold, an error warning

interrupt will be triggered (given the enable signal is valid). (RO | R/W)

Espressif Systems 561
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Register 21.5. TWAI_DATA_0_REG (0x0040)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_0
| T

W
AI_A

CCEPTA
NCE_C

ODE_0

0x0

7 0

Reset

TWAI_TX_BYTE_0 Stored the 0th byte information of the data to be transmitted under operating

mode. (WO)

TWAI_ACCEPTANCE_CODE_0 Stored the 0th byte of the filter code under reset mode. (R/W)

Register 21.6. TWAI_DATA_1_REG (0x0044)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_1
| T

W
AI_A

CCEPTA
NCE_C

ODE_1

0x0

7 0

Reset

TWAI_TX_BYTE_1 Stored the 1st byte information of the data to be transmitted under operating

mode. (WO)

TWAI_ACCEPTANCE_CODE_1 Stored the 1st byte of the filter code under reset mode. (R/W)

Espressif Systems 562
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Register 21.7. TWAI_DATA_2_REG (0x0048)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_2
| T

W
AI_A

CCEPTA
NCE_C

ODE_2

0x0

7 0

Reset

TWAI_TX_BYTE_2 Stored the 2nd byte information of the data to be transmitted under operating

mode. (WO)

TWAI_ACCEPTANCE_CODE_2 Stored the 2nd byte of the filter code under reset mode. (R/W)

Register 21.8. TWAI_DATA_3_REG (0x004C)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_3
| T

W
AI_A

CCEPTA
NCE_C

ODE_3

0x0

7 0

Reset

TWAI_TX_BYTE_3 Stored the 3rd byte information of the data to be transmitted under operating

mode. (WO)

TWAI_ACCEPTANCE_CODE_3 Stored the 3rd byte of the filter code under reset mode. (R/W)

Espressif Systems 563
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Register 21.9. TWAI_DATA_4_REG (0x0050)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_4
| T

W
AI_A

CCEPTA
NCE_M

ASK_0

0x0

7 0

Reset

TWAI_TX_BYTE_4 Stored the 4th byte information of the data to be transmitted under operating

mode. (WO)

TWAI_ACCEPTANCE_MASK_0 Stored the 0th byte of the filter code under reset mode. (R/W)

Register 21.10. TWAI_DATA_5_REG (0x0054)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_5
| T

W
AI_A

CCEPTA
NCE_M

ASK_1

0x0

7 0

Reset

TWAI_TX_BYTE_5 Stored the 5th byte information of the data to be transmitted under operating

mode. (WO)

TWAI_ACCEPTANCE_MASK_1 Stored the 1st byte of the filter code under reset mode. (R/W)

Espressif Systems 564
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Register 21.11. TWAI_DATA_6_REG (0x0058)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_6
| T

W
AI_A

CCEPTA
NCE_M

ASK_2

0x0

7 0

Reset

TWAI_TX_BYTE_6 Stored the 6th byte information of the data to be transmitted under operating

mode. (WO)

TWAI_ACCEPTANCE_MASK_2 Stored the 2nd byte of the filter code under reset mode. (R/W)

Register 21.12. TWAI_DATA_7_REG (0x005C)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_7
| T

W
AI_A

CCEPTA
NCE_M

ASK_3

0x0

7 0

Reset

TWAI_TX_BYTE_7 Stored the 7th byte information of the data to be transmitted under operating

mode. (WO)

TWAI_ACCEPTANCE_MASK_3 Stored the 3rd byte of the filter code under reset mode. (R/W)

Espressif Systems 565
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Register 21.13. TWAI_DATA_8_REG (0x0060)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_8

0x0

7 0

Reset

TWAI_TX_BYTE_8 Stored the 8th byte information of the data to be transmitted under operating

mode. (WO)

Register 21.14. TWAI_DATA_9_REG (0x0064)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_9

0x0

7 0

Reset

TWAI_TX_BYTE_9 Stored the 9th byte information of the data to be transmitted under operating

mode. (WO)

Register 21.15. TWAI_DATA_10_REG (0x0068)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_1
0

0x0

7 0

Reset

TWAI_TX_BYTE_10 Stored the 10th byte information of the data to be transmitted under operating

mode. (WO)

Espressif Systems 566
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Register 21.16. TWAI_DATA_11_REG (0x006C)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_1
1

0x0

7 0

Reset

TWAI_TX_BYTE_11 Stored the 11th byte information of the data to be transmitted under operating

mode. (WO)

Register 21.17. TWAI_DATA_12_REG (0x0070)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
BYTE

_1
2

0x0

7 0

Reset

TWAI_TX_BYTE_12 Stored the 12th byte information of the data to be transmitted under operating

mode. (WO)

Register 21.18. TWAI_CLOCK_DIVIDER_REG (0x007C)

(re
se

rve
d)

0 0

31 8

TW
AI_E

XT
_M

ODE

1

7

(re
se

rve
d)

0

6 4

TW
AI_C

LO
CK_O

FF

0

3

TW
AI_C

D

0x0

2 0

Reset

TWAI_CD These bits are used to configure frequency dividing coefficients of the external CLKOUT

pin. (R/W)

TWAI_CLOCK_OFF This bit can be configured under reset mode. 1: Disable the external CLKOUT

pin; 0: Enable the external CLKOUT pin (RO | R/W)

TWAI_EXT_MODE This bit can be configured under reset mode. 1: Extended mode, compatiable

with CAN2.0B; 0: Basic mode (RO | R/W)

Espressif Systems 567
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Register 21.19. TWAI_CMD_REG (0x0004)

(re
se

rve
d)

0 0

31 5

TW
AI_S

ELF
_R

X_
REQ

0

4

TW
AI_C

LR
_O

VERRUN

0

3

TW
AI_R

ELE
ASE_B

UF

0

2

TW
AI_A

BORT_
TX

0

1

TW
AI_T

X_
REQ

0

0

Reset

TWAI_TX_REQ Set the bit to 1 to allow the driving nodes start transmission. (WO)

TWAI_ABORT_TX Set the bit to 1 to cancel a pending transmission request. (WO)

TWAI_RELEASE_BUF Set the bit to 1 to release the RX buffer. (WO)

TWAI_CLR_OVERRUN Set the bit to 1 to clear the data overrun status bit. (WO)

TWAI_SELF_RX_REQ Self reception request command. Set the bit to 1 to allow a message be

transmitted and received simultaneously. (WO)

Register 21.20. TWAI_STATUS_REG (0x0008)

(re
se

rve
d)

0 0

31 8

TW
AI_B

US_O
FF

_S
T

0

7

TW
AI_E

RR_S
T

0

6

TW
AI_T

X_
ST

0

5

TW
AI_R

X_
ST

0

4

TW
AI_T

X_
COM

PLE
TE

1

3

TW
AI_T

X_
BUF_

ST

1

2

TW
AI_O

VERRUN_S
T

0

1

TW
AI_R

X_
BUF_

ST

0

0

Reset

TWAI_RX_BUF_ST 1: The data in the RX buffer is not empty, with at least one received data packet.

(RO)

TWAI_OVERRUN_ST 1: The RX FIFO is full and data overrun has occurred. (RO)

TWAI_TX_BUF_ST 1: The TX buffer is empty, the CPU may write a message into it. (RO)

TWAI_TX_COMPLETE 1: The TWAI controller has successfully received a packet from the bus. (RO)

TWAI_RX_ST 1: The TWAI Controller is receiving a message from the bus. (RO)

TWAI_TX_ST 1: The TWAI Controller is transmitting a message to the bus. (RO)

TWAI_ERR_ST 1: At least one of the RX/TX error counter has reached or exceeded the value set in

register TWAI_ERR_WARNING_LIMIT_REG. (RO)

TWAI_BUS_OFF_ST 1: In bus-off status, the TWAI Controller is no longer involved in bus activities.

(RO)

Espressif Systems 568
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Register 21.21. TWAI_ARB LOST CAP_REG (0x002C)

(re
se

rve
d)

0 0

31 5

TW
AI_A

RB_L
OST_

CAP

0x0

4 0

Reset

TWAI_ARB_LOST_CAP This register contains information about the bit position of lost arbitration.

(RO)

Register 21.22. TWAI_ERR_CODE_CAP_REG (0x0030)

(re
se

rve
d)

0 0

31 8

TW
AI_E

CC_T
YPE

0x0

7 6

TW
AI_E

CC_D
IR

ECTIO
N

0

5

TW
AI_E

CC_S
EGM

ENT

0x0

4 0

Reset

TWAI_ECC_SEGMENT This register contains information about the location of errors, see Table 21-

16 for details. (RO)

TWAI_ECC_DIRECTION This register contains information about transmission direction of the node

when error occurs. 1: Error occurs when receiving a message; 0: Error occurs when transmitting

a message (RO)

TWAI_ECC_TYPE This register contains information about error types: 00: bit error; 01: form error;

10: stuff error; 11: other type of error (RO)

Register 21.23. TWAI_RX_ERR_CNT_REG (0x0038)

(re
se

rve
d)

0 0

31 8

TW
AI_R

X_
ERR_C

NT

0x0

7 0

Reset

TWAI_RX_ERR_CNT The RX error counter register, reflects value changes under reception status.

(RO | R/W)

Espressif Systems 569
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Register 21.24. TWAI_TX_ERR_CNT_REG (0x003C)

(re
se

rve
d)

0 0

31 8

TW
AI_T

X_
ERR_C

NT

0x0

7 0

Reset

TWAI_TX_ERR_CNT The TX error counter register, reflects value changes under transmission status.

(RO | R/W)

Register 21.25. TWAI_RX_MESSAGE_CNT_REG (0x0074)

(re
se

rve
d)

0 0

31 7

TW
AI_R

X_
M

ESSAGE_C
OUNTE

R

0x0

6 0

Reset

TWAI_RX_MESSAGE_COUNTER This register reflects the number of messages available within the

RX FIFO. (RO)

Espressif Systems 570
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Register 21.26. TWAI_INT_RAW_REG (0x000C)

(re
se

rve
d)

0 0

31 8

TW
AI_B

US_E
RR_IN

T_
ST

0

7

TW
AI_A

RB_L
OST_

IN
T_

ST

0

6

TW
AI_E

RR_P
ASSIVE_IN

T_
ST

0

5

(re
se

rve
d)

0

4

TW
AI_O

VERRUN_IN
T_

ST

0

3

TW
AI_E

RR_W
ARN_IN

T_
ST

0

2

TW
AI_T

X_
IN

T_
ST

0

1

TW
AI_R

X_
IN

T_
ST

0

0

Reset

TWAI_RX_INT_ST Receive interrupt. If this bit is set to 1, it indicates there are messages to be

handled in the RX FIFO. (RO)

TWAI_TX_INT_ST Transmit interrupt. If this bit is set to 1, it indicates the message transmitting mis-

sion is finished and a new transmission is able to execute. (RO)

TWAI_ERR_WARN_INT_ST Error warning interrupt. If this bit is set to 1, it indicates the error status

signal and the bus-off status signal of Status register have changed (e.g., switched from 0 to 1 or

from 1 to 0). (RO)

TWAI_OVERRUN_INT_ST Data overrun interrupt. If this bit is set to 1, it indicates the data in the RX

FIFO is invalid. (RO)

TWAI_ERR_PASSIVE_INT_ST Error passive interrupt. If this bit is set to 1, it indicates the TWAI

Controller is switched between error active status and error passive status due to the change of

error counters. (RO)

TWAI_ARB_LOST_INT_ST Arbitration lost interrupt. If this bit is set to 1, it indicates an arbitration

lost interrupt is generated. (RO)

TWAI_BUS_ERR_INT_ST Error interrupt. If this bit is set to 1, it indicates an error is detected on the

bus. (RO)

Espressif Systems 571
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

21 Two-wire Automotive Interface (TWAI)

Register 21.27. TWAI_INT ENA_REG (0x0010)

(re
se

rve
d)

0 0

31 8

TW
AI_B

US_E
RR_IN

T_
ENA

0

7

TW
AI_A

RB_L
OST_

IN
T_

ENA

0

6

TW
AI_E

RR_P
ASSIVE_IN

T_
ENA

0

5

(re
se

rve
d)

0

4

TW
AI_O

VERRUN_IN
T_

ENA

0

3

TW
AI_E

RR_W
ARN_IN

T_
ENA

0

2

TW
AI_T

X_
IN

T_
ENA

0

1

TW
AI_R

X_
IN

T_
ENA

0

0

Reset

TWAI_RX_INT_ENA Set this bit to 1 to enable receive interrupt. (R/W)

TWAI_TX_INT_ENA Set this bit to 1 to enable transmit interrupt. (R/W)

TWAI_ERR_WARN_INT_ENA Set this bit to 1 to enable error warning interrupt. (R/W)

TWAI_OVERRUN_INT_ENA Set this bit to 1 to enable data overrun interrupt. (R/W)

TWAI_ERR_PASSIVE_INT_ENA Set this bit to 1 to enable error passive interrupt. (R/W)

TWAI_ARB_LOST_INT_ENA Set this bit to 1 to enable arbitration lost interrupt. (R/W)

TWAI_BUS_ERR_INT_ENA Set this bit to 1 to enable error interrupt. (R/W)

Espressif Systems 572
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

22 AES Accelerator (AES)

22 AES Accelerator (AES)

22.1 Introduction
The AES Accelerator speeds up AES operations significantly, compared to AES algorithms implemented solely

in software. The AES Accelerator supports six algorithms of FIPS PUB 197, specifically AES-128, AES-192 and

AES-256 encryption and decryption.

22.2 Features
• Supports AES-128 encryption and decryption

• Supports AES-192 encryption and decryption

• Supports AES-256 encryption and decryption

• Supports four variations of key endianness and four variations of text endianness

22.3 Functional Description
22.3.1 AES Algorithm Operations
The AES Accelerator supports six algorithms of FIPS PUB 197, specifically AES-128, AES-192 and AES-256

encryption and decryption. The AES_MODE_REG register can be configured to different values to enable different

algorithm operations, as shown in Table 22-1.

Table 221. Operation Mode

AES_MODE_REG[2:0] Operation

0 AES-128 Encryption

1 AES-192 Encryption

2 AES-256 Encryption

4 AES-128 Decryption

5 AES-192 Decryption

6 AES-256 Decryption

22.3.2 Key, Plaintext and Ciphertext
The encryption or decryption key is stored in AES_KEY_n_REG, which is a set of eight 32-bit registers. For AES-

128 encryption/decryption, the 128-bit key is stored in AES_KEY_0_REG ~ AES_KEY_3_REG. For AES-192 en-

cryption/decryption, the 192-bit key is stored in AES_KEY_0_REG ~ AES_KEY_5_REG. For AES-256 encryp-

tion/decryption, the 256-bit key is stored in AES_KEY_0_REG ~ AES_KEY_7_REG.

Plaintext and ciphertext is stored in the AES_TEXT_m_REG registers. There are four 32-bit registers. To enable

AES-128/192/256 encryption, initialize the AES_TEXT_m_REG registers with plaintext before encryption. When

encryption is finished, the AES Accelerator will store back the resulting ciphertext in the AES_TEXT_m_REG reg-

isters. To enable AES-128/192/256 decryption, initialize the AES_TEXT_m_REG registers with ciphertext be-

fore decryption. When decryption is finished, the AES Accelerator will store back the resulting plaintext in the

AES_TEXT_m_REG registers.

22.3.3 Endianness
Key Endianness

Espressif Systems 573
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

22 AES Accelerator (AES)

Bit 0 and bit 1 in AES_ENDIAN_REG define the key endianness. For detailed information, please see Table 22-3,

Table 22-4 and Table 22-5. w[0] ~ w[3] in Table 22-3, w[0] ~ w[5] in Table 22-4 and w[0] ~ w[7] in Table 22-5 are

“the first Nk words of the expanded key” as specified in “5.2: Key Expansion” of FIPS PUB 197. “Column Bit”

specifies the bytes in the word from w[0] to w[7]. The bytes of AES_KEY_n_REG comprise “the first Nk words of

the expanded key”.

Text Endianness

Bit 2 and bit 3 in AES_ENDIAN_REG define the endianness of input text, while Bit 4 and Bit 5 define the endianness

of output text. The input text refers to the plaintext in AES-128/192/256 encryption and the ciphertext in decryption.

The output text refers to the ciphertext in AES-128/192/256 encryption and the plaintext in decryption. For details,

please see Table 22-2. “State” in Table 22-2 is defined as that in “3.4: The State” of FIPS PUB 197: “The AES

algorithm operations are performed on a two-dimensional array of bytes called the State”. The ciphertext or

plaintexts stored in each byte of AES_TEXT_m_REG comprise the State.

Table 222. AES Text Endianness

AES_ENDIAN_REG[3]/[5] AES_ENDIAN_REG[2]/[4] Plaintext/Ciphertext

0 0

State
c

0 1 2 3

r

0 AES_TEXT_3_REG[31:24] AES_TEXT_2_REG[31:24] AES_TEXT_1_REG[31:24] AES_TEXT_0_REG[31:24]

1 AES_TEXT_3_REG[23:16] AES_TEXT_2_REG[23:16] AES_TEXT_1_REG[23:16] AES_TEXT_0_REG[23:16]

2 AES_TEXT_3_REG[15:8] AES_TEXT_2_REG[15:8] AES_TEXT_1_REG[15:8] AES_TEXT_0_REG[15:8]

3 AES_TEXT_3_REG[7:0] AES_TEXT_2_REG[7:0] AES_TEXT_1_REG[7:0] AES_TEXT_0_REG[7:0]

0 1

State
c

0 1 2 3

r

0 AES_TEXT_3_REG[7:0] AES_TEXT_2_REG[7:0] AES_TEXT_1_REG[7:0] AES_TEXT_0_REG[7:0]

1 AES_TEXT_3_REG[15:8] AES_TEXT_2_REG[15:8] AES_TEXT_1_REG[15:8] AES_TEXT_0_REG[15:8]

2 AES_TEXT_3_REG[23:16] AES_TEXT_2_REG[23:16] AES_TEXT_1_REG[23:16] AES_TEXT_0_REG[23:16]

3 AES_TEXT_3_REG[31:24] AES_TEXT_2_REG[31:24] AES_TEXT_1_REG[31:24] AES_TEXT_0_REG[31:24]

1 0

State
c

0 1 2 3

r

0 AES_TEXT_0_REG[31:24] AES_TEXT_1_REG[31:24] AES_TEXT_2_REG[31:24] AES_TEXT_3_REG[31:24]

1 AES_TEXT_0_REG[23:16] AES_TEXT_1_REG[23:16] AES_TEXT_2_REG[23:16] AES_TEXT_3_REG[23:16]

2 AES_TEXT_0_REG[15:8] AES_TEXT_1_REG[15:8] AES_TEXT_2_REG[15:8] AES_TEXT_3_REG[15:8]

3 AES_TEXT_0_REG[7:0] AES_TEXT_1_REG[7:0] AES_TEXT_2_REG[7:0] AES_TEXT_3_REG[7:0]

1 1

State
c

0 1 2 3

r

0 AES_TEXT_0_REG[7:0] AES_TEXT_1_REG[7:0] AES_TEXT_2_REG[7:0] AES_TEXT_3_REG[7:0]

1 AES_TEXT_0_REG[15:8] AES_TEXT_1_REG[15:8] AES_TEXT_2_REG[15:8] AES_TEXT_3_REG[15:8]

2 AES_TEXT_0_REG[23:16] AES_TEXT_1_REG[23:16] AES_TEXT_2_REG[23:16] AES_TEXT_3_REG[23:16]

3 AES_TEXT_0_REG[31:24] AES_TEXT_1_REG[31:24] AES_TEXT_2_REG[31:24] AES_TEXT_3_REG[31:24]

Espressif Systems 574
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

22
A

E
S

A
ccelerator

(A
E

S
)

Table 223. AES128 Key Endianness

AES_ENDIAN_REG[1] AES_ENDIAN_REG[0] Bit w[0] w[1] w[2] w[3]

0 0

[31:24] AES_KEY_3_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_0_REG[31:24]

[23:16] AES_KEY_3_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_0_REG[23:16]

[15:8] AES_KEY_3_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_0_REG[15:8]

[7:0] AES_KEY_3_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_0_REG[7:0]

0 1

[31:24] AES_KEY_3_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_0_REG[7:0]

[23:16] AES_KEY_3_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_0_REG[15:8]

[15:8] AES_KEY_3_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_0_REG[23:16]

[7:0] AES_KEY_3_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_0_REG[31:24]

1 0

[31:24] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24]

[23:16] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16]

[15:8] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8]

[7:0] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0]

1 1

[31:24] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0]

[23:16] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8]

[15:8] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16]

[7:0] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24]

Table 224. AES192 Key Endianness

AES_ENDIAN_REG[1] AES_ENDIAN_REG[0] Bit w[0] w[1] w[2] w[3] w[4] w[5]

0 0

[31:24] AES_KEY_5_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_0_REG[31:24]

[23:16] AES_KEY_5_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_0_REG[23:16]

[15:8] AES_KEY_5_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_0_REG[15:8]

[7:0] AES_KEY_5_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_0_REG[7:0]

0 1

[31:24] AES_KEY_5_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_0_REG[7:0]

[23:16] AES_KEY_5_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_0_REG[15:8]

[15:8] AES_KEY_5_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_0_REG[23:16]

[7:0] AES_KEY_5_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_0_REG[31:24]

1 0

[31:24] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_5_REG[31:24]

[23:16] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_5_REG[23:16]

[15:8] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_5_REG[15:8]

[7:0] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_5_REG[7:0]

1 1

[31:24] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_5_REG[7:0]

[23:16] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_5_REG[15:8]

[15:8] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_5_REG[23:16]

[7:0] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_5_REG[31:24]

Table 225. AES256 Key Endianness

AES_ENDIAN_REG[1] AES_ENDIAN_REG[0] Bit w[0] w[1] w[2] w[3] w[4] w[5] w[6] w[7]

0 0

[31:24] AES_KEY_7_REG[31:24] AES_KEY_6_REG[31:24] AES_KEY_5_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_0_REG[31:24]

[23:16] AES_KEY_7_REG[23:16] AES_KEY_6_REG[23:16] AES_KEY_5_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_0_REG[23:16]

[15:8] AES_KEY_7_REG[15:8] AES_KEY_6_REG[15:8] AES_KEY_5_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_0_REG[15:8]

[7:0] AES_KEY_7_REG[7:0] AES_KEY_6_REG[7:0] AES_KEY_5_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_0_REG[7:0]

0 1

[31:24] AES_KEY_7_REG[7:0] AES_KEY_6_REG[7:0] AES_KEY_5_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_0_REG[7:0]

[23:16] AES_KEY_7_REG[15:8] AES_KEY_6_REG[15:8] AES_KEY_5_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_0_REG[15:8]

[15:8] AES_KEY_7_REG[23:16] AES_KEY_6_REG[23:16] AES_KEY_5_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_0_REG[23:16]

[7:0] AES_KEY_7_REG[31:24] AES_KEY_6_REG[31:24] AES_KEY_5_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_0_REG[31:24]

1 0

[31:24] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_5_REG[31:24] AES_KEY_6_REG[31:24] AES_KEY_7_REG[31:24]

[23:16] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_5_REG[23:16] AES_KEY_6_REG[23:16] AES_KEY_7_REG[23:16]

[15:8] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_5_REG[15:8] AES_KEY_6_REG[15:8] AES_KEY_7_REG[15:8]

[7:0] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_5_REG[7:0] AES_KEY_6_REG[7:0] AES_KEY_7_REG[7:0]

1 1

[31:24] AES_KEY_0_REG[7:0] AES_KEY_1_REG[7:0] AES_KEY_2_REG[7:0] AES_KEY_3_REG[7:0] AES_KEY_4_REG[7:0] AES_KEY_5_REG[7:0] AES_KEY_6_REG[7:0] AES_KEY_7_REG[7:0]

[23:16] AES_KEY_0_REG[15:8] AES_KEY_1_REG[15:8] AES_KEY_2_REG[15:8] AES_KEY_3_REG[15:8] AES_KEY_4_REG[15:8] AES_KEY_5_REG[15:8] AES_KEY_6_REG[15:8] AES_KEY_7_REG[15:8]

[15:8] AES_KEY_0_REG[23:16] AES_KEY_1_REG[23:16] AES_KEY_2_REG[23:16] AES_KEY_3_REG[23:16] AES_KEY_4_REG[23:16] AES_KEY_5_REG[23:16] AES_KEY_6_REG[23:16] AES_KEY_7_REG[23:16]

[7:0] AES_KEY_0_REG[31:24] AES_KEY_1_REG[31:24] AES_KEY_2_REG[31:24] AES_KEY_3_REG[31:24] AES_KEY_4_REG[31:24] AES_KEY_5_REG[31:24] AES_KEY_6_REG[31:24] AES_KEY_7_REG[31:24]

E
spressifS

ystem
s

575
S

ubm
itD

ocum
entation

Feedback
E

S
P

32
TR

M
(Version

4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

22 AES Accelerator (AES)

22.3.4 Encryption and Decryption Operations
Single Operation

1. Initialize AES_MODE_REG, AES_KEY_n_REG, AES_TEXT_m_REG and AES_ENDIAN_REG.

2. Write 1 to AES_START_REG.

3. Wait until AES_IDLE_REG reads 1.

4. Read results from AES_TEXT_m_REG.

Consecutive Operations

Every time an operation is completed, only AES_TEXT_m_REG is modified by the AES Accelerator. Initialization

can, therefore, be simplified in a series of consecutive operations.

1. Update contents of AES_MODE_REG, AES_KEY_n_REG and AES_ENDIAN_REG, if required.

2. Load AES_TEXT_m_REG.

3. Write 1 to AES_START_REG.

4. Wait until AES_IDLE_REG reads 1.

5. Read results from AES_TEXT_m_REG.

22.3.5 Speed
The AES Accelerator requires 11 to 15 clock cycles to encrypt a message block, and 21 or 22 clock cycles to

decrypt a message block.

22.4 Register Summary

Name Description Address Access

Configuration registers

AES_MODE_REG Mode of operation of the AES Accelerator 0x3FF01008 R/W

AES_ENDIAN_REG Endianness configuration register 0x3FF01040 R/W

Key registers

AES_KEY_0_REG AES key material register 0 0x3FF01010 R/W

AES_KEY_1_REG AES key material register 1 0x3FF01014 R/W

AES_KEY_2_REG AES key material register 2 0x3FF01018 R/W

AES_KEY_3_REG AES key material register 3 0x3FF0101C R/W

AES_KEY_4_REG AES key material register 4 0x3FF01020 R/W

AES_KEY_5_REG AES key material register 5 0x3FF01024 R/W

AES_KEY_6_REG AES key material register 6 0x3FF01028 R/W

AES_KEY_7_REG AES key material register 7 0x3FF0102C R/W

Encrypted/decrypted data registers

AES_TEXT_0_REG AES encrypted/decrypted data register 0 0x3FF01030 R/W

AES_TEXT_1_REG AES encrypted/decrypted data register 1 0x3FF01034 R/W

AES_TEXT_2_REG AES encrypted/decrypted data register 2 0x3FF01038 R/W

AES_TEXT_3_REG AES encrypted/decrypted data register 3 0x3FF0103C R/W

Control/status registers

AES_START_REG AES operation start control register 0x3FF01000 WO

Espressif Systems 576
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

22 AES Accelerator (AES)

Name Description Address Access

AES_IDLE_REG AES idle status register 0x3FF01004 RO

22.5 Registers
The addresses in parenthesis besides register names are the register addresses relative to the AES base ad-

dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 22.4 Register Summary.

Register 22.1. AES_START_REG (0x000)

(re
se

rve
d)

0x00000000

31 1

AES_S
TA

RT

x

0

Reset

AES_START Write 1 to start the AES operation. (WO)

Register 22.2. AES_IDLE_REG (0x004)

(re
se

rve
d)

0x00000000

31 1

AES_ID
LE

1

0

Reset

AES_IDLE AES Idle register. Reads ’zero’ while the AES Accelerator is busy processing; reads ’one’

otherwise. (RO)

Register 22.3. AES_MODE_REG (0x008)

(re
se

rve
d)

0x00000000

31 3

AES_M
ODE

0

2 0

Reset

AES_MODE Selects the AES accelerator mode of operation. See Table 22-1 for details. (R/W)

Register 22.4. AES_KEY_n_REG (n: 07) (0x10+4*n)

0x000000000

31 0

Reset

AES_KEY_n_REG (n: 07) AES key material register. (R/W)

Espressif Systems 577
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

22 AES Accelerator (AES)

Register 22.5. AES_TEXT_m_REG (m: 03) (0x30+4*m)

0x000000000

31 0

Reset

AES_TEXT_m_REG (m: 03) Plaintext and ciphertext register. (R/W)

Register 22.6. AES_ENDIAN_REG (0x040)

(re
se

rve
d)

0x0000000

31 6

AES_E
NDIA

N

1 1 1 1 1 1

5 0

Reset

AES_ENDIAN Endianness selection register. See Table 22-2 for details. (R/W)

Espressif Systems 578
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

23 SHA Accelerator (SHA)

23 SHA Accelerator (SHA)

23.1 Introduction
The SHA Accelerator is included to speed up SHA hashing operations significantly, compared to SHA hashing

algorithms implemented solely in software. The SHA Accelerator supports four algorithms of FIPS PUB 180-4,

specifically SHA-1, SHA-256, SHA-384 and SHA-512.

23.2 Features
Hardware support for popular secure hashing algorithms:

• SHA-1

• SHA-256

• SHA-384

• SHA-512

23.3 Functional Description
23.3.1 Padding and Parsing the Message
The SHA Accelerator can only accept one message block at a time. Software divides the message into blocks

according to “5.2 Parsing the Message” in FIPS PUB 180-4 and writes one block to the SHA_TEXT_n_REG

registers each time. For SHA-1 and SHA-256, software writes a 512-bit message block to SHA_TEXT_0_REG

~ SHA_TEXT_15_REG each time. For SHA-384 and SHA-512, software writes a 1024-bit message block to

SHA_TEXT_0_REG ~ SHA_TEXT_31_REG each time.

The SHA Accelerator is unable to perform the padding operation of “5.1 Padding the Message” in FIPS PUB 180-4;

Note that the user software is expected to pad the message before feeding it into the accelerator.

As described in “2.2.1: Parameters” in FIPS PUB 180-4, “M (i)
0 is the leftmost word of message block i”. M

(i)
0

is stored in SHA_TEXT_0_REG. In the same fashion, the SHA_TEXT_1_REG register stores the second left-most

word of a message block M
(N)
1 , etc.

23.3.2 Message Digest
When the hashing operation is finished, the message digest will be refreshed by SHA Accelerator and will be

stored in SHA_TEXT_n_REG. SHA-1 produces a 160-bit message digest and stores it in SHA_TEXT_0_REG ~
SHA_TEXT_4_REG. SHA-256 produces a 256-bit message digest and stores it in SHA_TEXT_0_REG ~SHA_TEXT_7_REG.

SHA-384 produces a 384-bit message digest and stores it in SHA_TEXT_0_REG ~ SHA_TEXT_11_REG. SHA-512

produces a 512-bit message digest and stores it in SHA_TEXT_0_REG ~ SHA_TEXT_15_REG.

As described in “2.2.1 Parameters” in FIPS PUB 180-4, “H(N) is the final hash value, and is used to determine

the message digest”, while “H(i)
0 is the leftmost word of hash value i”, so the leftmost word H

(N)
0 in the message

digest is stored in SHA_TEXT_0_REG. In the same fashion, the second leftmost word H
(N)
1 in the message digest

is stored in SHA_TEXT_1_REG, etc.

23.3.3 Hash Operation
There is a set of control registers for SHA-1, SHA-256, SHA-384 and SHA-512, respectively; different hashing

algorithms use different control registers.

Espressif Systems 579
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

23 SHA Accelerator (SHA)

SHA-1 uses SHA_SHA1_START_REG, SHA_SHA1_CONTINUE_REG, SHA_SHA1_LOAD_REG and

SHA_SHA1_BUSY_REG.

SHA-256 uses SHA_SHA256_START_REG, SHA_SHA256_CONTINUE_REG,

SHA_SHA256_LOAD_REG and SHA_SHA256_BUSY_REG. SHA-384 uses SHA_SHA384_START_REG,

SHA_SHA384_CONTINUE_REG, SHA_SHA384_LOAD_REG and SHA_SHA384_BUSY_REG.

SHA-512 uses SHA_SHA512_START_REG, SHA_SHA512_CONTINUE_REG, SHA_SHA512_LOAD_REG

and SHA_SHA512_BUSY_REG. The following steps describe the operation in a detailed manner.

1. Feed the accelerator with the first message block:

(a) Use the first message block to initialize SHA_TEXT_n_REG.

(b) Write 1 to SHA_X_START_REG.

(c) Wait for SHA_X_BUSY_REG to read 0, indicating that the operation is completed.

2. Similarly, feed the accelerator with subsequent message blocks:

(a) Initialize SHA_TEXT_n_REG using the subsequent message block.

(b) Write 1 to SHA_X_CONTINUE_REG.

(c) Wait for SHA_X_BUSY_REG to read 0, indicating that the operation is completed.

3. Get message digest:

(a) Write 1 to SHA_X_LOAD_REG.

(b) Wait for SHA_X_BUSY_REG to read 0, indicating that operation is completed.

(c) Read message digest from SHA_TEXT_n_REG.

23.3.4 Speed
The SHA Accelerator requires 60 to 100 clock cycles to process a message block and 8 to 20 clock cycles to

calculate the final digest.

23.4 Register Summary

Name Description Address Access

Encrypted/decrypted data registers

SHA_TEXT_0_REG SHA encrypted/decrypted data register 0 0x3FF03000 R/W

SHA_TEXT_1_REG SHA encrypted/decrypted data register 1 0x3FF03004 R/W

SHA_TEXT_2_REG SHA encrypted/decrypted data register 2 0x3FF03008 R/W

SHA_TEXT_3_REG SHA encrypted/decrypted data register 3 0x3FF0300C R/W

SHA_TEXT_4_REG SHA encrypted/decrypted data register 4 0x3FF03010 R/W

SHA_TEXT_5_REG SHA encrypted/decrypted data register 5 0x3FF03014 R/W

SHA_TEXT_6_REG SHA encrypted/decrypted data register 6 0x3FF03018 R/W

SHA_TEXT_7_REG SHA encrypted/decrypted data register 7 0x3FF0301C R/W

SHA_TEXT_8_REG SHA encrypted/decrypted data register 8 0x3FF03020 R/W

SHA_TEXT_9_REG SHA encrypted/decrypted data register 9 0x3FF03024 R/W

SHA_TEXT_10_REG SHA encrypted/decrypted data register 10 0x3FF03028 R/W

SHA_TEXT_11_REG SHA encrypted/decrypted data register 11 0x3FF0302C R/W

SHA_TEXT_12_REG SHA encrypted/decrypted data register 12 0x3FF03030 R/W

Espressif Systems 580
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

23 SHA Accelerator (SHA)

Name Description Address Access

SHA_TEXT_13_REG SHA encrypted/decrypted data register 13 0x3FF03034 R/W

SHA_TEXT_14_REG SHA encrypted/decrypted data register 14 0x3FF03038 R/W

SHA_TEXT_15_REG SHA encrypted/decrypted data register 15 0x3FF0303C R/W

SHA_TEXT_16_REG SHA encrypted/decrypted data register 16 0x3FF03040 R/W

SHA_TEXT_17_REG SHA encrypted/decrypted data register 17 0x3FF03044 R/W

SHA_TEXT_18_REG SHA encrypted/decrypted data register 18 0x3FF03048 R/W

SHA_TEXT_19_REG SHA encrypted/decrypted data register 19 0x3FF0304C R/W

SHA_TEXT_20_REG SHA encrypted/decrypted data register 20 0x3FF03050 R/W

SHA_TEXT_21_REG SHA encrypted/decrypted data register 21 0x3FF03054 R/W

SHA_TEXT_22_REG SHA encrypted/decrypted data register 22 0x3FF03058 R/W

SHA_TEXT_23_REG SHA encrypted/decrypted data register 23 0x3FF0305C R/W

SHA_TEXT_24_REG SHA encrypted/decrypted data register 24 0x3FF03060 R/W

SHA_TEXT_25_REG SHA encrypted/decrypted data register 25 0x3FF03064 R/W

SHA_TEXT_26_REG SHA encrypted/decrypted data register 26 0x3FF03068 R/W

SHA_TEXT_27_REG SHA encrypted/decrypted data register 27 0x3FF0306C R/W

SHA_TEXT_28_REG SHA encrypted/decrypted data register 28 0x3FF03070 R/W

SHA_TEXT_29_REG SHA encrypted/decrypted data register 29 0x3FF03074 R/W

SHA_TEXT_30_REG SHA encrypted/decrypted data register 30 0x3FF03078 R/W

SHA_TEXT_31_REG SHA encrypted/decrypted data register 31 0x3FF0307C R/W

Control/status registers

SHA_SHA1_START_REG Control register to initiate SHA1 operation 0x3FF03080 WO

SHA_SHA1_CONTINUE_REG Control register to continue SHA1 operation 0x3FF03084 WO

SHA_SHA1_LOAD_REG Control register to calculate the final SHA1 hash 0x3FF03088 WO

SHA_SHA1_BUSY_REG Status register for SHA1 operation 0x3FF0308C RO

SHA_SHA256_START_REG Control register to initiate SHA256 operation 0x3FF03090 WO

SHA_SHA256_CONTINUE_REG Control register to continue SHA256 operation 0x3FF03094 WO

SHA_SHA256_LOAD_REG
Control register to calculate the final SHA256

hash
0x3FF03098 WO

SHA_SHA256_BUSY_REG Status register for SHA256 operation 0x3FF0309C RO

SHA_SHA384_START_REG Control register to initiate SHA384 operation 0x3FF030A0 WO

SHA_SHA384_CONTINUE_REG Control register to continue SHA384 operation 0x3FF030A4 WO

SHA_SHA384_LOAD_REG
Control register to calculate the final SHA384

hash
0x3FF030A8 WO

SHA_SHA384_BUSY_REG Status register for SHA384 operation 0x3FF030AC RO

SHA_SHA512_START_REG Control register to initiate SHA512 operation 0x3FF030B0 WO

SHA_SHA512_CONTINUE_REG Control register to continue SHA512 operation 0x3FF030B4 WO

SHA_SHA512_LOAD_REG
Control register to calculate the final SHA512

hash
0x3FF030B8 WO

SHA_SHA512_BUSY_REG Status register for SHA512 operation 0x3FF030BC RO

23.5 Registers
The addresses in parenthesis besides register names are the register addresses relative to the SHA base ad-

dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

Espressif Systems 581
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

23 SHA Accelerator (SHA)

addresses are listed in Section 23.4 Register Summary.

Register 23.1. SHA_TEXT_n_REG (n: 031) (0x0+4*n)

0x000000000

31 0

Reset

SHA_TEXT_n_REG (n: 031) SHA Message block and hash result register. (R/W)

Register 23.2. SHA_SHA1_START_REG (0x080)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA1_

STA
RT

0

0

Reset

SHA_SHA1_START Write 1 to start an SHA-1 operation on the first message block. (WO)

Register 23.3. SHA_SHA1_CONTINUE_REG (0x084)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA1_

CONTIN
UE

0

0

Reset

SHA_SHA1_CONTINUE Write 1 to continue the SHA-1 operation with subsequent blocks. (WO)

Register 23.4. SHA_SHA1_LOAD_REG (0x088)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA1_

LO
AD

0

0

Reset

SHA_SHA1_LOAD Write 1 to finish the SHA-1 operation to calculate the final message hash. (WO)

Espressif Systems 582
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

23 SHA Accelerator (SHA)

Register 23.5. SHA_SHA1_BUSY_REG (0x08C)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA1_

BUSY

0

0

Reset

SHA_SHA1_BUSY SHA-1 operation status: 1 if the SHA accelerator is processing data, 0 if it is idle.

(RO)

Register 23.6. SHA_SHA256_START_REG (0x090)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA25

6_
STA

RT

0

0

Reset

SHA_SHA256_START Write 1 to start an SHA-256 operation on the first message block. (WO)

Register 23.7. SHA_SHA256_CONTINUE_REG (0x094)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA25

6_
CONTIN

UE

0

0

Reset

SHA_SHA256_CONTINUE Write 1 to continue the SHA-256 operation with subsequent blocks. (WO)

Espressif Systems 583
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

23 SHA Accelerator (SHA)

Register 23.8. SHA_SHA256_LOAD_REG (0x098)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA25

6_
LO

AD

0

0

Reset

SHA_SHA256_LOAD Write 1 to finish the SHA-256 operation to calculate the final message hash.

(WO)

Register 23.9. SHA_SHA256_BUSY_REG (0x09C)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA25

6_
BUSY

0

0

Reset

SHA_SHA256_BUSY SHA-256 operation status: 1 if the SHA accelerator is processing data, 0 if it

is idle. (RO)

Register 23.10. SHA_SHA384_START_REG (0x0A0)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA38

4_
STA

RT

0

0

Reset

SHA_SHA384_START Write 1 to start an SHA-384 operation on the first message block. (WO)

Espressif Systems 584
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

23 SHA Accelerator (SHA)

Register 23.11. SHA_SHA384_CONTINUE_REG (0x0A4)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA38

4_
CONTIN

UE

0

0

Reset

SHA_SHA384_CONTINUE Write 1 to continue the SHA-384 operation with subsequent blocks. (WO)

Register 23.12. SHA_SHA384_LOAD_REG (0x0A8)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA38

4_
LO

AD

0

0

Reset

SHA_SHA384_LOAD Write 1 to finish the SHA-384 operation to calculate the final message hash.

(WO)

Register 23.13. SHA_SHA384_BUSY_REG (0x0AC)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA38

4_
BUSY

0

0

Reset

SHA_SHA384_BUSY SHA-384 operation status: 1 if the SHA accelerator is processing data, 0 if it

is idle. (RO)

Espressif Systems 585
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

23 SHA Accelerator (SHA)

Register 23.14. SHA_SHA512_START_REG (0x0B0)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA51

2_
STA

RT

0

0

Reset

SHA_SHA512_START Write 1 to start an SHA-512 operation on the first message block. (WO)

Register 23.15. SHA_SHA512_CONTINUE_REG (0x0B4)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA51

2_
CONTIN

UE

0

0

Reset

SHA_SHA512_CONTINUE Write 1 to continue the SHA-512 operation with subsequent blocks. (WO)

Register 23.16. SHA_SHA512_LOAD_REG (0x0B8)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA51

2_
LO

AD

0

0

Reset

SHA_SHA512_LOAD Write 1 to finish the SHA-512 operation to calculate the final message hash.

(WO)

Espressif Systems 586
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

23 SHA Accelerator (SHA)

Register 23.17. SHA_SHA512_BUSY_REG (0x0BC)

(re
se

rve
d)

0x00000000

31 1

SHA_S
HA51

2_
BUSY

0

0

Reset

SHA_SHA512_BUSY SHA-512 operation status: 1 if the SHA accelerator is processing data, 0 if it

is idle. (RO)

Espressif Systems 587
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

24 RSA Accelerator (RSA)

24 RSA Accelerator (RSA)

24.1 Introduction
The RSA Accelerator provides hardware support for multiple precision arithmetic operations used in RSA asym-

metric cipher algorithms.

Sometimes, multiple precision arithmetic is also called ”bignum arithmetic”, ”bigint arithmetic” or ”arbitrary precision

arithmetic”.

24.2 Features
• Support for large-number modular exponentiation

• Support for large-number modular multiplication

• Support for large-number multiplication

• Support for various lengths of operands

24.3 Functional Description
24.3.1 Initialization
The RSA Accelerator is activated by enabling the corresponding peripheral clock, and by clearing the DPORT_RSA_PD

bit in the DPORT_RSA_PD_CTRL_REG register. This releases the RSA Accelerator from reset.

When the RSA Accelerator is released from reset, the register RSA_CLEAN_REG reads 0 and an initialization

process begins. Hardware initializes the four memory blocks by setting them to 0. After initialization is complete,

RSA_CLEAN_REG reads 1. For this reason, software should query RSA_CLEAN_REG after being released from

reset, and before writing to any RSA Accelerator memory blocks or registers for the first time.

24.3.2 Large Number Modular Exponentiation
Large-number modular exponentiation performs Z = XY mod M . The operation is based on Montgomery multi-

plication. Aside from the arguments X, Y , and M , two additional ones are needed — r and M ′. These arguments

are calculated in advance by software.

The RSA Accelerator supports operand lengths of N ∈ {512, 1024, 1536, 2048, 2560, 3072, 3584, 4096} bits. The

bit length of arguments Z, X, Y , M , and r can be any one from the N set, but all numbers in a calculation must

be of the same length. The bit length of M ′ is always 32.

To represent the numbers used as operands, define a base-b positional notation, as follows:

b = 232

In this notation, each number is represented by a sequence of base-b digits, where each base-b digit is a 32-

bit word. Representing an N-bit number requires n base-b digits (all of the possible N lengths are multiples of

Espressif Systems 588
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

24 RSA Accelerator (RSA)

32).

n =
N

32

Z = (Zn−1Zn−2 · · ·Z0)b

X = (Xn−1Xn−2 · · ·X0)b

Y = (Yn−1Yn−2 · · ·Y0)b

M = (Mn−1Mn−2 · · ·M0)b

r = (rn−1rn−2 · · · r0)b

Each of the n values in Zn−1 ~ Z0, Xn−1 ~ X0, Yn−1 ~ Y0, Mn−1 ~ M0, rn−1 ~ r0 represents one base-b digit (a

32-bit word).

Zn−1, Xn−1, Yn−1, Mn−1 and rn−1 are the most significant bits of Z, X, Y , M , while Z0, X0, Y0, M0 and r0 are

the least significant bits.

If we define

R = bn

then, we can calculate the additional arguments, as follows:

r = R2 mod M (1)M ′′ ×M + 1 = R×R−1

M ′ = M ′′ mod b
(2)

(Equation 2 is written in a form suitable for calculations using the extended binary GCD algorithm.)

Software can implement large-number modular exponentiations in the following order:

1. Write (N
512 − 1) to RSA_MODEXP_MODE_REG.

2. Write Xi, Yi, Mi and ri (i ∈ [0, n) ∩ N) to memory blocks RSA_X_MEM, RSA_Y_MEM, RSA_M_MEM and

RSA_Z_MEM. The capacity of each memory block is 128 words. Each word of each memory block can

store one base-b digit. The memory blocks use the little endian format for storage, i.e. the least significant

digit of each number is in the lowest address.

Users need to write data to each memory block only according to the length of the number; data beyond

this length are ignored.

3. Write M ′ to RSA_M_PRIME_REG.

4. Write 1 to RSA_MODEXP_START_REG.

5. Wait for the operation to be completed. Poll RSA_INTERRUPT_REG until it reads 1, or until the RSA_INTR

interrupt is generated.

6. Read the result Zi (i ∈ [0, n) ∩ N) from RSA_Z_MEM.

7. Write 1 to RSA_INTERRUPT_REG to clear the interrupt.

After the operation, the RSA_MODEXP_MODE_REG register, memory blocks RSA_Y_MEM and RSA_M_MEM,

as well as the RSA_M_PRIME_REG will not have changed. However, Xi in RSA_X_MEM and ri in RSA_Z_MEM

will have been overwritten. In order to perform another operation, refresh the registers and memory blocks, as

required.

Espressif Systems 589
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

24 RSA Accelerator (RSA)

24.3.3 Large Number Modular Multiplication
Large-number modular multiplication performs Z = X × Y mod M . This operation is based on Montgomery

multiplication. The same values r and M ′ are derived by software using the formulas 1 and 2 shown above.

The RSA Accelerator supports large-number modular multiplication with eight different operand lengths, which are

the same as in the large-number modular exponentiation. The operation is performed by a combination of software

and hardware. The software performs two hardware operations in sequence.

The software process is as follows:

1. Write (N
512 − 1) to RSA_MULT_MODE_REG.

2. Write Xi, Mi and ri (i ∈ [0, n) ∩ N) to registers RSA_X_MEM, RSA_M_MEM and RSA_Z_MEM. Write data

to each memory block only according to the length of the number. Data beyond this length are ignored.

3. Write M ′ to RSA_M_PRIME_REG.

4. Write 1 to RSA_MULT_START_REG.

5. Wait for the first round of the operation to be completed. Poll RSA_INTERRUPT_REG until it reads 1, or until

the RSA_INTR interrupt is generated.

6. Write 1 to RSA_INTERRUPT_REG to clear the interrupt.

7. Write Yi (i ∈ [0, n) ∩ N) to RSA_X_MEM.

Users need to write to the memory block only according to the length of the number. Data beyond this length

are ignored.

8. Write 1 to RSA_MULT_START_REG.

9. Wait for the second round of the operation to be completed. Poll RSA_INTERRUPT_REG until it reads 1, or

until the RSA_INTR interrupt is generated.

10. Read the result Zi (i ∈ [0, n) ∩ N) from RSA_Z_MEM.

11. Write 1 to RSA_INTERRUPT_REG to clear the interrupt.

After the operation, the RSA_MULT_MODE_REG register, and memory blocks RSA_M_MEM and RSA_M_PRIME_REG

remain unchanged. Users do not need to refresh these registers or memory blocks if the values remain the

same.

24.3.4 Large Number Multiplication
Large-number multiplication performs Z = X × Y . The length of Z is twice that of X and Y . Therefore, the RSA

Accelerator supports large-number multiplication with only four operand lengths of N ∈ {512, 1024, 1536, 2048}
bits. The length N̂ of the result Z is 2×N bits.

Operands X and Y need to be extended to form arguments X̂ and Ŷ which have the same length (N̂ bits) as the

Espressif Systems 590
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

24 RSA Accelerator (RSA)

result Z. X is left-extended and Y is right-extended, and defined as follows:

n =
N

32

N̂ = 2×N

n̂ =
N̂

32
= 2n

X̂ = (X̂n̂−1X̂n̂−2 · · · X̂0)b = (00 · · · 0︸ ︷︷ ︸
n

X)b = (00 · · · 0︸ ︷︷ ︸
n

Xn−1Xn−2 · · ·X0)b

Ŷ = (Ŷn̂−1Ŷn̂−2 · · · Ŷ0)b = (Y 00 · · · 0︸ ︷︷ ︸
n

)b = (Yn−1Yn−2 · · ·Y0 00 · · · 0︸ ︷︷ ︸
n

)b

Software performs the operation in the following order:

1. Write (N̂
512 − 1 + 8) to RSA_MULT_MODE_REG.

2. Write X̂i and Ŷi (i ∈ [0, n̂) ∩ N) to RSA_X_MEM and RSA_Z_MEM, respectively.

Write the valid data into each number’s memory block, according to their lengths. Values beyond this length

are ignored. Half of the base-b positional notations written to the memory are zero (using the derivations

shown above). These zero values are indispensable.

3. Write 1 to RSA_MULT_START_REG.

4. Wait for the operation to be completed. Poll RSA_INTERRUPT_REG until it reads 1, or until the RSA_INTR

interrupt is generated.

5. Read the result Zi (i ∈ [0, n̂) ∩ N) from RSA_Z_MEM.

6. Write 1 to RSA_INTERRUPT_REG to clear the interrupt.

After the operation, only the RSA_MULT_MODE_REG register remains unmodified.

24.4 Register Summary

Name Description Address Access

Configuration registers

RSA_M_PRIME_REG Register to store M’ 0x3FF02800 R/W

Modular exponentiation registers

RSA_MODEXP_MODE_REG Modular exponentiation mode 0x3FF02804 R/W

RSA_MODEXP_START_REG Start bit 0x3FF02808 WO

Modular multiplication registers

RSA_MULT_MODE_REG Modular multiplication mode 0x3FF0280C R/W

RSA_MULT_START_REG Start bit 0x3FF02810 WO

Misc registers

RSA_INTERRUPT_REG RSA interrupt register 0x3FF02814 R/W

RSA_CLEAN_REG RSA clean register 0x3FF02818 RO

Espressif Systems 591
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

24 RSA Accelerator (RSA)

24.5 Registers
The addresses in parenthesis besides register names are the register addresses relative to the RSA base ad-

dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 24.4 Register Summary.

Register 24.1. RSA_M_PRIME_REG (0x800)

0x000000000

31 0

Reset

RSA_M_PRIME_REG This register contains M’. (R/W)

Register 24.2. RSA_MODEXP_MODE_REG (0x804)

(re
se

rve
d)

0 0

31 3

RSA_M
ODEXP

_M
ODE

0 0 0

2 0

Reset

RSA_MODEXP_MODE This register contains the mode of modular exponentiation. (R/W)

Register 24.3. RSA_MODEXP_START_REG (0x808)

(re
se

rve
d)

0 0

31 1

RSA_M
ODEXP

_S
TA

RT

0

0

Reset

RSA_MODEXP_START Write 1 to start modular exponentiation. (WO)

Espressif Systems 592
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

24 RSA Accelerator (RSA)

Register 24.4. RSA_MULT_MODE_REG (0x80C)

(re
se

rve
d)

0 0

31 4

RSA_M
ULT

_M
ODE

0 0 0 0

3 0

Reset

RSA_MULT_MODE This register contains the mode of modular multiplication and multiplication.

(R/W)

Register 24.5. RSA_MULT_START_REG (0x810)

(re
se

rve
d)

0 0

31 1

RSA_M
ULT

_S
TA

RT

0

0

Reset

RSA_MULT_START Write 1 to start modular multiplication or multiplication. (WO)

Register 24.6. RSA_INTERRUPT_REG (0x814)

(re
se

rve
d)

0 0

31 1

RSA_IN
TE

RRUPT

0

0

Reset

RSA_INTERRUPT RSA interrupt status register. Will read 1 once an operation has completed. (R/W)

Register 24.7. RSA_CLEAN_REG (0x818)

(re
se

rve
d)

0 0

31 1

RSA_C
LE

AN

0

0

Reset

RSA_CLEAN This bit will read 1 once the memory initialization is completed. (RO)

Espressif Systems 593
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

25 Random Number Generator (RNG)

25 Random Number Generator (RNG)

25.1 Introduction
The ESP32 contains a true random number generator, which generates 32-bit random numbers that can be used

for cryptographical operations, among other things.

25.2 Feature
The random number generator generates true random numbers, which means random number generated from a

physical process, rather than by means of an algorithm. No number generated within the specified range is more

or less likely to appear than any other number.

25.3 Functional Description
Every 32-bit value that the system reads from the RNG_DATA_REG register of the random number generator is a

true random number. These true random numbers are generated based on the thermal noise in the system and

the asynchronous clock mismatch.

Thermal noise comes from the high-speed ADC or SAR ADC or both. Whenever the high-speed ADC or SAR ADC

is enabled, bit streams will be generated and fed into the random number generator through an XOR logic gate as

random seeds.

SAR ADC

Random
Number

Generator
High Speed

ADC

 Random bit
 seeds

 Random bit
 seeds

RNG_DATA_REG

XOR
XOR

RC_FAST_CLK Random bit
seeds

Figure 251. Noise Source

When there is noise coming from the SAR ADC, the random number generator is fed with a 2-bit entropy in one

clock cycle of RC_FAST_CLK (8 MHz), which is generated from an internal RC oscillator (see Chapter Reset and

Clock for details). Thus, it is advisable to read the RNG_DATA_REG register at a maximum rate of 500 kHz to

obtain the maximum entropy.

When there is noise coming from the high-speed ADC, the random number generator is fed with a 2-bit entropy

in one APB clock cycle, which is normally 80 MHz. Thus, it is advisable to read the RNG_DATA_REG register at a

maximum rate of 5 MHz to obtain the maximum entropy.

A data sample of 2 GB, which is read from the random number generator at a rate of 5 MHz with only the high-

speed ADC being enabled, has been tested using the Dieharder Random Number Testsuite (version 3.31.1). The

sample passed all tests.

Espressif Systems 594
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

25 Random Number Generator (RNG)

25.4 Programming Procedure
When using the random number generator, make sure at least either the SAR ADC or high-speed ADC is enabled.

Otherwise, pseudo-random numbers will be returned.

• SAR ADC can be enabled by using the DIG ADC controller. For details, please refer to Chapter 29 On-Chip

Sensors and Analog Signal Processing.

• High-speed ADC is enabled automatically when the Wi-Fi or Bluetooth modules is enabled.

Note:

Note that, when the Wi-Fi module is enabled, the value read from the high-speed ADC can be saturated in some extreme

cases, which lowers the entropy. Thus, it is advisable to also enable the SAR ADC as the noise source for the random

number generator for such cases.

When using the random number generator, read the RNG_DATA_REG register multiple times until sufficient random

numbers have been generated. Ensure the rate at which the register is read does not exceed the frequencies

described in section 25.3 above.

25.5 Register Summary

Name Description Address Access

RNG_DATA_REG Random number data 0x3FF75144 RO

25.6 Register
The addresses in parenthesis besides register names are the register addresses relative to the RNG base ad-

dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 25.5 Register Summary.

Register 25.1. RNG_DATA_REG (0x144)

0x000000000

31 0

Reset

RNG_DATA_REG Random number source. (RO)

Espressif Systems 595
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

26 External Memory Encryption and Decryption (FLASH)

26 External Memory Encryption and Decryption (FLASH)

26.1 Overview
Many variants of the ESP32 must store programs and data in external flash memory. The external flash memory

chip is likely to contain proprietary firmware and sensitive user data, such as credentials for gaining access to a

private network. The Flash Encryption block can encrypt code and write encrypted code to off-chip flash memory

for enhanced hardware security. When the CPU reads off-chip flash through the cache, the Flash Decryption

block can automatically decrypt instructions and data read from the off-chip flash, thus providing hardware-based

security for application code.

26.2 Features
• Various key generation methods

• Software-based encryption

• High-speed, hardware decryption

• Register configuration, system parameters and boot mode jointly determine the flash encryption/decryption

function.

26.3 Functional Description

Figure 261. Flash Encryption/Decryption Module Architecture

The Flash Encryption/Decryption module consists of three parts, namely the Key Generator, Flash Encryption block

and Flash Decryption block. The structure of these parts is shown in Figure 26-1. The Key Generator is shared by

both the Flash Encryption block and the Flash Decryption block, which can function simultaneously.

In the peripheral DPort Register, the register relevant to Flash Encryption/Decryption is DPORT_SPI_ENCRYPT_ENABLE

Espressif Systems 596
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

26 External Memory Encryption and Decryption (FLASH)

bit and DPORT_SPI_DECRYPT_ENABLE bit in DPORT_SLAVE_SPI_CONFIG_REG. The Flash Encryption/Decryption

module will fetch six system parameters from the peripheral eFuse Controller. These parameters are: cod-

ing_scheme, BLOCK1, flash_crypt_config, download_dis_encrypt, flash_crypt_cnt, and download_dis_decrypt.

26.3.1 Key Generator
According to system parameters coding_scheme and BLOCK1, the Key Generator will first generate

Keyo = f(coding_scheme,BLOCK1).

Then, according to system parameter flash_crypt_config, and off-chip flash physical addresses Addre and Addrd

accessed by the Flash Encryption block and the Flash Decryption block, the Key Generator will respectively figure

out that:

Keye = g(Keyo, f lash_crypt_config,Addre),

Keyd = g(Keyo, f lash_crypt_config,Addrd).

When all values of system parameter flash_crypt_config are 0, Keye and Keyd are not relevant to the physical

address of the off-chip flash. When all values of system parameter flash_crypt_config are not 0, every 8-word

block on the off-chip flash has a dedicated Keye and Keyd.

26.3.2 Flash Encryption Block
The Flash Encryption block is equipped with registers that can be accessed by the CPU directly. Registers embed-

ded in the Flash Encryption block, registers in the peripheral DPort Register, system parameters and Boot Mode

jointly configure and control this block.

The Flash Encryption block requires software intervention during operation. The steps are as follows:

1. Set the DPORT_SPI_ENCRYPT_ENABLE bit of register DPORT_SLAVE_SPI_CONFIG_REG.

2. Write the physical address prepared for the off-chip flash on register FLASH_ENCRYPT_ADDRESS_REG.

The address must be 8-word boundary aligned.

3. The Flash Encryption block must encrypt 8-word long code segments. Write the lowest word to regis-

ter FLASH_ENCRYPT_BUFFER_0_REG, the second-lowest word into FLASH_ENCRYPT_BUFFER_1_REG,

and so on, up to FLASH_ENCRYPT_BUFFER_7_REG.

4. Set the FLASH_START bit in FLASH_ENCRYPT_START_REG.

5. Wait for the FLASH_DONE bit to be set in FLASH_ENCRYPT_DONE_REG.

6. Use this function and write any 8-word code to the 8-word aligned address on the off-chip flash via the

peripheral SPI0.

In Steps 1 to 5, the Flash Encryption block encrypts 8-word long codes. The key encryption algorithm uses Keye.

The encryption result will also be 8-word long. In Step 6, the peripheral SPI0 writes encrypted results of the Flash

Encryption block to the off-chip flash. One parameter of the function used in Step 6 will be the physical address of

the off-chip flash. The physical address must be 8-word boundary aligned. Also, the value must be the same as

the value written into register FLASH_ENCRYPT_ADDRESS_REG during Step 2. Even though the function used

in Step 6 still has a parameter with an 8-word long code, the parameter will be meaningless if Steps 1 to 5 are

executed. The Peripheral SPI0 will use the encrypted result instead. If the Flash Encryption block is not operating,

or has not executed Steps 1 to 5, Step 6 will not use the encrypted result. Instead, the function parameter will be

used.

Flash Encryption Operating Conditions:

Espressif Systems 597
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

26 External Memory Encryption and Decryption (FLASH)

• During SPI Flash Boot

If the DPORT_SPI_ENCRYPT_ENABLE bit of register DPORT_SLAVE_SPI_CONFIG_REG is 1, the Flash

Encryption block is operational. Otherwise, it is not.

• During Download Boot

If the DPORT_SPI_ENCRYPT_ENABLE bit of register DPORT_SLAVE_SPI_CONFIG_REG is 1, and system

parameter download_dis_encrypt is 0, the Flash Encryption block is operational. Otherwise, it is not.

Even though software participates in the whole process, it cannot directly read the encrypted codes. Instead,

the encrypted codes are integrated into the off-chip flash. Even though the CPU can skip the cache and get the

encrypted code directly by reading the off-chip flash, the software can by no means access Keye.

26.3.3 Flash Decryption Block
Flash Decryption is not a conventional peripheral, and is not equipped with registers. Therefore, the CPU cannot

directly access the Flash Decryption block. The Peripheral DPort Register, system parameters and Booting Mode

jointly control and configure the Flash Decryption block.

When the Flash Decryption block is operating, the CPU will read instructions and data from the off-chip flash via

the cache. The Flash Decryption block automatically decrypts the instructions and data in the cache. The entire

decryption process does not need software intervention and is transparent to the cache. The decryption algorithm

can decrypt the code that has been encrypted by the Flash Encryption block. Software cannot access the key

algorithm Keyd used.

When the Flash Decryption block is not operating, it does not have any effect on the contents stored in the off-chip

flash, be they encrypted or unencrypted. What the CPU reads via the cache is the original information stored in

the off-chip flash.

Flash Encryption Operating Conditions:

• During SPI Flash Boot

In the efuse system parameter flash_crypt_cnt (7 bits wide), if the number of bits with value 1 is odd, the

Flash Decryption block is operational. Otherwise, it is not.

• During Download Boot

If the DPORT_SPI_DECRYPT_ENABLE bit in DPORT_SLAVE_SPI_CONFIG_REG is 1, and system parameter

download_dis_decrypt is 0, the Flash Decryption block is operational. Otherwise, it is not.

26.4 Register Summary

Name Description Address Access

FLASH_ENCRYPTION_BUFFER_0_REG Flash encryption buffer register 0 0x3FF5B000 WO

FLASH_ENCRYPTION_BUFFER_1_REG Flash encryption buffer register 1 0x3FF5B004 WO

FLASH_ENCRYPTION_BUFFER_2_REG Flash encryption buffer register 2 0x3FF5B008 WO

FLASH_ENCRYPTION_BUFFER_3_REG Flash encryption buffer register 3 0x3FF5B00C WO

FLASH_ENCRYPTION_BUFFER_4_REG Flash encryption buffer register 4 0x3FF5B010 WO

FLASH_ENCRYPTION_BUFFER_5_REG Flash encryption buffer register 5 0x3FF5B014 WO

FLASH_ENCRYPTION_BUFFER_6_REG Flash encryption buffer register 6 0x3FF5B018 WO

FLASH_ENCRYPTION_BUFFER_7_REG Flash encryption buffer register 7 0x3FF5B01C WO

Espressif Systems 598
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

26 External Memory Encryption and Decryption (FLASH)

Name Description Address Access

FLASH_ENCRYPTION_START_REG Encrypt operation control register 0x3FF5B020 WO

FLASH_ENCRYPTION_ADDRESS_REG External flash address register 0x3FF5B024 WO

FLASH_ENCRYPTION_DONE_REG Encrypt operation status register 0x3FF5B028 RO

26.5 Register
The addresses in parenthesis besides register names are the register addresses relative to the FLASH base ad-

dress provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute register

addresses are listed in Section 26.4 Register Summary.

Register 26.1. FLASH_ENCRYPTION_BUFFER_n_REG (n: 07) (0x0+4*n)

0x000000000

31 0

Reset

FLASH_ENCRYPTION_BUFFER_n_REG Data buffers for encryption. (WO)

Register 26.2. FLASH_ENCRYPTION_START_REG (0x020)

(re
se

rve
d)

0 0

31 1

FL
ASH_S

TA
RT

0

0

Reset

FLASH_START Set this bit to start encryption operation on data buffer. (WO)

Register 26.3. FLASH_ENCRYPTION_ADDRESS_REG (0x024)

0x000000000

31 0

Reset

FLASH_ENCRYPTION_ADDRESS_REG The physical address on the off-chip flash must be 8-word

boundary aligned. (WO)

Register 26.4. FLASH_ENCRYPTION_DONE_REG (0x028)

(re
se

rve
d)

0 0

31 1

FL
ASH_D

ONE

0

0

Reset

FLASH_DONE Set this bit when encryption operation is complete. (RO)

Espressif Systems 599
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

27 Memory Management and Protection Units (MMU, MPU)

27 Memory Management and Protection Units (MMU, MPU)

27.1 Introduction
Every peripheral and memory section in the ESP32 is accessed through either an MMU (Memory Management

Unit) or an MPU (Memory Protection Unit). An MPU can allow or disallow the access of an application to a memory

range or peripheral, depending on what kind of permission the OS has given to that particular application. An MMU

can perform the same operation, as well as a virtual-to-physical memory address translation. This can be used to

map an internal or external memory range to a certain virtual memory area. These mappings can be application-

specific. Therefore, each application can be adjusted and have the memory configuration that is necessary for

it to run properly. To differentiate between the OS and applications, there are eight Process Identifiers (or PIDs)

that each application, or OS, can run. Furthermore, each application, or OS, is equipped with their own sets of

mappings and rights.

27.2 Features
• Eight processes in each of the PRO_CPU and APP_CPU

• MPU/MMU management of on-chip memories, off-chip memories, and peripherals, based on process ID

• On-chip memory management by MPU/MMU

• Off-chip memory management by MMU

• Peripheral management by MPU

27.3 Functional Description
27.3.1 PID Controller
In the ESP32, a PID controller acts as an indicator that signals the MMU/MPU the owner PID of the code that is

currently running. The intention is that the OS updates the PID in the PID controller every time it switches context

to another application. The PID controller can detect interrupts and automatically switch PIDs to that of the OS, if

so configured.

There are two peripheral PID controllers in the system, one for each of the two CPUs in the ESP32. Having a PID

controller per CPU allows running different processes on different CPUs, if so desired.

27.3.2 MPU/MMU
The MPU and MMU manage on-chip memories, off-chip memories, and peripherals. To do this they are based

on the process of accessing the peripheral or memory region. More specifically, when a code tries to access a

MMU/MPU-protected memory region or peripheral, the MMU or MPU will receive the PID from the PID generator

that is associated with the CPU on which the process is running.

For on-chip memory and peripherals, the decisions the MMU and MPU make are only based on this PID, whereas

the specific CPU the code is running on is not taken into account. Subsequently, the MMU/MPU configuration

for the internal memory and peripherals allows entries only for the eight different PIDs. In contrast, the MMU

moderating access to the external memory takes not only the PID into account, but also the CPU the request is

coming from. This means that MMUs have configuration options for every PID when running on the APP_CPU, as

well as every PID when running on the PRO_CPU. While, in practice, accesses from both CPUs will be configured

to have the same result for a specific process, doing so is not a hardware requirement.

Espressif Systems 600
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

27 Memory Management and Protection Units (MMU, MPU)

The decision an MPU can make, based on this information, is to allow or deny a process to access the memory

region or peripheral. An MMU has the same function, but additionally it redirects the virtual memory access, which

the process acquired, into a physical memory access that can possibly reach out an entirely different physical

memory region. This way, MMU-governed memory can be remapped on a process-by-process basis.

27.3.2.1 Embedded Memory

The on-chip memory is governed by fixed-function MPUs, configurable MPUs, and MMUs:

Table 271. MPU and MMU Structure for Internal Memory

Address range
Name Size

From To
Governed by

ROM0 384 KB 0x4000_0000 0x4005_FFFF Static MPU

ROM1 64 KB 0x3FF9_0000 0x3FF9_FFFF Static MPU

SRAM0
64 KB 0x4007_0000 0x4007_FFFF Static MPU

128 KB 0x4008_0000 0x4009_FFFF SRAM0 MMU

SRAM1 (aliases)

128 KB 0x3FFE_0000 0x3FFF_FFFF Static MPU

128 KB 0x400A_0000 0x400B_FFFF Static MPU

32 KB 0x4000_0000 0x4000_7FFF Static MPU

SRAM2
72 KB 0x3FFA_E000 0x3FFB_FFFF Static MPU

128 KB 0x3FFC_0000 0x3FFD_FFFF SRAM2 MMU

RTC FAST (aliases)
8 KB 0x3FF8_0000 0x3FF8_1FFF RTC FAST MPU

8 KB 0x400C_0000 0x400C_1FFF RTC FAST MPU

RTC SLOW 8 KB 0x5000_0000 0x5000_1FFF RTC SLOW MPU

Static MPUs

ROM0, ROM1, the lower 64 KB of SRAM0, SRAM1 and the lower 72 KB of SRAM2 are governed by a static MPU.

The behaviour of these MPUs are hardwired and cannot be configured by software. They moderate access to the

memory region solely through the PID of the current process. When the PID of the process is 0 or 1, the memory

can be read (and written when it is RAM) using the addresses specified in Table 27-1. When it is 2 ~ 7, the memory

cannot be accessed.

RTC FAST & RTC SLOW MPU

The 8 KB RTC FAST Memory as well as the 8 KB of RTC SLOW Memory are governed by two configurable MPUs.

The MPUs can be configured to allow or deny access to each individual PID, using the RTC_CNTL_RTC_PID_

CONFIG_REG and DPORT_AHBLITE_MPU_TABLE_RTC_REG registers. Setting a bit in these registers will allow

the corresponding PID to read or write from the memory; clearing the bit disallows access. Access for PID 0 and

1 to RTC SLOW memory cannot be configured and is always enabled. Table 27-2 and 27-3 define the bit-to-PID

mappings of the registers.

Espressif Systems 601
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

27 Memory Management and Protection Units (MMU, MPU)

Table 272. MPU for RTC FAST Memory

Boundary address Authority

Size
Low High

PID

RTC_CNTL_RTC_PID_CONFIG bit

8 KB 0x3FF8_0000 0x3FF8_1FFF 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 78 KB 0x400C_0000 0x400C_1FFF

Table 273. MPU for RTC SLOW Memory

Boundary address Authority

Size
Low High PID = 0/1

PID

DPORT_AHBLITE_MPU_TABLE_RTC_REG bit

8 KB 0x5000_0000 0x5000_1FFF Read/Write
2 3 4 5 6 7

0 1 2 3 4 5

Register RTC_CNTL_RTC_PID_CONFIG_REG is part of the RTC peripheral and can only be modified by processes

with a PID of 0; register DPORT_AHBLITE_MPU_TABLE_RTC_REG is a Dport register and can be changed by

processes with a PID of 0 or 1.

SRAM0 and SRAM2 upper 128 KB MMUs

Both the upper 128 KB of SRAM0 and the upper 128 KB of SRAM2 are governed by an MMU. Not only can

these MMUs allow or deny access to the memory they govern (just like the MPUs do), but they are also capable

of translating the address a CPU reads from or writes to (which is a virtual address) to a possibly different address

in memory (the physical address).

In order to accomplish this, the internal RAM MMUs divide the memory range they govern into 16 pages. The page

size is configurable as 8 KB, 4 KB and 2 KB. When the page size is 8 KB, the 16 pages span the entire 128 KB

memory region; when the page size is 4 KB or 2 KB, a non-MMU-covered region of 64 or 96 KB, respectively, will

exist at the end of the memory space. Similar to the virtual and physical addresses, it is also possible to imagine

the pages as having a virtual and physical component. The MMU can convert an address within a virtual page to

an address within a physical page.

For PID 0 and 1, this mapping is 1-to-1, meaning that a read from or write to a certain virtual page will always be

converted to a read from or write to the exact same physical page. This allows an operating system, running under

PID 0 and/or 1, to always have access to the entire physical memory range.

For PID 2 to 7, however, every virtual page can be reconfigured, on a per-PID basis, to map to a different physical

page. This way, reads and writes to an offset within a virtual page get translated into reads and writes to the same

offset within a different physical page. This is illustrated in Figure 27-1: the CPU (running a process with a PID

between 2 to 7) tries to access memory address 0x3FFC_2345. This address is within the virtual Page 1 memory

region, at offset 0x0345. The MMU is instructed that for this particular PID, it should translate an access to virtual

page 1 into physical Page 2. This causes the memory access to be redirected to the same offset as the virtual

memory access, yet in Page 2, which results in the effective access of physical memory address 0x3FFC_4345.

The page size in this example is 8 KB.

Espressif Systems 602
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

27 Memory Management and Protection Units (MMU, MPU)

PAGE 0

PAGE 1

PAGE 2

PAGE 15

3FFC_0000

3FFC_2000

3FFC_4000

3FFC_6000

3FFD_E000

3FFE_0000

PAGE 0

PAGE 1

PAGE 2

PAGE 15

3FFC_0000

3FFC_2000

3FFC_4000

3FFC_6000

3FFD_E000

3FFE_0000

VIRTUAL MMU PHYSICALCPU

3FFC_2345

3FFC_4345

Figure 271. MMU Access Example

Table 274. Page Mode of MMU for the Remaining 128 KB of Internal SRAM0 and SRAM2

DPORT_IMMU_PAGE_MODE DPORT_DMMU_PAGE_MODE Page size

0 0 8 KB

1 1 4 KB

2 2 2 KB

NonMMU Governed Memory

For the MMU-managed region of SRAM0 and SRAM2, the page size is configurable as 8 KB, 4 KB and 2 KB. The

configuration is done by setting the DPORT_IMMU_PAGE_MODE (for SRAM0) and DPORT_DMMU_PAGE_MODE

(for SRAM2) bits in registers DPORT_IMMU_PAGE_MODE_REG and DPORT_DMMU_PAGE_MODE_REG, as de-

tailed in Table 27-4. Because the number of pages for either region is fixed at 16, the total amount of memory

covered by these pages is 128 KB when 8 KB pages are selected, 64 KB when 4 KB pages are selected, and

32 KB when 2 KB pages are selected. This implies that for 8 KB pages, the entire MMU-managed range is used,

but for the other page sizes there will be a part of the 128 KB memory that will not be governed by the MMU

settings. Concretely, for a page size of 4 KB, these regions are 0x4009_0000 to 0x4009_FFFF and 0x3FFD_0000

to 0x3FFD_FFFF; for a page size of 2 KB, the regions are 0x4008_8000 to 0x4009_FFFF and 0x3FFC_8000 to

0x3FFD_FFFF. These ranges are readable and writable by processes with a PID of 0 or 1; processes with other

PIDs cannot access this memory.

The layout of the pages in memory space is linear, namely, an SRAM0 MMU page n covers address space

0x40080000 + (pagesize ∗ n) to 0x40080000 + (pagesize ∗ (n+ 1)− 1); similarily, an SRAM2 MMU page n covers

0x3FFC0000+(pagesize∗n) to 0x3FFC0000+(pagesize∗ (n+1)−1). Tables 27-5 and 27-6 show the resulting

addresses in full.

Espressif Systems 603
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

27 Memory Management and Protection Units (MMU, MPU)

Table 275. Page Boundaries for SRAM0 MMU

8 KB Pages 4 KB Pages 2 KB Pages
Page

Bottom Top Bottom Top Bottom Top

0 40080000 40081FFF 40080000 40080FFF 40080000 400807FF

1 40082000 40083FFF 40081000 40081FFF 40080800 40080FFF

2 40084000 40085FFF 40082000 40082FFF 40081000 400817FF

3 40086000 40087FFF 40083000 40083FFF 40081800 40081FFF

4 40088000 40089FFF 40084000 40084FFF 40082000 400827FF

5 4008A000 4008BFFF 40085000 40085FFF 40082800 40082FFF

6 4008C000 4008DFFF 40086000 40086FFF 40083000 400837FF

7 4008E000 4008FFFF 40087000 40087FFF 40083800 40083FFF

8 40090000 40091FFF 40088000 40088FFF 40084000 400847FF

9 40092000 40093FFF 40089000 40089FFF 40084800 40084FFF

10 40094000 40095FFF 4008A000 4008AFFF 40085000 400857FF

11 40096000 40097FFF 4008B000 4008BFFF 40085800 40085FFF

12 40098000 40099FFF 4008C000 4008CFFF 40086000 400867FF

13 4009A000 4009BFFF 4008D000 4008DFFF 40086800 40086FFF

14 4009C000 4009DFFF 4008E000 4008EFFF 40087000 400877FF

15 4009E000 4009FFFF 4008F000 4008FFFF 40087800 40087FFF

Rest - - 40090000 4009FFFF 4008800 4009FFFF

Table 276. Page Boundaries for SRAM2 MMU

8 KB Pages 4 KB Pages 2 KB Pages
Page

Bottom Top Bottom Top Bottom Top

0 3FFC0000 3FFC1FFF 3FFC0000 3FFC0FFF 3FFC0000 3FFC07FF

1 3FFC2000 3FFC3FFF 3FFC1000 3FFC1FFF 3FFC0800 3FFC0FFF

2 3FFC4000 3FFC5FFF 3FFC2000 3FFC2FFF 3FFC1000 3FFC17FF

3 3FFC6000 3FFC7FFF 3FFC3000 3FFC3FFF 3FFC1800 3FFC1FFF

4 3FFC8000 3FFC9FFF 3FFC4000 3FFC4FFF 3FFC2000 3FFC27FF

5 3FFCA000 3FFCBFFF 3FFC5000 3FFC5FFF 3FFC2800 3FFC2FFF

6 3FFCC000 3FFCDFFF 3FFC6000 3FFC6FFF 3FFC3000 3FFC37FF

7 3FFCE000 3FFCFFFF 3FFC7000 3FFC7FFF 3FFC3800 3FFC3FFF

8 3FFD0000 3FFD1FFF 3FFC8000 3FFC8FFF 3FFC4000 3FFC47FF

9 3FFD2000 3FFD3FFF 3FFC9000 3FFC9FFF 3FFC4800 3FFC4FFF

10 3FFD4000 3FFD5FFF 3FFCA000 3FFCAFFF 3FFC5000 3FFC57FF

11 3FFD6000 3FFD7FFF 3FFCB000 3FFCBFFF 3FFC5800 3FFC5FFF

12 3FFD8000 3FFD9FFF 3FFCC000 3FFCCFFF 3FFC6000 3FFC67FF

13 3FFDA000 3FFDBFFF 3FFCD000 3FFCDFFF 3FFC6800 3FFC6FFF

14 3FFDC000 3FFDDFFF 3FFCE000 3FFCEFFF 3FFC7000 3FFC77FF

15 3FFDE000 3FFDFFFF 3FFCF000 3FFCFFFF 3FFC7800 3FFC7FFF

Rest - - 3FFD0000 3FFDFFFF 3FFC8000 3FFDFFFF

Espressif Systems 604
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

27 Memory Management and Protection Units (MMU, MPU)

MMU Mapping

For each of the SRAM0 and SRAM2 MMUs, access rights and virtual to physical page mapping are done by a

set of 16 registers. In contrast to most of the other MMUs, each register controls a physical page, not a virtual

one. These registers control which of the PIDs have access to the physical memory, as well as which virtual page

maps to this physical page. The bits in the register are described in Table 27-7. Keep in mind that these registers

only govern accesses from processes with PID 2 to 7; PID 0 and 1 always have full read and write access to all

pages and no virtual-to-physical mapping is done. In other words, if a process with a PID of 0 or 1 accesses virtual

page x, the access will always go to physical page x, regardless of these register settings. These registers, as well

as the page size selection registers DPORT_IMMU_PAGE_MODE_REG and DPORT_DMMU_PAGE_MODE_REG,

are only writable from a process with PID 0 or 1.

Table 277. DPORT_DMMU_TABLEn_REG & DPORT_IMMU_TABLEn_REG

[6:4] Access rights for PID 2 ~ 7

0 None of PIDs 2 ~ 7 have access.

1 All of PIDs 2 ~ 7 have access.

2 Only PID 2 has access.

3 Only PID 3 has access.

4 Only PID 4 has access.

5 Only PID 5 has access.

6 Only PID 6 has access.

7 Only PID 7 has access.

[3:0] Address authority

0x00 Virtual page 0 accesses this physical page.

0x01 Virtual page 1 accesses this physical page.

0x02 Virtual page 2 accesses this physical page.

0x03 Virtual page 3 accesses this physical page.

0x04 Virtual page 4 accesses this physical page.

0x05 Virtual page 5 accesses this physical page.

0x06 Virtual page 6 accesses this physical page.

0x07 Virtual page 7 accesses this physical page.

0x08 Virtual page 8 accesses this physical page.

0x09 Virtual page 9 accesses this physical page.

0x10 Virtual page 10 accesses this physical page.

0x11 Virtual page 11 accesses this physical page.

0x12 Virtual page 12 accesses this physical page.

0x13 Virtual page 13 accesses this physical page.

0x14 Virtual page 14 accesses this physical page.

0x15 Virtual page 15 accesses this physical page.

Differences Between SRAM0 and SRAM2 MMU

The memory governed by the SRAM0 MMU is accessed through the processors I-bus, while the processor ac-

cesses the memory governed by the SRAM2 MMU through the D-bus. Thus, the normal envisioned use is for the

code to be stored in the SRAM0 MMU pages and data in the MMU pages of SRAM2. In general, applications

running under a PID of 2 to 7 are not expected to modify their own code, because for these PIDs access to the

MMU pages of SRAM0 is read-only. These applications must, however, be able to modify their data section, so

that they are allowed to read as well as write MMU pages located in SRAM2. As stated before, processes running

under PID 0 or 1 always have full read-and-write access to both memory ranges.

DMA MPU

Applications may want to configure the DMA to send data straight from or to the peripherals they can control. With

access to DMA, a malicious process may also be able to copy data from or to a region it cannot normally access.

In order to be secure against that scenario, there is a DMA MPU which can be used to disallow DMA transfers

Espressif Systems 605
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

27 Memory Management and Protection Units (MMU, MPU)

from memory regions with sensitive data in them.

For each 8 KB region in the SRAM1 and SRAM2 regions, there is a bit in the DPORT_AHB_MPU_TABLE_n_REG

registers which tells the MPU to either allow or disallow DMA access to this region. The DMA MPU uses only these

bits to decide if a DMA transfer can be started; the PID of the process is not a factor. This means that when the

OS wants to restrict its processes in a heterogenous fashion, it will need to re-load these registers with the values

applicable to the process to be run on every context switch.

The register bits that govern access to the 8 KB regions are detailed in Table 27-8. When a register bit is set, DMA

can read/write the corresponding 8 KB memory range. When the bit is cleared, access to that memory range is

denied.

Table 278. MPU for DMA

Boundary address Authority
Size

Low High Register Bit

Internal SRAM 2

8 KB 0x3FFA_E000 0x3FFA_FFFF DPORT_AHB_MPU_TABLE_0_REG 0

8 KB 0x3FFB_0000 0x3FFB_1FFF DPORT_AHB_MPU_TABLE_0_REG 1

8 KB 0x3FFB_2000 0x3FFB_3FFF DPORT_AHB_MPU_TABLE_0_REG 2

8 KB 0x3FFB_4000 0x3FFB_5FFF DPORT_AHB_MPU_TABLE_0_REG 3

8 KB 0x3FFB_6000 0x3FFB_7FFF DPORT_AHB_MPU_TABLE_0_REG 4

8 KB 0x3FFB_8000 0x3FFB_9FFF DPORT_AHB_MPU_TABLE_0_REG 5

8 KB 0x3FFB_A000 0x3FFB_BFFF DPORT_AHB_MPU_TABLE_0_REG 6

8 KB 0x3FFB_C000 0x3FFB_DFFF DPORT_AHB_MPU_TABLE_0_REG 7

8 KB 0x3FFB_E000 0x3FFB_FFFF DPORT_AHB_MPU_TABLE_0_REG 8

8 KB 0x3FFC_0000 0x3FFC_1FFF DPORT_AHB_MPU_TABLE_0_REG 9

8 KB 0x3FFC_2000 0x3FFC_3FFF DPORT_AHB_MPU_TABLE_0_REG 10

8 KB 0x3FFC_4000 0x3FFC_5FFF DPORT_AHB_MPU_TABLE_0_REG 11

8 KB 0x3FFC_6000 0x3FFC_7FFF DPORT_AHB_MPU_TABLE_0_REG 12

8 KB 0x3FFC_8000 0x3FFC_9FFF DPORT_AHB_MPU_TABLE_0_REG 13

8 KB 0x3FFC_A000 0x3FFC_BFFF DPORT_AHB_MPU_TABLE_0_REG 14

8 KB 0x3FFC_C000 0x3FFC_DFFF DPORT_AHB_MPU_TABLE_0_REG 15

8 KB 0x3FFC_E000 0x3FFC_FFFF DPORT_AHB_MPU_TABLE_0_REG 16

8 KB 0x3FFD_0000 0x3FFD_1FFF DPORT_AHB_MPU_TABLE_0_REG 17

8 KB 0x3FFD_2000 0x3FFD_3FFF DPORT_AHB_MPU_TABLE_0_REG 18

8 KB 0x3FFD_4000 0x3FFD_5FFF DPORT_AHB_MPU_TABLE_0_REG 19

8 KB 0x3FFD_6000 0x3FFD_7FFF DPORT_AHB_MPU_TABLE_0_REG 20

8 KB 0x3FFD_8000 0x3FFD_9FFF DPORT_AHB_MPU_TABLE_0_REG 21

8 KB 0x3FFD_A000 0x3FFD_BFFF DPORT_AHB_MPU_TABLE_0_REG 22

8 KB 0x3FFD_C000 0x3FFD_DFFF DPORT_AHB_MPU_TABLE_0_REG 23

8 KB 0x3FFD_E000 0x3FFD_FFFF DPORT_AHB_MPU_TABLE_0_REG 24

Internal SRAM 1

8 KB 0x3FFE_0000 0x3FFE_1FFF DPORT_AHB_MPU_TABLE_0_REG 25

8 KB 0x3FFE_2000 0x3FFE_3FFF DPORT_AHB_MPU_TABLE_0_REG 26

8 KB 0x3FFE_4000 0x3FFE_5FFF DPORT_AHB_MPU_TABLE_0_REG 27

8 KB 0x3FFE_6000 0x3FFE_7FFF DPORT_AHB_MPU_TABLE_0_REG 28

Espressif Systems 606
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

27 Memory Management and Protection Units (MMU, MPU)

Boundary address Authority
Size

Low High Register Bit

8 KB 0x3FFE_8000 0x3FFE_9FFF DPORT_AHB_MPU_TABLE_0_REG 29

8 KB 0x3FFE_A000 0x3FFE_BFFF DPORT_AHB_MPU_TABLE_0_REG 30

8 KB 0x3FFE_C000 0x3FFE_DFFF DPORT_AHB_MPU_TABLE_0_REG 31

8 KB 0x3FFE_E000 0x3FFE_FFFF DPORT_AHB_MPU_TABLE_1_REG 0

8 KB 0x3FFF_0000 0x3FFF_1FFF DPORT_AHB_MPU_TABLE_1_REG 1

8 KB 0x3FFF_2000 0x3FFF_3FFF DPORT_AHB_MPU_TABLE_1_REG 2

8 KB 0x3FFF_4000 0x3FFF_5FFF DPORT_AHB_MPU_TABLE_1_REG 3

8 KB 0x3FFF_6000 0x3FFF_7FFF DPORT_AHB_MPU_TABLE_1_REG 4

8 KB 0x3FFF_8000 0x3FFF_9FFF DPORT_AHB_MPU_TABLE_1_REG 5

8 KB 0x3FFF_A000 0x3FFF_BFFF DPORT_AHB_MPU_TABLE_1_REG 6

8 KB 0x3FFF_C000 0x3FFF_DFFF DPORT_AHB_MPU_TABLE_1_REG 7

8 KB 0x3FFF_E000 0x3FFF_FFFF DPORT_AHB_MPU_TABLE_1_REG 8

Registers DPROT_AHB_MPU_TABLE_0_REG�DPROT_AHB_MPU_TABLE_1_REG are located in the DPort ad-

dress space. Only processes with a PID of 0 or 1 can modify these two registers.

Note:

In hardware, there are three instruction buses corresponding to V Addr1, V Addr2, and V Addr3, respectively. These

three buses can initiate load or fetch accesses simultaneously, but only one access is true. If more than one unmasked

instruction buses are present, then bit8 of all MMU entries should be set to zero. Otherwise, when an invalid MMU entry

is used by an access, the cache will be stalled even if there is no program at this access.

27.3.2.2 External Memory

Accesses to the external flash and external SPI RAM are done through a cache and are also handled by an MMU.

This Cache MMU can apply different mappings, depending on the PID of the process as well as the CPU the

process is running on. The MMU does this in a way that is similar to the internal memory MMU, that is, for every

page of virtual memory, it has a register detailing which physical page this virtual page should map to. There are

differences between the MMUs governing the internal memory and the Cache MMU, though. First of all, the Cache

MMU has a fixed page size (which is 64 KB for external flash and 32 KB for external RAM) and secondly, instead

of specifying access rights in the MMU entries, the Cache MMU has explicit mapping tables for each PID and

processor core. The MMU mapping configuration registers will be referred to as ’entries’ in the rest of this chapter.

These registers are only accessible from processes with a PID of 0 or 1; processes with a PID of 2 to 7 will have

to delegate to one of the above-mentioned processes to change their MMU settings.

The MMU entries, as stated before, are used for mapping a virtual memory page access to a physical memory

page access. The MMU controls five regions of virtual address space, detailed in Table 27-9. V Addr1 to V Addr4

are used for accessing external flash, whereas V AddrRAM is used for accessing external RAM. Note that V Addr4

is a subset of V Addr0.

Espressif Systems 607
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

27 Memory Management and Protection Units (MMU, MPU)

Table 279. Virtual Address for External Memory

Boundary address
Name Size

Low High
Page quantity

V Addr0 4 MB 0x3F40_0000 0x3F7F_FFFF 64

V Addr1 4 MB 0x4000_0000 0x403F_FFFF 64*

V Addr2 4 MB 0x4040_0000 0x407F_FFFF 64

V Addr3 4 MB 0x4080_0000 0x40BF_FFFF 64

V Addr4 1 MB 0x3F40_0000 0x3F4F_FFFF 16

V AddrRAM 4 MB 0x3F80_0000 0x3FBF_FFFF 128

* The configuration entries for address range 0x4000_0000 ~ 0x403F_FFFF are implemented and docu-

mented as if it were a full 4 MB address range, but it is not accessible as such. Instead, the address range

0x4000_0000 ~ 0x400C_1FFF accesses on-chip memory. This means that some of the configuration entries for

V Addr1 will not be used.

External Flash

For flash, the relationships among entry numbers, virtual memory ranges, and PIDs are detailed in Tables 27-10 and

27-11, which for every memory region and PID combination specify the first MMU entry governing the mapping.

This number refers to the MMU entry governing the very first page; the entire region is described by the amount of

pages specified in the ’count’ column.

These two tables are essentially the same, with the sole difference being that the APP_CPU entry numbers are

2048 higher than the corresponding PRO_CPU numbers. Note that memory regions V Addr0 and V Addr1 are

only accessible using PID 0 and 1, while V Addr4 can only be accessed by PID 2 ~ 7.

Table 2710. MMU Entry Numbers for PRO_CPU

First MMU entry for PID
VAddr Count

0/1 2 3 4 5 6 7

V Addr0 64 0 - - - - - -

V Addr1 64 64 - - - - - -

V Addr2 64 128 256 384 512 640 768 896

V Addr3 64 192 320 448 576 704 832 960

V Addr4 16 - 1056 1072 1088 1104 1120 1136

Table 2711. MMU Entry Numbers for APP_CPU

First MMU entry for PID
VAddr Count

0/1 2 3 4 5 6 7

V Addr0 64 2048 - - - - - -

V Addr1 64 2112 - - - - - -

V Addr2 64 2176 2304 2432 2560 2688 2816 2944

V Addr3 64 2240 2368 2496 2624 2752 2880 3008

V Addr4 16 - 3104 3120 3136 3152 3168 3184

As these tables show, virtual address V Addr1 can only be used by processes with a PID of 0 or 1. There is

Espressif Systems 608
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

27 Memory Management and Protection Units (MMU, MPU)

a special mode to allow processes with a PID of 2 to 7 to read the External Flash via address V Addr1. When

the DPORT_PRO_SINGLE_IRAM_ENA bit of register DPORT_PRO_CACHE_CTRL_REG is 1, the MMU enters

this special mode for PRO_CPU memory accesses. Similarily, when the DPORT_APP_SINGLE_IRAM_ENA bit of

register DPORT_APP_CACHE_CTRL_REG is 1, the APP_CPU accesses memory using this special mode. In this

mode, the process and virtual address page supported by each configuration entry of MMU are different. For

details please see Table 27-12 and 27-13. As shown in these tables, in this special mode V Addr2 and V Addr3

cannot be used to access External Flash.

Table 2712. MMU Entry Numbers for PRO_CPU (Special Mode)

First MMU entry for PID
VAddr Count

0/1 2 3 4 5 6 7

V Addr0 64 0 - - - - - -

V Addr1 64 64 256 384 512 640 768 896

V Addr2 64 - - - - - - -

V Addr3 64 - - - - - - -

V Addr4 16 - 1056 1072 1088 1104 1120 1136

Table 2713. MMU Entry Numbers for APP_CPU (Special Mode)

First MMU entry for PID
VAddr Count

0/1 2 3 4 5 6 7

V Addr0 64 2048 - - - - - -

V Addr1 64 2112 2304 2432 2560 2688 2816 2944

V Addr2 64 - - - - - - -

V Addr3 64 - - - - - - -

V Addr4 16 - 3104 3120 3136 3152 3168 3184

Every configuration entry of MMU maps a virtual address page of a CPU process to a physical address page. An

entry is 32 bits wide. Of these, bits 0~7 indicate the physical page the virtual page is mapped to. Bit 8 should be

cleared to indicate that the MMU entry is valid; entries with this bit set will not map any physical address to the

virtual address. Bits 10 to 32 are unused and should be written as zero. Because there are eight address bits in

an MMU entry, and the page size for external flash is 64 KB, a maximum of 256 * 64 KB = 16 MB of external flash

is supported.

Examples

Example 1. A PRO_CPU process, with a PID of 1, needs to read external flash address 0x07_2375 via virtual

address 0x3F70_2375. The MMU is not in the special mode.

• According to Table 27-9, virtual address 0x3F70_2375 resides in the 0x30’th page of V Addr0.

• According to Table 27-10, the MMU entry for V Addr0 for PID 0/1 for the PRO_CPU starts at 0.

• The modified MMU entry is 0 + 0x30 = 0x30.

• Address 0x07_2375 resides in the 7’th 64 KB-sized page.

• MMU entry 0x30 needs to be set to 7 and marked as valid by setting the 8’th bit to 0. Thus, 0x007 is written

to MMU entry 0x30.

Espressif Systems 609
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

27 Memory Management and Protection Units (MMU, MPU)

Example 2. An APP_CPU process, with a PID of 4, needs to read external flash address 0x44_048C via virtual

address 0x4044_048C. The MMU is not in special mode.

• According to Table 27-9, virtual address 0x4044_048C resides in the 0x4’th page of V Addr2.

• According to Table 27-11, the MMU entry for V Addr2 for PID 4 for the APP_CPU starts at 2560.

• The modified MMU entry is 2560 + 0x4 = 2564.

• Address 0x44_048C resides in the 0x44’th 64 KB-sized page.

• MMU entry 2564 needs to be set to 0x44 and marked as valid by setting the 8’th bit to 0. Thus, 0x044 is

written to MMU entry 2564.

External RAM

Processes running on PRO_CPU and APP_CPU can read and write External SRAM via the Cache at virtual address

range V AddrRAM , which is 0x3F80_0000 ~ 0x3FBF_FFFF. As with the flash MMU, the address space and the

physical memory are divided into pages. For the External RAM MMU, the page size is 32 KB and the MMU is able

to map 256 physical pages into the virtual address space, allowing for 32 KB * 256 = 8 MB of physical external

RAM to be mapped.

The mapping of virtual pages into this memory range depends on the mode this MMU is in: Low-High mode, Even-

Odd mode, or Normal mode. In all cases, the DPORT_PRO_DRAM_HL bit and DPORT_PRO_DRAM_SPLIT bit in

register DPORT_PRO_CACHE_CTRL_REG, the DPORT_APP_DRAM_HL bit and DPORT_APP_DRAM_SPLIT bit

in register DPORT_APP_CACHE_CTRL_REG determine the virtual address mode for External SRAM. For details,

please see Table 27-14. If a different mapping for the PRO_CPU and APP_CPU is required, the Normal Mode

should be selected, as it is the only mode that can provide this. If it is allowable for the PRO_CPU and the

APP_CPU to share the same mapping, using either High-Low or Even-Odd mode can give a speed gain when

both CPUs access memory frequently.

In case the APP_CPU cache is disabled, which renders the region of 0x4007_8000 to 0x4007_FFFF usable as

normal internal RAM, the usability of the various cache modes changes. Normal mode will allow PRO_CPU access

to external RAM to keep functioning, but the APP_CPU will be unable to access the external RAM. High-Low mode

allows both CPUs to use external RAM, but only for the 2 MB virtual memory addresses from 0x3F80_0000 to

0x3F9F_FFFF. It is not advised to use Even-Odd mode with the APP_CPU cache region disabled.

Table 2714. Virtual Address Mode for External SRAM

Mode
DPORT_PRO_DRAM_HL

DPORT_APP_DRAM_HL

DPORT_PRO_DRAM_SPLIT

DPORT_APP_DRAM_SPLIT

Low-High 1 0

Even-Odd 0 1

Normal 0 0

In normal mode, the virtual-to-physical page mapping can be different for both CPUs. Page mappings for PRO_CPU

are set using the MMU entries for LV AddrRAM , and page mappings for the APP_CPU can be configured using the

MMU entries for RV AddrRAM . In this mode, all 128 pages of both LV Addr and RV Addr are fully used, allowing

a maximum of 8 MB of memory to be mapped; 4 MB into PRO_CPU address space and a possibly different 4 MB

into the APP_CPU address space, as can be seen in Table 27-15.

Espressif Systems 610
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

27 Memory Management and Protection Units (MMU, MPU)

Table 2715. Virtual Address for External SRAM (Normal Mode)

PRO_CPU address
Virtual address Size

Low High
LV AddrRAM 4 MB 0x3F80_0000 0x3FBF_FFFF

APP_CPU address
Virtual address Size

Low High
RV AddrRAM 4 MB 0x3F80_0000 0x3FBF_FFFF

In Low-High mode, both the PRO_CPU and the APP_CPU use the same mapping entries. In this mode LV AddrRAM

is used for the lower 2 MB of the virtual address space, while RV AddrRAM is used for the upper 2 MB. This also

means that the upper 64 MMU entries for LV AddrRAM , as well as the lower 64 entries for RV AddrRAM , are

unused. Table 27-16 details these address ranges.

Table 2716. Virtual Address for External SRAM (LowHigh Mode)

PRO_CPU/APP_CPU address
Virtual address Size

Low High
LV AddrRAM 2 MB 0x3F80_0000 0x3F9F_FFFF
RV AddrRAM 2 MB 0x3FA0_0000 0x3FBF_FFFF

In Even-Odd memory, the VRAM is split into 32-byte chunks. The even chunks are resolved through the MMU

entries for LV AddrRAM , the odd chunks through the entries for RV AddrRAM . Generally, the MMU entries for
LV AddrRAM and RV AddrRAM are set to the same values, so that the virtual pages map to a contiguous region

of physical memory. Table 27-17 details this mode.

Table 2717. Virtual Address for External SRAM (EvenOdd Mode)

PRO_CPU/APP_CPU address
Virtual address Size

Low High
LV AddrRAM 32 Bytes 0x3F80_0000 0x3F80_001F
RV AddrRAM 32 Bytes 0x3F80_0020 0x3F80_003F
LV AddrRAM 32 Bytes 0x3F80_0040 0x3F80_005F
RV AddrRAM 32 Bytes 0x3F80_0060 0x3F80_007F

...
LV AddrRAM 32 Bytes 0x3FBF_FFC0 0x3FBF_FFDF
RV AddrRAM 32 Bytes 0x3FBF_FFE0 0x3FBF_FFFF

The bit configuration of the External RAM MMU entries is the same as for the flash memory: the entries are 32-bit

registers, with the lower nine bits being used. Bits 0~7 contain the physical page the entry should map its associate

virtual page address to, while bit 8 is cleared when the entry is valid and set when it is not. Table 27-18 details the

first MMU entry number for LV AddrRAM and RV AddrRAM for all PIDs.

Espressif Systems 611
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

27 Memory Management and Protection Units (MMU, MPU)

Table 2718. MMU Entry Numbers for External RAM

First MMU entry for PID
VAddr Count

0/1 2 3 4 5 6 7
LV AddrRAM 128 1152 1280 1408 1536 1664 1792 1920
RV AddrRAM 128 3200 3328 3456 3584 3712 3840 3968

Examples

Example 1. A PRO_CPU process, with a PID of 7, needs to read or write external RAM address 0x7F_A375 via

virtual address 0x3FA7_2375. The MMU is in Low-High mode.

• According to Table 27-9, virtual address 0x3FA7_2375 resides in the 0x4E’th 32-KB-page of V AddrRAM .

• According to Table 27-16, virtual address 0x3FA7_2375 is governed by RV AddrRAM .

• According to Table 27-18, the MMU entry for RV AddrRAM for PID 7 for the PRO_CPU starts at 3968.

• The modified MMU entry is 3968 + 0x4E = 4046.

• Address 0x7F_A375 resides in the 255’th 32 KB-sized page.

• MMU entry 4046 needs to be set to 255 and marked as valid by clearing the 8’th bit. Thus, 0x0FF is written

to MMU entry 4046.

Example 2. An APP_CPU process, with a PID of 5, needs to read or write external RAM address 0x55_5805 up

to 0x55_5823 starting at virtual address 0x3F85_5805. The MMU is in Even-Odd mode.

• According to Table 27-9, virtual address 0x3F85_5805 resides in the 0x0A’th 32-KB-page of V AddrRAM .

• According to Table 27-17, the range to be read/written spans both a 32-byte region in RV AddrRAM and
LV AddrRAM .

• According to Table 27-18, the MMU entry for LV AddrRAM for PID 5 starts at 1664.

• According to Table 27-18, the MMU entry for RV AddrRAM for PID 5 starts at 3712.

• The modified MMU entries are 1664 + 0x0A = 1674 and 3712 + 0x0A = 3722.

• The addresses 0x55_5805 to 0x55_5823 reside in the 0xAA’th 32 KB-sized page.

• MMU entries 1674 and 3722 need to be set to 0xAA and marked as valid by setting the 8’th bit to 0. Thus,

0x0AA is written to MMU entries 1674 and 3722. This mapping applies to both the PRO_CPU and the

APP_CPU.

Example 3. A PRO_CPU process, with a PID of 1, and an APP_CPU process whose PID is also 1, need to read or

write external RAM using virtual address 0x3F80_0876. The PRO_CPU needs this region to access physical ad-

dress 0x10_0876, while the APP_CPU wants to access physical address 0x20_0876 through this virtual address.

The MMU is in Normal mode.

• According to Table 27-9, virtual address 0x3F80_0876 resides in the 0’th 32-KB-page of V AddrRAM .

• According to Table 27-18, the MMU entry for PID 1 for the PRO_CPU starts at 1152.

• According to Table 27-18, the MMU entry for PID 1 for the APP_CPU starts at 3200.

• The MMU entries that are modified are 1152 + 0 = 1152 for the PRO_CPU and 3200 + 0 = 3200 for the

APP_CPU.

• Address 0x10_0876 resides in the 0x20’th 32 KB-sized page.

• Address 0x20_0876 resides in the 0x40’th 32 KB-sized page.

• For the PRO_CPU, MMU entry 1152 needs to be set to 0x20 and marked as valid by clearing the 8’th bit.

Thus, 0x020 is written to MMU entry 1152.

Espressif Systems 612
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

27 Memory Management and Protection Units (MMU, MPU)

• For the APP_CPU, MMU entry 3200 needs to be set to 0x40 and marked as valid by clearing the 8’th bit.

Thus, 0x040 is written to MMU entry 3200.

• Now, the PRO_CPU and the APP_CPU can access different physical memory regions through the same

virtual address.

27.3.2.3 Peripheral

The Peripheral MPU manages the 39 peripheral modules. This MMU can be configured per peripheral to only allow

access from a process with a certain PID. The registers to configure this are detailed in Table 27-19.

Table 2719. MPU for Peripheral

Authority
Peripheral

PID = 0/1 PID = 2 ~ 7

DPort Register Access Forbidden

AES Accelerator Access Forbidden

RSA Accelerator Access Forbidden

SHA Accelerator Access Forbidden

Secure Boot Access Forbidden

Cache MMU Table Access Forbidden

PID Controller Access Forbidden

UART0 Access DPORT_AHBLITE_MPU_TABLE_UART_REG

SPI1 Access DPORT_AHBLITE_MPU_TABLE_SPI1_REG

SPI0 Access DPORT_AHBLITE_MPU_TABLE_SPI0_REG

GPIO Access DPORT_AHBLITE_MPU_TABLE_GPIO_REG

RTC Access DPORT_AHBLITE_MPU_TABLE_RTC_REG

IO MUX Access DPORT_AHBLITE_MPU_TABLE_IO_MUX_REG

SDIO Slave Access DPORT_AHBLITE_MPU_TABLE_HINF_REG

UDMA1 Access DPORT_AHBLITE_MPU_TABLE_UHCI1_REG

I2S0 Access DPORT_AHBLITE_MPU_TABLE_I2S0_REG

UART1 Access DPORT_AHBLITE_MPU_TABLE_UART1_REG

I2C0 Access DPORT_AHBLITE_MPU_TABLE_I2C_EXT0_REG

UDMA0 Access DPORT_AHBLITE_MPU_TABLE_UHCI0_REG

SDIO Slave Access DPORT_AHBLITE_MPU_TABLE_SLCHOST_REG

RMT Access DPORT_AHBLITE_MPU_TABLE_RMT_REG

PCNT Access DPORT_AHBLITE_MPU_TABLE_PCNT_REG

SDIO Slave Access DPORT_AHBLITE_MPU_TABLE_SLC_REG

LED PWM Access DPORT_AHBLITE_MPU_TABLE_LEDC_REG

Efuse Controller Access DPORT_AHBLITE_MPU_TABLE_EFUSE_REG

Flash Encryption Access DPORT_AHBLITE_MPU_TABLE_SPI_ENCRYPT_REG

PWM0 Access DPORT_AHBLITE_MPU_TABLE_PWM0_REG

TIMG0 Access DPORT_AHBLITE_MPU_TABLE_TIMERGROUP_REG

TIMG1 Access DPORT_AHBLITE_MPU_TABLE_TIMERGROUP1_REG

SPI2 Access DPORT_AHBLITE_MPU_TABLE_SPI2_REG

SPI3 Access DPORT_AHBLITE_MPU_TABLE_SPI3_REG

SYSCON Access DPORT_AHBLITE_MPU_TABLE_APB_CTRL_REG

Espressif Systems 613
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

27 Memory Management and Protection Units (MMU, MPU)

Authority
Peripheral

PID = 0/1 PID = 2 ~ 7

I2C1 Access DPORT_AHBLITE_MPU_TABLE_I2C_EXT1_REG

SDMMC Access DPORT_AHBLITE_MPU_TABLE_SDIO_HOST_REG

EMAC Access DPORT_AHBLITE_MPU_TABLE_EMAC_REG

PWM1 Access DPORT_AHBLITE_MPU_TABLE_PWM1_REG

I2S1 Access DPORT_AHBLITE_MPU_TABLE_I2S1_REG

UART2 Access DPORT_AHBLITE_MPU_TABLE_UART2_REG

RNG Access DPORT_AHBLITE_MPU_TABLE_PWR_REG

Each bit of register DPORT_AHBLITE_MPU_TABLE_X_REG determines whether each process can access the

peripherals managed by the register. For details please see Table 27-20. When a bit of register DPORT_AHBLITE_

MPU_TABLE_X_REG is 1, it means that a process with the corresponding PID can access the corresponding

peripheral of the register. Otherwise, the process cannot access the corresponding peripheral.

Table 2720. DPORT_AHBLITE_MPU_TABLE_X_REG

PID 2 3 4 5 6 7

DPORT_AHBLITE_MPU_TABLE_X_REG bit 0 1 2 3 4 5

All the DPORT_AHBLITE_MPU_TABLE_X_REG registers are in peripheral DPort Register. Only processes with PID

0/1 can modify these registers.

Espressif Systems 614
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

28 Process ID Controller (PID)

28 Process ID Controller (PID)

28.1 Overview
The ESP32 is a dual core device and is capable of running and managing multiple processes. The PID Controller

supports switching of PID when a process switch occurs. In addition to PID management, the PID Controller

also facilitates management of nested interrupts by recording execution status just before an interrupt service

routine is executed. This enables the user application to manage process switches and nested interrupts more

efficiently.

28.2 Features
The PID Controller features:

• Process management and priority

• Process PID switch

• Interrupt information recording

• Nested interrupt management

28.3 Functional Description
Eight processes run on the CPU, and are assigned with PID of 0 ~ 7 respectively. Among the eight processes,

processes with PID of 0 or 1 are elevated processes with higher authority compared to processes with PID ranging

from 2 ~ 7.

A CPU process switch may occur in two cases:

• An interrupt occurs and the CPU fetches an instruction from the interrupt vector. Instruction fetch or execution

from interrupt vector is always treated as a process with PID of 0, irrespective of which process was being

executed on the CPU when the interrupt occurred.

• A currently active process explicitly performs a process switch. Only elevated processes with PID of 0 or 1

may perform a process switch.

28.3.1 Interrupt Identification
Interrupts are classified into seven priority levels: Level 1, Level 2, Level 3, Level 4, Level 5, Level 6 (Debug), and

NMI. Each level of interrupt is assigned an interrupt vector entry address. The PID Controller recognizes CPU

instruction fetch from an interrupt vector entry address and automatically switches PID to 0. If CPU only accesses

the interrupt vector entry address, PID Controller performs no action.

PIDCTRL_INTERRUPT_ENABLE_REG determines whether the PID Controller identifies and registers an inter-

rupt of certain priority. When a bit of register PIDCTRL_INTERRUPT_ENABLE_REG is 1, PID Controller will

take action when CPU fetches instruction from the interrupt vector entry address of the corresponding inter-

rupt. Otherwise, PID Controller performs no action. The registers PIDCTRL_INTERRUPT_ADDR_1_REG ~ PID-

CTRL_INTERRUPT_ADDR_7_REG define the interrupt vector entry address for all the interrupt priority levels. For

details please refer to Table 28-1.

Espressif Systems 615
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

28 Process ID Controller (PID)

Table 281. Interrupt Vector Entry Address

Priority level
PIDCTRL_INTERRUPT_ENABLE_REG bit

controlling interrupt identification
Interrupt vector entry address

Level 1 1 PIDCTRL_INTERRUPT_ADDR_1_REG

Level 2 2 PIDCTRL_INTERRUPT_ADDR_2_REG

Level 3 3 PIDCTRL_INTERRUPT_ADDR_3_REG

Level 4 4 PIDCTRL_INTERRUPT_ADDR_4_REG

Level 5 5 PIDCTRL_INTERRUPT_ADDR_5_REG

Level 6 (Debug) 6 PIDCTRL_INTERRUPT_ADDR_6_REG

NMI 7 PIDCTRL_INTERRUPT_ADDR_7_REG

28.3.2 Information Recording
When PID Controller identifies an interrupt, it records three items of information in addition to switching PID to 0.

The recorded information includes the priority level of current interrupt, previous interrupt status of the system and

the previous process running on the CPU.

PID Controller records the priority level of the current interrupt in register PIDCTRL_LEVEL_REG. For details please

refer to Table 28-2.

Table 282. Configuration of PIDCTRL_LEVEL_REG

Value Priority level of the current interrupt

0 No interrupt

1 Level 1

2 Level 2

3 Level 3

4 Level 4

5 Level 5

6 Level 6

7 NMI

PID Controller also records in register PIDCTRL_FROM_n_REG the status of the system before the interrupt oc-

curred. The bit width of register PIDCTRL_FROM_n_REG is 7. The highest four bits represent the interrupt status

of the system before the interrupt indicated by the register occurred. The lowest three bits represent the pro-

cess running on the CPU before the interrupt indicated by the register occurred. For details please refer to Table

28-3.

Espressif Systems 616
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

28 Process ID Controller (PID)

Table 283. Configuration of PIDCTRL_FROM_n_REG

[6:3] Previous interrupt

0 No interrupt

1 Level 1 Interrupt

2 Level 2 Interrupt

3 Level 3 Interrupt

4 Level 4 Interrupt

5 Level 5 Interrupt

6 Level 6 Interrupt

7 Level 7 Interrupt

[2:0] Previous process

0 Process with PID of 0

1 Process with PID of 1

2 Process with PID of 2

3 Process with PID of 3

4 Process with PID of 4

5 Process with PID of 5

6 Process with PID of 6

7 Process with PID of 7

PID Controller possesses registers PIDCTRL_FROM_1_REG ~ PIDCTRL_FROM_7_REG, which correspond to the

interrupts of Level 1, Level 2, Level 3, Level 4, Level 5, Level 6 (Debug), and NMI respectively. This enables the

system to implement interrupt nesting. Please refer to Table 28-1 for examples.

If the configuration of register PIDCTRL_INTERRUPT_ENABLE_REG prevents PID Controller from identifying an

interrupt, PID Controller will not record any information, and PIDCTRL_LEVEL_REG and PIDCTRL_FROM_n_REG

will remain unchanged.

28.3.3 Proactive Process Switching
As mentioned before, only an elevated process with PID of 0/1 can initiate a process switch. The new process

may have any PID from 0 ~ 7 after the process switch. The key for successful proactive process switching is that

when the last command of the current process switches to the first command of the new process, PID should

switch from 0/1 to that of the new process.

The software procedure for proactive process switching is as follows:

1. Mask all the interrupts except NMI by using software.

2. Set register PIDCTRL_NMI_MASK_ENABLE_REG to 1 to generate a CPU NMI Interrupt Mask signal.

3. Configure registers PIDCTRL_PID_DELAY_REG and PIDCTRL_NMI_DELAY_REG.

4. Configure register PIDCTRL_PID_NEW_REG.

5. Configure register PIDCTRL_LEVEL_REG and PIDCTRL_FROM_n_REG.

6. Set register PIDCTRL_PID_CONFIRM_REG and register PIDCTRL_NMI_MASK_DISABLE_REG to 1.

7. Revoke the masking of all interrupts but NMI.

8. Switch to the new process and fetch instruction.

Though we can deal with interrupt nesting, an elevated process should not be interrupted during the process

switching, and therefore the interrupts have been masked in step 1 and step 2.

In step 3, the configured values of registers PIDCTRL_PID_DELAY_REG and PIDCTRL_NMI_DELAY_REG will affect

step 6.

In step 4, the configured value of register PIDCTRL_PID_NEW_REG will be the new PID after step 6.

If the system is currently in a nested interrupt and needs to revert to the previous interrupt, register PIDCTRL_LEVEL_REG

must be restored based on the information recorded in register PIDCTRL_FROM_n_REG in step 5.

Espressif Systems 617
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

28 Process ID Controller (PID)

Figure 281. Interrupt Nesting

In step 6, after the values of register PIDCTRL_PID_CONFIRM_REG and register PIDCTRL_NMI_MASK_DISABLE_REG

are set to 1, PID Controller will not immediately switch PID to the value of register PIDCTRL_PID_NEW_REG, nor

disable CPU NMI Interrupt Mask signal at once. Instead, PID Controller performs each task after a different number

of clock cycles. The numbers of clock cycles are the values specified in register PIDCTRL_PID_DELAY_REG and

PIDCTRL_NMI_DELAY_REG respectively.

In step 7, other tasks can be implemented as well. To do this, the cost of those tasks should be included when

configuring registers PIDCTRL_PID_DELAY_REG and PIDCTRL_NMI_DELAY_REG in step 3.

Espressif Systems 618
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

28 Process ID Controller (PID)

28.4 Register Summary

Name Description Address Access

PIDCTRL_INTERRUPT_ENABLE_REG PID interrupt identification enable 0x3FF1F000 R/W

PIDCTRL_INTERRUPT_ADDR_1_REG Level 1 interrupt vector address 0x3FF1F004 R/W

PIDCTRL_INTERRUPT_ADDR_2_REG Level 2 interrupt vector address 0x3FF1F008 R/W

PIDCTRL_INTERRUPT_ADDR_3_REG Level 3 interrupt vector address 0x3FF1F00C R/W

PIDCTRL_INTERRUPT_ADDR_4_REG Level 4 interrupt vector address 0x3FF1F010 R/W

PIDCTRL_INTERRUPT_ADDR_5_REG Level 5 interrupt vector address 0x3FF1F014 R/W

PIDCTRL_INTERRUPT_ADDR_6_REG Level 6 interrupt vector address 0x3FF1F018 R/W

PIDCTRL_INTERRUPT_ADDR_7_REG NMI interrupt vector address 0x3FF1F01C R/W

PIDCTRL_PID_DELAY_REG New PID valid delay 0x3FF1F020 R/W

PIDCTRL_NMI_DELAY_REG NMI mask signal disable delay 0x3FF1F024 R/W

PIDCTRL_LEVEL_REG Current interrupt priority 0x3FF1F028 R/W

PIDCTRL_FROM_1_REG System status before Level 1 interrupt 0x3FF1F02C R/W

PIDCTRL_FROM_2_REG System status before Level 2 interrupt 0x3FF1F030 R/W

PIDCTRL_FROM_3_REG System status before Level 3 interrupt 0x3FF1F034 R/W

PIDCTRL_FROM_4_REG System status before Level 4 interrupt 0x3FF1F038 R/W

PIDCTRL_FROM_5_REG System status before Level 5 interrupt 0x3FF1F03C R/W

PIDCTRL_FROM_6_REG System status before Level 6 interrupt 0x3FF1F040 R/W

PIDCTRL_FROM_7_REG System status before NMI 0x3FF1F044 R/W

PIDCTRL_PID_NEW_REG New PID configuration register 0x3FF1F048 R/W

PIDCTRL_PID_CONFIRM_REG New PID confirmation register 0x3FF1F04C WO

PIDCTRL_NMI_MASK_ENABLE_REG NMI mask enable register 0x3FF1F054 WO

PIDCTRL_NMI_MASK_DISABLE_REG NMI mask disable register 0x3FF1F058 WO

Espressif Systems 619
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

28 Process ID Controller (PID)

28.5 Registers
The addresses in parenthesis besides register names are the register addresses relative to the PID Controller

base address provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory. The absolute

register addresses are listed in Section 28.4 Register Summary.

Espressif Systems 620
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

28 Process ID Controller (PID)

Register 28.1. PIDCTRL_INTERRUPT_ENABLE_REG (0x000)

(re
se

rve
d)

0 0

31 8

PID
CTR

L_
IN

TE
RRUPT_

ENABLE

0 0 0 0 0 0 0

7 1

(re
se

rve
d)

0

0

Reset

PIDCTRL_INTERRUPT_ENABLE These bits are used to enable interrupt identification and process-

ing. (R/W)

Register 28.2. PIDCTRL_INTERRUPT_ADDR_1_REG (0x004)

0x040000340

31 0

Reset

PIDCTRL_INTERRUPT_ADDR_1_REG Level 1 interrupt vector entry address. (R/W)

Register 28.3. PIDCTRL_INTERRUPT_ADDR_2_REG (0x008)

0x040000180

31 0

Reset

PIDCTRL_INTERRUPT_ADDR_2_REG Level 2 interrupt vector entry address. (R/W)

Register 28.4. PIDCTRL_INTERRUPT_ADDR_3_REG (0x00C)

0x0400001C0

31 0

Reset

PIDCTRL_INTERRUPT_ADDR_3_REG Level 3 interrupt vector entry address. (R/W)

Register 28.5. PIDCTRL_INTERRUPT_ADDR_4_REG (0x010)

0x040000200

31 0

Reset

PIDCTRL_INTERRUPT_ADDR_4_REG Level 4 interrupt vector entry address. (R/W)

Espressif Systems 621
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

28 Process ID Controller (PID)

Register 28.6. PIDCTRL_INTERRUPT_ADDR_5_REG (0x014)

0x040000240

31 0

Reset

PIDCTRL_INTERRUPT_ADDR_5_REG Level 5 interrupt vector entry address. (R/W)

Register 28.7. PIDCTRL_INTERRUPT_ADDR_6_REG (0x018)

0x040000280

31 0

Reset

PIDCTRL_INTERRUPT_ADDR_6_REG Level 6 interrupt vector entry address. (R/W)

Register 28.8. PIDCTRL_INTERRUPT_ADDR_7_REG (0x01C)

0x0400002C0

31 0

Reset

PIDCTRL_INTERRUPT_ADDR_7_REG NMI interrupt vector entry address. (R/W)

Register 28.9. PIDCTRL_PID_DELAY_REG (0x020)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

PID
CTR

L_
PID

_D
ELA

Y

20

11 0

Reset

PIDCTRL_PID_DELAY Delay until newly assigned PID is valid. (R/W)

Register 28.10. PIDCTRL_NMI_DELAY_REG (0x024)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

PID
CTR

L_
NM

I_D
ELA

Y

16

11 0

Reset

PIDCTRL_NMI_DELAY Delay for disabling CPU NMI interrupt mask signal. (R/W)

Espressif Systems 622
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

28 Process ID Controller (PID)

Register 28.11. PIDCTRL_LEVEL_REG (0x028)

(re
se

rve
d)

0 0

31 4

PID
CTR

L_
CURRENT_

STA
TU

S

0

3 0

Reset

PIDCTRL_CURRENT_STATUS The current status of the system. (R/W)

Register 28.12. PIDCTRL_FROM_n_REG (n: 17) (0x28+0x4*n)

(re
se

rve
d)

0 0

31 7

PID
CTR

L_
PREVIO

US_S
TA

TU
S_n

0 0 0 0 0 0 0

6 0

Reset

PIDCTRL_PREVIOUS_STATUS_n System status before any of Level 1 to Level 6, NMI interrupts

occurs. (R/W)

Register 28.13. PIDCTRL_PID_NEW_REG (0x048)

(re
se

rve
d)

0 0

31 3

PID
CTR

L_
PID

_N
EW

0

2 0

Reset

PIDCTRL_PID_NEW New PID. (R/W)

Espressif Systems 623
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

28 Process ID Controller (PID)

Register 28.14. PIDCTRL_PID_CONFIRM_REG (0x04C)

(re
se

rve
d)

0 0

31 1

PID
CTR

L_
PID

_C
ONFIR

M

0

0

Reset

PIDCTRL_PID_CONFIRM This bit is used to confirm the switch of PID. (WO)

Register 28.15. PIDCTRL_NMI_MASK_ENABLE_REG (0x054)

(re
se

rve
d)

0 0

31 1

PID
CTR

L_
NM

I_M
ASK_E

NABLE

0

0

Reset

PIDCTRL_NMI_MASK_ENABLE This bit is used to enable CPU NMI interrupt mask signal. (WO)

Register 28.16. PIDCTRL_NMI_MASK_DISABLE_REG (0x058)

(re
se

rve
d)

0 0

31 1

PID
CTR

L_
NM

I_M
ASK_D

IS
ABLE

0

0

Reset

PIDCTRL_NMI_MASK_DISABLE This bit is used to disable CPU NMI interrupt mask signal. (WO)

Espressif Systems 624
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

29 OnChip Sensors and Analog Signal Processing

29.1 Introduction
ESP32 has a capacitive touch sensor with up to 10 inputs.

The processing of analog signals is done by two successive approximation ADCs (SAR ADC). There are five con-

trollers dedicated to operating ADCs. This provides flexibility when it comes to converting analog inputs in both

high-performance and low-power modes, with minimum processor overhead.

ESP32 is also capable of generating analog signals, using two independent DACs and a cosine waveform gener-

ator.

29.2 Capacitive Touch Sensor
29.2.1 Introduction
A touch-sensor system is built on a substrate which carries electrodes and relevant connections under a protective

flat surface; see Figure 29-1. When a user touches the surface, the capacitance variation is triggered and a binary

signal is generated to indicate whether the touch is valid.

Figure 291. Touch Sensor

29.2.2 Features
• Up to 10 capacitive touch pads / GPIOs

• The sensing pads can be arranged in different combinations, so that a larger area or more points can be

detected.

• The touch pad sensing process is under the control of a hardware-implemented finite-state machine (FSM)

which is initiated by software or a dedicated hardware timer.

• Information that a pad has been touched can be obtained:

– by checking touch-sensor registers directly through software,

– from an interrupt triggered by a touch detection,

– by waking up the CPU from deep sleep upon touch detection.

• Support for low-power operation in the following scenarios:

Espressif Systems 625
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

– CPU waiting in deep sleep and saving power until touch detection and subsequent wake up

– Touch detection managed by the ULP coprocessor

The user program in ULP coprocessor can trigger a scanning process by checking and writing into

specific registers, in order to verify whether the touch threshold is reached.

Note:

ESP32 Touch Sensor has not passed the Conducted Susceptibility (CS) test for now, and thus has limited application

scenarios.

29.2.3 Available GPIOs
All 10 available sensing GPIOs (pads) are listed in Table 29-1.

Table 291. ESP32 Capacitive Sensing Touch Pads

Touch Sensing Signal Name Pin Name

T0 GPIO4

T1 GPIO0

T2 GPIO2

T3 MTDO

T4 MTCK

T5 MTDI

T6 MTMS

T7 GPIO27

T8 32K_XN

T9 32K_XP

29.2.4 Functional Description
The internal structure of the touch sensor is shown in Figure 29-2. The operating flow is shown in Figure 29-

3.

Figure 292. Touch Sensor Structure

The capacitance of a touch pad is periodically charged and discharged. The chart ”Pad Voltage” shows the

charge/discharge voltage that swings from DREFH (reference voltage high) to DREFL (reference voltage low). Dur-

Espressif Systems 626
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

ing each swing, the touch sensor generates an output pulse, shown in the chart as ”OUT”. The swing slope is

different when the pad is touched (high capacitance) and when it is not (low capacitance). By comparing the differ-

ence between the output pulse counts during the same time interval, we can conclude whether the touch pad has

been touched. TIE_OPT is used to establish the initial voltage level that starts the charge/discharge cycle.

Figure 293. Touch Sensor Operating Flow

29.2.5 Touch FSM
The Touch FSM performs a measurement sequence described in section 29.2.4. Software can operate the Touch

FSM through dedicated registers. The internal structure of a touch FSM is shown in Figure 29-4.

The functions of Touch FSM include:

• Receipt of a start signal, either from software or a timer

– when SENS_SAR_TOUCH_START_FORCE=1, SENS_SAR_TOUCH_START_EN is used to initiate a

single measurement

– when SENS_SAR_TOUCH_START_FORCE=0, measurement is triggered periodically with a timer.

The Touch FSM can be active in sleep mode. The SENS_SAR_TOUCH_SLEEP_CYCLES register can be

used to set the cycles. The sensor is operated by RTC_FAST_CLK, which normally runs at 8 MHz. More

information on that can be found in chapter Reset and Clock.

• Generation of XPD_TOUCH_BIAS / TOUCH_XPD / TOUCH_START with adjustable timing sequence

To select enabled pads, TOUCH_XPD / TOUCH_START is masked by the 10-bit register SENS_SAR_TOUCH

_PAD_WORKEN.

• Counting of pulses on TOUCH0_OUT ~ TOUCH9_OUT

The result can be read from SENS_SAR_TOUCH_MEAS_OUTn. All ten touch sensors can work simultane-

ously.

• Generation of a wakeup interrupt

The FSM regards the touch pads as “touched”, if the number of counted pulses is below the threshold. The

10-bit registers SENS_TOUCH_PAD_OUTEN1 & SENS_TOUCH_PAD_OUTEN2 define two sets of touch

pads, i.e. SET1 & SET2. If at least one of the pads in SET1 is “touched”, the wakeup interrupt will be

generated by default. It is also possible to configure the wakeup interrupt to be generated only when pads

from both sets are “touched”.

Espressif Systems 627
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Figure 294. Touch FSM Structure

29.3 SAR ADC
29.3.1 Introduction
ESP32 integrates two 12-bit SAR ADCs. They are managed by five SAR ADC controllers, and are able to measure

signals from one to 18 analog pads.

The SAR ADC controllers have specialized uses. Two of them support high-performance multiple-channel scan-

ning. Another two are used for low-power operation during Deep-sleep, and the last one is dedicated to PWDET

/ PKDET (power and peak detection). A diagram of the SAR ADCs is shown in Figure 29-5.

Note:

PWDET/PKDET controller is for Wi-Fi internal use only. If Wi-Fi module is using the SAR ADC2, users can not measure the

analog signal from the pins using SAR ADC2. After SAR ADC2 is released by Wi-Fi, users can use SAR ADC2 normally.

Espressif Systems 628
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Figure 295. SAR ADC Depiction

29.3.2 Features
• Two SAR ADCs, with simultaneous sampling and conversion

• Up to five SAR ADC controllers for different purposes (e.g. high performance, low power or PWDET / PKDET).

• Up to 18 analog input pads

• 12-bit, 11-bit, 10-bit, 9-bit configurable resolution

• DMA support (available on one controller)

• Multiple channel-scanning modes (available on two controllers)

• Operation during Deep-sleep (available on one controller)

• Controlled by a ULP coprocessor (available on two controllers)

29.3.3 Outline of Function
The SAR ADC module’s major components, and their interconnections, are shown in Figure 29-6.

Espressif Systems 629
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Figure 296. SAR ADC Outline of Function

Table 29-2 lists all the analog signals that may be sent to the SAR ADC module via the ADC channels.

Espressif Systems 630
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Table 292. Inputs of SAR ADC

Signal Name ADC Channel # Processed by

VDET_2 7

SAR ADC1

VDET_1 6

32K_XN 5

32K_XP 4

SENSOR_VN 3

SENSOR_CAPN 2

SENSOR_CAPP 1

SENSOR_VP 0

GPIO26 9

SAR ADC2

GPIO25 8

GPIO27 7

MTMS 6

MTDI 5

MTCK 4

MTDO 3

GPIO2 2

GPIO0 1

GPIO4 0

Note:

• Some of the SAR ADC2 pins are used as strapping pins (GPIO0, GPIO2, and GPIO15), thus can not be used freely.

There are five ADC controllers in ESP32: RTC ADC1 CTRL, RTC ADC2 CTRL, DIG ADC1 CTRL, DIG ADC2 CTRL

and PWDET CTRL. The differences between them are summarized in Table 29-3.

Table 293. ESP32 SAR ADC Controllers

RTC ADC1 RTC ADC2 DIG ADC1 DIG ADC2 PWDET

DAC Y - - - -

Support deep sleep Y Y - - -

ULP coprocessor Y Y - - -

PWDET/PKDET - - - - Y

DMA - - Y - -

29.3.4 RTC SAR ADC Controllers
The purpose of SAR ADC controllers in the RTC power domain – RTC ADC1 CTRL and RTC ADC2 CTRL – is to

provide ADC measurement with minimal power consumption in a low frequency.

The outline of a single controller’s function is shown in Figure 29-7. For each controller, the start of analog-to-

digital conversion can be triggered by register SENS_SAR_MEASn_START_SAR. The measurement’s result can

be obtained from register SENS_SAR_MEASn_DATA_SAR.

The controllers are intertwined with the ULP coprocessor, as the ULP coprocessor has a built-in instruction to start

an ADC measurement. In many cases, the controllers need to cooperate with the ULP coprocessor, e.g.:

Espressif Systems 631
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Figure 297. RTC SAR ADC Outline of Function

• when periodically monitoring a channel during deep sleep, where the ULP coprocessor is the only trigger

source during this mode;

• when scanning channels continuously in a sequence. Continuous scanning or DMA is not supported by the

controllers. However, it is possible with the help of the ULP coprocessor.

29.3.5 DIG SAR ADC Controllers
Compared to RTC SAR ADC controllers, DIG SAR ADC controllers have optimized performance and throughput.

Some of their features are:

• High performance; the clock is much faster, therefore, the sample rate is highly increased.

• Multiple-channel scanning mode; there is a pattern table that defines the measurement rule for each SAR

ADC. The scanning mode can be configured as a single mode, double mode, or alternate mode.

• The scanning can be started by software or I2S.

• DMA support; an interrupt will be generated when scanning is finished.

Note:

We do not use the term “start of conversion” in this section, because there is no direct access to starting a single SAR

analog-to-digital conversion. We use “start of scan” instead, which implies that we expect to scan a sequence of channels

with DIG ADC controllers.

Figure 29-8 shows a diagram of DIG SAR ADC controllers.

Espressif Systems 632
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Figure 298. Diagram of DIG SAR ADC Controllers

The pattern tables contain the measurement rules mentioned above. Each table has 16 items which store infor-

mation on channel selection, resolution and attenuation. When scanning starts, the controller reads measurement

rules one-by-one from a pattern table. For each controller the scanning sequence includes 16 different rules at

most, before repeating itself.

The 8-bit item (the pattern table register) is composed of three fields that contain channel, resolution and attenuation

information, as shown in Table 29-4.

Table 294. Fields of the Pattern Table Register

Pattern Table Register [7:0]

ch_sel[3:0] bit_width[1:0] atten[1:0]

channel to be scanned resolution attenuation

There are three scanning modes: single mode, double mode and alternate mode.

• Single mode: channels of either SAR ADC1 or SAR ADC2 will be scanned.

• Double mode: channels of SAR ADC1 and SAR ADC2 will be scanned simultaneously.

• Alternate mode: channels of SAR ADC1 and SAR ADC2 will be scanned alternately.

ESP32 supports up to a 12-bit SAR ADC resolution. The 16-bit data in DMA is composed of the ADC result and

some necessary information related to the scanning mode:

• For single mode, only 4-bit information on channel selection is added.

• For double mode or alternate mode, 4-bit information on channel selection is added plus one extra bit

indicating which SAR ADC was selected.

Espressif Systems 633
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

For each scanning mode there is a corresponding data format, called Type I and Type II. Both data formats are

described in Tables 29-5 and 29-6.

Table 295. Fields of Type I DMA Data Format

Type I DMA Data Format [15:0]

ch_sel[3:0] data[11:0]

channel SAR ADC data

Table 296. Fields of Type II DMA Data Format

Type II DMA Data Format [15:0]

sar_sel ch_sel[3:0] SAR ADC data[10:0]

SAR ADCn channel SAR ADC data

For Type I the resolution of SAR ADC is up to 12 bits, while for Type II the resolution is 11 bits at most.

DIG SAR ADC Controllers allow the use of I2S for direct memory access. The WS signal of I2S acts as a

measurement-trigger signal. The DATA signal provides the information that the measurement result is ready. Soft-

ware can configure APB_SARADC_DATA_TO_I2S, in order to connect ADC to I2S.

29.4 DAC
29.4.1 Introduction
Two 8-bit DAC channels can be used to convert digital values into analog output signals (up to two of them). The

design structure is composed of integrated resistor strings and a buffer. This dual DAC supports power supply and

uses it as input voltage reference. The dual DAC also supports independent or simultaneous signal conversions

inside of its channels.

29.4.2 Features
The features of DAC are as follows:

• Two 8-bit DAC channels

• Independent or simultaneous conversion in channels

• Voltage reference from the VDD3P3_RTC pin

• Cosine waveform (CW) generator

• DMA capability

• Start of conversion can be triggered by software or SAR ADC FSM (please refer to the SAR ADC chapter for

more details)

• Can be fully controlled by the ULP coprocessor

A diagram showing the DAC channel’s function is presented in Figure 29-9. For a detailed description, see the

sections below.

Espressif Systems 634
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Figure 299. Diagram of DAC Function

29.4.3 Structure
The two 8-bit DAC channels can be configured independently. For each DAC channel, the output analog voltage

can be calculated as follows:

DACn_OUT = VDD3P3_RTC · PDACn_DAC/255

• VDD3P3_RTC is the voltage on pin VDD3P3_RTC (typically 3.3V).

• PDACn_DAC has multiple sources: CW generator, register RTCIO_PAD_DACn_REG, and DMA.

The start of conversion is determined by register RTCIO_PAD_PDACn_XPD_DAC. The conversion process itself

is controlled by software or SAR ADC FSM; see Figure 29-9.

29.4.4 Cosine Waveform Generator
The cosine waveform (CW) generator can be used to generate a cosine / sine tone. A diagram showing cosine

waveform generator’s function is presented in Figure 29-10.

The CW generator has the following features:

• Adjustable frequency

The frequency of CW can be adjusted by register SENS_SAR_SW_FSTEP[15:0]:

freq = dig_clk_rtc_freq · SENS_SAR_SW_FSTEP/65536

The frequency of dig_clk_rtc is typically 8 MHz.

• Scaling

Configuring register SENS_SAR_DAC_SCALEn[1:0]; the amplitude of a CW can be multiplied by 1, 1/2, 1/4

or 1/8.

• DC offset

The offset may be introduced by register SENS_SAR_DAC_DCn[7:0]. The result will be saturated.

• Phase shift

A phase-shift of 0 / 90 / 180 / 270 degrees can be added by setting register SENS_SAR_DAC_INVn[1:0].

Espressif Systems 635
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Figure 2910. Cosine Waveform (CW) Generator

29.4.5 DMA support
A DMA controller with dual DMA channels can be used to set the output of two DAC channels. By configuring

SENS_SAR_DAC_DIG_FORCE, I2S_clk can be connected to DAC clk, and I2S_DATA_OUT can be connected to

DAC_DATA for direct memory access.

For details, please refer to chapter DMA.

Espressif Systems 636
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

29.5 Register Summary
Note: The registers listed below have been grouped, according to their functionality. This particular grouping does

not reflect the exact sequential order of their place in memory.

29.5.1 Sensors

Name Description Address Access

Touch pad setup and control registers

SENS_SAR_TOUCH_CTRL1_REG Touch pad control 0x3FF48858 R/W

SENS_SAR_TOUCH_CTRL2_REG Touch pad control and status 0x3FF48884 RO

SENS_SAR_TOUCH_ENABLE_REG Wakeup interrupt control and working set 0x3FF4888C R/W

SENS_SAR_TOUCH_THRES1_REG Threshold setup for pads 0 and 1 0x3FF4885C R/W

SENS_SAR_TOUCH_THRES2_REG Threshold setup for pads 2 and 3 0x3FF48860 R/W

SENS_SAR_TOUCH_THRES3_REG Threshold setup for pads 4 and 5 0x3FF48864 R/W

SENS_SAR_TOUCH_THRES4_REG Threshold setup for pads 6 and 7 0x3FF48868 R/W

SENS_SAR_TOUCH_THRES5_REG Threshold setup for pads 8 and 9 0x3FF4886C R/W

SENS_SAR_TOUCH_OUT1_REG Counters for pads 0 and 1 0x3FF48870 RO

SENS_SAR_TOUCH_OUT2_REG Counters for pads 2 and 3 0x3FF48874 RO

SENS_SAR_TOUCH_OUT3_REG Counters for pads 4 and 5 0x3FF48878 RO

SENS_SAR_TOUCH_OUT4_REG Counters for pads 6 and 6 0x3FF4887C RO

SENS_SAR_TOUCH_OUT5_REG Counters for pads 8 and 9 0x3FF48880 RO

SAR ADC control register

SENS_SAR_START_FORCE_REG SAR ADC1 and ADC2 control 0x3FF4882C R/W

SAR ADC1 control registers

SENS_SAR_READ_CTRL_REG SAR ADC1 data and sampling control 0x3FF48800 R/W

SENS_SAR_MEAS_START1_REG SAR ADC1 conversion control and status 0x3FF48854 RO

SAR ADC2 control registers

SENS_SAR_READ_CTRL2_REG SAR ADC2 data and sampling control 0x3FF48890 R/W

SENS_SAR_MEAS_START2_REG SAR ADC2 conversion control and status 0x3FF48894 RO

ULP coprocessor configuration register

SENS_ULP_CP_SLEEP_CYC0_REG Sleep cycles for ULP coprocessor 0x3FF48818 R/W

Pad attenuation configuration registers

SENS_SAR_ATTEN1_REG 2-bit attenuation for each pad 0x3FF48834 R/W

SENS_SAR_ATTEN2_REG 2-bit attenuation for each pad 0x3FF48838 R/W

DAC control registers

SENS_SAR_DAC_CTRL1_REG DAC control 0x3FF48898 R/W

SENS_SAR_DAC_CTRL2_REG DAC output control 0x3FF4889C R/W

29.5.2 Advanced Peripheral Bus

Name Description Address Access

SAR ADC1 and ADC2 common configuration registers

APB_SARADC_CTRL_REG SAR ADC common configuration 0x60002610 R/W

APB_SARADC_CTRL2_REG SAR ADC common configuration 0x60002614 R/W

APB_SARADC_FSM_REG SAR ADC FSM sample cycles configuration 0x60002618 R/W

SAR ADC1 pattern table registers

Espressif Systems 637
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

APB_SARADC_SAR1_PATT_TAB1_REG Items 0 - 3 of pattern table 0x6000261C R/W

APB_SARADC_SAR1_PATT_TAB2_REG Items 4 - 7 of pattern table 0x60002620 R/W

APB_SARADC_SAR1_PATT_TAB3_REG Items 8 - 11 of pattern table 0x60002624 R/W

APB_SARADC_SAR1_PATT_TAB4_REG Items 12 - 15 of pattern table 0x60002628 R/W

SAR ADC2 pattern table registers

APB_SARADC_SAR2_PATT_TAB1_REG Items 0 - 3 of pattern table 0x6000262C R/W

APB_SARADC_SAR2_PATT_TAB2_REG Items 4 - 7 of pattern table 0x60002630 R/W

APB_SARADC_SAR2_PATT_TAB3_REG Items 8 - 11 of pattern table 0x60002634 R/W

APB_SARADC_SAR2_PATT_TAB4_REG Items 12 - 15 of pattern table 0x60002638 R/W

29.5.3 RTC I/O
For details, please refer to Section Register Summary in Chapter IO_MUX and GPIO Matrix.

Espressif Systems 638
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

29.6 Registers
29.6.1 Sensors
The addresses in parenthesis besides register names are the register addresses relative to (the RTC base address

+ 0x0800). The RTC base address is provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and

Memory. The absolute register addresses are listed in Section 29.5.1 Sensors.

Register 29.1. SENS_SAR_READ_CTRL_REG (0x0000)

(re
se

rve
d)

0 0 0

31 29

SENS_S
AR1_

DAT
A_IN

V

0

28

SENS_S
AR1_

DIG
_F

ORCE

0

27

(re
se

rve
d)

0 0 0 0 0 0 0 0 0

26 18

SENS_S
AR1_

SAM
PLE

_B
IT

3

17 16

SENS_S
AR1_

SAM
PLE

_C
YCLE

9

15 8

SENS_S
AR1_

CLK
_D

IV

2

7 0

Reset

SENS_SAR1_DATA_INV Invert SAR ADC1 data. (R/W)

SENS_SAR1_DIG_FORCE 1: SAR ADC1 controlled by DIG ADC1 CTR, 0: SAR ADC1 controlled by

RTC ADC1 CTRL. (R/W)

SENS_SAR1_SAMPLE_BIT Bit width of SAR ADC1, 00: for 9-bit, 01: for 10-bit, 10: for 11-bit, 11:

for 12-bit. (R/W)

SENS_SAR1_SAMPLE_CYCLE Sample cycles for SAR ADC1. (R/W)

SENS_SAR1_CLK_DIV Clock divider. (R/W)

Register 29.2. SENS_ULP_CP_SLEEP_CYC0_REG (0x0018)

200

31 0

Reset

SENS_ULP_CP_SLEEP_CYC0_REG Sleep cycles for ULP coprocessor timer. (R/W)

Espressif Systems 639
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Register 29.3. SENS_SAR_START_FORCE_REG (0x002c)

(re
se

rve
d)

0 0 0 0 0 0 0 0

31 24

SENS_S
AR1_

STO
P

0

23

SENS_S
AR2_

STO
P

0

22

SENS_P
C_IN

IT

0 0 0 0 0 0 0 0 0 0 0

21 11

(re
se

rve
d)

0

10

SENS_U
LP

_C
P_S

TA
RT_

TO
P

0

9

SENS_U
LP

_C
P_F

ORCE_S
TA

RT_
TO

P

0

8

SENS_S
AR2_

PW
DET_

CCT

0 0 0

7 5

SENS_S
AR2_

EN_T
EST

0

4

SENS_S
AR2_

BIT_
W

ID
TH

1 1

3 2

SENS_S
AR1_

BIT_
W

ID
TH

1 1

1 0

Reset

SENS_SAR1_STOP Stop SAR ADC1 conversion. (R/W)

SENS_SAR2_STOP Stop SAR ADC2 conversion. (R/W)

SENS_PC_INIT Initialized PC for ULP coprocessor. (R/W)

SENS_ULP_CP_START_TOP Write 1 to start ULP coprocessor; it is active only when

reg_ulp_cp_force_start_top = 1. (R/W)

SENS_ULP_CP_FORCE_START_TOP 1: ULP coprocessor is started by SW, 0: ULP coprocessor

is started by timer. (R/W)

SENS_SAR2_PWDET_CCT SAR2_PWDET_CCT, PA power detector capacitance tuning. (R/W)

SENS_SAR2_EN_TEST SAR2_EN_TEST is active only when reg_sar2_dig_force = 0. (R/W)

SENS_SAR2_BIT_WIDTH Bit width of SAR ADC2, 00: 9 bits, 01: 10 bits, 10: 11 bits, 11: 12 bits.

(R/W)

SENS_SAR1_BIT_WIDTH Bit width of SAR ADC1, 00: 9 bits, 01: 10 bits, 10: 11 bits, 11: 12 bits.

(R/W)

Register 29.4. SENS_SAR_ATTEN1_REG (0x0034)

0x0FFFFFFFF

31 0

Reset

SENS_SAR_ATTEN1_REG 2-bit attenuation for each pad, 11: 1 dB, 10: 6 dB, 01: 3 dB, 00: 0 dB,

[1:0] is used for ADC1_CH0, [3:2] is used for ADC1_CH1, etc. (R/W)

Register 29.5. SENS_SAR_ATTEN2_REG (0x0038)

0x0FFFFFFFF

31 0

Reset

SENS_SAR_ATTEN2_REG 2-bit attenuation for each pad, 11: 1 dB, 10: 6 dB, 01: 3 dB, 00: 0 dB,

[1:0] is used for ADC2_CH0, [3:2] is used for ADC2_CH1, etc (R/W)

Espressif Systems 640
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Register 29.6. SENS_SAR_MEAS_START1_REG (0x0054)

SENS_S
AR1_

EN_P
AD_F

ORCE

0

31

SENS_S
AR1_

EN_P
AD

0 0 0 0 0 0 0 0 0 0 0 0

30 19

SENS_M
EAS1_

STA
RT_

FO
RCE

0

18

SENS_M
EAS1_

STA
RT_

SAR

0

17

SENS_M
EAS1_

DONE_S
AR

0

16

SENS_M
EAS1_

DAT
A_S

AR

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

SENS_SAR1_EN_PAD_FORCE 1: SAR ADC1 pad enable bitmap is controlled by SW, 0: SAR ADC1

pad enable bitmap is controlled by ULP coprocessor. (R/W)

SENS_SAR1_EN_PAD SAR ADC1 pad enable bitmap; active only when reg_sar1_en_pad_force =

1. (R/W)

SENS_MEAS1_START_FORCE 1: SAR ADC1 controller (in RTC) is started by SW, 0: SAR ADC1

controller is started by ULP coprocessor. (R/W)

SENS_MEAS1_START_SAR SAR ADC1 controller (in RTC) starts conversion; active only when

reg_meas1_start_force = 1. (R/W)

SENS_MEAS1_DONE_SAR SAR ADC1 conversion-done indication. (RO)

SENS_MEAS1_DATA_SAR SAR ADC1 data. (RO)

Register 29.7. SENS_SAR_TOUCH_CTRL1_REG (0x0058)

(re
se

rve
d)

0 0 0 0

31 28

(re
se

rve
d)

0

27

(re
se

rve
d)

0

26

SENS_T
OUCH_O

UT_
1E

N

1

25

SENS_T
OUCH_O

UT_
SEL

0

24

SENS_T
OUCH_X

PD_W
AIT

0x004

23 16

SENS_T
OUCH_M

EAS_D
ELA

Y

0x01000

15 0

Reset

SENS_TOUCH_OUT_1EN 1: wakeup interrupt is generated if SET1 is touched, 0: wakeup interrupt

is generated only if both SET1 & SET2 are touched. (R/W)

SENS_TOUCH_OUT_SEL 1: the touch pad is considered touched when the value of the counter is

greater than the threshold, 0: the touch pad is considered touched when the value of the counter

is less than the threshold. (R/W)

SENS_TOUCH_XPD_WAIT The waiting time (in 8 MHz cycles) between TOUCH_START and

TOUCH_XPD. (R/W)

SENS_TOUCH_MEAS_DELAY The measurement’s duration (in 8 MHz cycles). (R/W)

Espressif Systems 641
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Register 29.8. SENS_SAR_TOUCH_THRES1_REG (0x005c)

SENS_T
OUCH_O

UT_
TH

0

0x00000

31 16

SENS_T
OUCH_O

UT_
TH

1

0x00000

15 0

Reset

SENS_TOUCH_OUT_TH0 The threshold for touch pad 0. (R/W)

SENS_TOUCH_OUT_TH1 The threshold for touch pad 1. (R/W)

Register 29.9. SENS_SAR_TOUCH_THRES2_REG (0x0060)

SENS_T
OUCH_O

UT_
TH

2

0x00000

31 16

SENS_T
OUCH_O

UT_
TH

3

0x00000

15 0

Reset

SENS_TOUCH_OUT_TH2 The threshold for touch pad 2. (R/W)

SENS_TOUCH_OUT_TH3 The threshold for touch pad 3. (R/W)

Register 29.10. SENS_SAR_TOUCH_THRES3_REG (0x0064)

SENS_T
OUCH_O

UT_
TH

4

0x00000

31 16

SENS_T
OUCH_O

UT_
TH

5

0x00000

15 0

Reset

SENS_TOUCH_OUT_TH4 The threshold for touch pad 4. (R/W)

SENS_TOUCH_OUT_TH5 The threshold for touch pad 5. (R/W)

Espressif Systems 642
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Register 29.11. SENS_SAR_TOUCH_THRES4_REG (0x0068)

SENS_T
OUCH_O

UT_
TH

6

0x00000

31 16

SENS_T
OUCH_O

UT_
TH

7

0x00000

15 0

Reset

SENS_TOUCH_OUT_TH6 The threshold for touch pad 6. (R/W)

SENS_TOUCH_OUT_TH7 The threshold for touch pad 7. (R/W)

Register 29.12. SENS_SAR_TOUCH_THRES5_REG (0x006c)

SENS_T
OUCH_O

UT_
TH

8

0x00000

31 16

SENS_T
OUCH_O

UT_
TH

9

0x00000

15 0

Reset

SENS_TOUCH_OUT_TH8 The threshold for touch pad 8. (R/W)

SENS_TOUCH_OUT_TH9 The threshold for touch pad 9. (R/W)

Register 29.13. SENS_SAR_TOUCH_OUT1_REG (0x0070)

SENS_T
OUCH_M

EAS_O
UT0

0x00000

31 16

SENS_T
OUCH_M

EAS_O
UT1

0x00000

15 0

Reset

SENS_TOUCH_MEAS_OUT0 The counter for touch pad 0. (RO)

SENS_TOUCH_MEAS_OUT1 The counter for touch pad 1. (RO)

Espressif Systems 643
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Register 29.14. SENS_SAR_TOUCH_OUT2_REG (0x0074)

SENS_T
OUCH_M

EAS_O
UT2

0x00000

31 16

SENS_T
OUCH_M

EAS_O
UT3

0x00000

15 0

Reset

SENS_TOUCH_MEAS_OUT2 The counter for touch pad 2. (RO)

SENS_TOUCH_MEAS_OUT3 The counter for touch pad 3. (RO)

Register 29.15. SENS_SAR_TOUCH_OUT3_REG (0x0078)

SENS_T
OUCH_M

EAS_O
UT4

0x00000

31 16

SENS_T
OUCH_M

EAS_O
UT5

0x00000

15 0

Reset

SENS_TOUCH_MEAS_OUT4 The counter for touch pad 4. (RO)

SENS_TOUCH_MEAS_OUT5 The counter for touch pad 5. (RO)

Register 29.16. SENS_SAR_TOUCH_OUT4_REG (0x007c)

SENS_T
OUCH_M

EAS_O
UT6

0x00000

31 16

SENS_T
OUCH_M

EAS_O
UT7

0x00000

15 0

Reset

SENS_TOUCH_MEAS_OUT6 The counter for touch pad 6. (RO)

SENS_TOUCH_MEAS_OUT7 The counter for touch pad 7. (RO)

Espressif Systems 644
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Register 29.17. SENS_SAR_TOUCH_OUT5_REG (0x0080)

SENS_T
OUCH_M

EAS_O
UT8

0x00000

31 16

SENS_T
OUCH_M

EAS_O
UT9

0x00000

15 0

Reset

SENS_TOUCH_MEAS_OUT8 The counter for touch pad 8. (RO)

SENS_TOUCH_MEAS_OUT9 The counter for touch pad 9. (RO)

Register 29.18. SENS_SAR_TOUCH_CTRL2_REG (0x0084)

(re
se

rve
d)

0

31

SENS_T
OUCH_M

EAS_E
N_C

LR

0

30

SENS_T
OUCH_S

LE
EP_C

YCLE
S

0x00100

29 14

SENS_T
OUCH_S

TA
RT_

FO
RCE

0

13

SENS_T
OUCH_S

TA
RT_

EN

0

12

SENS_T
OUCH_S

TA
RT_

FS
M

_E
N

1

11

SENS_T
OUCH_M

EAS_D
ONE

0

10

SENS_T
OUCH_M

EAS_E
N

0x000

9 0

Reset

SENS_TOUCH_MEAS_EN_CLR Set to clear reg_touch_meas_en. (WO)

SENS_TOUCH_SLEEP_CYCLES Sleep cycles for timer. (R/W)

SENS_TOUCH_START_FORCE 1: starts the Touch FSM via software; 0: starts the Touch FSM via

timer. (R/W)

SENS_TOUCH_START_EN 1: starts the Touch FSM; this is valid when reg_touch_start_force is set.

(R/W)

SENS_TOUCH_START_FSM_EN 1: TOUCH_START & TOUCH_XPD are controlled by the Touch

FSM; 0: TOUCH_START & TOUCH_XPD are controlled by registers. (R/W)

SENS_TOUCH_MEAS_DONE Set to 1 by FSM, indicating that touch measurement is done. (RO)

SENS_TOUCH_MEAS_EN 10-bit register indicating which pads are touched. (RO)

Espressif Systems 645
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Register 29.19. SENS_SAR_TOUCH_ENABLE_REG (0x008c)

(re
se

rve
d)

0 0

31 30

SENS_T
OUCH_P

AD_O
UTE

N1

0x3FF

29 20

SENS_T
OUCH_P

AD_O
UTE

N2

0x3FF

19 10

SENS_T
OUCH_P

AD_W
ORKEN

0x3FF

9 0

Reset

SENS_TOUCH_PAD_OUTEN1 Bitmap defining SET1 for generating a wakeup interrupt; SET1 is con-

sidered touched if at least one of the touch pads in SET1 is touched. (R/W)

SENS_TOUCH_PAD_OUTEN2 Bitmap defining SET2 for generating a wakeup interrupt; SET2 is con-

sidered touched if at least one of the touch pads in SET2 is touched. (R/W)

SENS_TOUCH_PAD_WORKEN Bitmap defining the working set during measurement. (R/W)

Register 29.20. SENS_SAR_READ_CTRL2_REG (0x0090)

(re
se

rve
d)

0 0

31 30

SENS_S
AR2_

DAT
A_IN

V

0

29

SENS_S
AR2_

DIG
_F

ORCE

0

28

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

27 18

SENS_S
AR2_

SAM
PLE

_B
IT

3

17 16

SENS_S
AR2_

SAM
PLE

_C
YCLE

9

15 8

SENS_S
AR2_

CLK
_D

IV

2

7 0

Reset

SENS_SAR2_DATA_INV Invert SAR ADC2 data. (R/W)

SENS_SAR2_DIG_FORCE 1: SAR ADC2 controlled by DIG ADC2 CTRL or PWDET CTRL, 0: SAR

ADC2 controlled by RTC ADC2 CTRL (R/W)

SENS_SAR2_SAMPLE_BIT Bit width of SAR ADC2, 00: for 9-bit, 01: for 10-bit, 10: for 11-bit, 11:

for 12-bit. (R/W)

SENS_SAR2_SAMPLE_CYCLE Sample cycles of SAR ADC2. (R/W)

SENS_SAR2_CLK_DIV Clock divider. (R/W)

Espressif Systems 646
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Register 29.21. SENS_SAR_MEAS_START2_REG (0x0094)

SENS_S
AR2_

EN_P
AD_F

ORCE

0

31

SENS_S
AR2_

EN_P
AD

0 0 0 0 0 0 0 0 0 0 0 0

30 19

SENS_M
EAS2_

STA
RT_

FO
RCE

0

18

SENS_M
EAS2_

STA
RT_

SAR

0

17

SENS_M
EAS2_

DONE_S
AR

0

16

SENS_M
EAS2_

DAT
A_S

AR

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

SENS_SAR2_EN_PAD_FORCE 1: SAR ADC2 pad enable bitmap is controlled by SW, 0: SAR ADC2

pad enable bitmap is controlled by ULP coprocessor. (R/W)

SENS_SAR2_EN_PAD SAR ADC2 pad enable bitmap; active only when reg_sar2_en_pad_force =

1. (R/W)

SENS_MEAS2_START_FORCE 1: SAR ADC2 controller (in RTC) is started by SW, 0: SAR ADC2

controller is started by ULP coprocessor. (R/W)

SENS_MEAS2_START_SAR SAR ADC2 controller (in RTC) starts conversion; active only when

reg_meas2_start_force = 1. (R/W)

SENS_MEAS2_DONE_SAR SAR ADC2-conversion-done indication. (RO)

SENS_MEAS2_DATA_SAR SAR ADC2 data. (RO)

Register 29.22. SENS_SAR_DAC_CTRL1_REG (0x0098)

(re
se

rve
d)

0 0 0 0 0 0

31 26

SENS_D
AC_C

LK
_IN

V

0

25

SENS_D
AC_C

LK
_F

ORCE_H
IG

H

0

24

SENS_D
AC_C

LK
_F

ORCE_L
OW

0

23

SENS_D
AC_D

IG
_F

ORCE

0

22

(re
se

rve
d)

0 0 0 0 0

21 17

SENS_S
W

_T
ONE_E

N

0

16

SENS_S
W

_F
STE

P

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0

Reset

SENS_DAC_CLK_INV 1: inverts PDAC_CLK, 0: no inversion. (R/W)

SENS_DAC_CLK_FORCE_HIGH forces PDAC_CLK to be 1. (R/W)

SENS_DAC_CLK_FORCE_LOW forces PDAC_CLK to be 0. (R/W)

SENS_DAC_DIG_FORCE 1: DAC1 & DAC2 use DMA, 0: DAC1 & DAC2 do not use DMA. (R/W)

SENS_SW_TONE_EN 1: enable CW generator, 0: disable CW generator. (R/W)

SENS_SW_FSTEP Frequency step for CW generator; can be used to adjust the frequency. (R/W)

Espressif Systems 647
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Register 29.23. SENS_SAR_DAC_CTRL2_REG (0x009c)

(re
se

rve
d)

0 0 0 0 0 0

31 26

SENS_D
AC_C

W
_E

N2

1

25

SENS_D
AC_C

W
_E

N1

1

24

SENS_D
AC_IN

V2

0 0

23 22

SENS_D
AC_IN

V1

0 0

21 20

SENS_D
AC_S

CALE
2

0 0

19 18

SENS_D
AC_S

CALE
1

0 0

17 16

SENS_D
AC_D

C2

0 0 0 0 0 0 0 0

15 8

SENS_D
AC_D

C1

0 0 0 0 0 0 0 0

7 0

Reset

SENS_DAC_CW_EN2 1: selects CW generator as source for PDAC2_DAC[7:0], 0: selects register

reg_pdac2_dac[7:0] as source for PDAC2_DAC[7:0]. (R/W)

SENS_DAC_CW_EN1 1: selects CW generator as source for PDAC1_DAC[7:0], 0: selects register

reg_pdac1_dac[7:0] as source for PDAC1_DAC[7:0]. (R/W)

SENS_DAC_INV2 DAC2, 00: does not invert any bits, 01: inverts all bits, 10: inverts MSB, 11: inverts

all bits except for MSB. (R/W)

SENS_DAC_INV1 DAC1, 00: does not invert any bits, 01: inverts all bits, 10: inverts MSB, 11: inverts

all bits except for MSB. (R/W)

SENS_DAC_SCALE2 DAC2, 00: no scale; 01: scale to 1/2; 10: scale to 1/4; 11: scale to 1/8. (R/W)

SENS_DAC_SCALE1 DAC1, 00: no scale; 01: scale to 1/2; 10: scale to 1/4; 11: scale to 1/8. (R/W)

SENS_DAC_DC2 DC offset for DAC2 CW generator. (R/W)

SENS_DAC_DC1 DC offset for DAC1 CW generator. (R/W)

29.6.2 Advanced Peripheral Bus
The addresses in parenthesis besides register names are the register addresses relative to the base address of

0x6000_2600 (by AHB bus). The absolute register addresses are listed in Section 29.5.2 Advanced Peripheral

Bus.

Espressif Systems 648
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Register 29.24. APB_SARADC_CTRL_REG (0x10)

(re
se

rve
d)

0 0 0 0 0

31 27

APB_S
ARADC_D

AT
A_T

O_I2
S

0

26

APB_S
ARADC_D

AT
A_S

AR_S
EL

0

25

APB_S
ARADC_S

AR2_
PA

TT
_P

_C
LE

AR

0

24

APB_S
ARADC_S

AR1_
PA

TT
_P

_C
LE

AR

0

23

APB_S
ARADC_S

AR2_
PA

TT
_L

EN

15

22 19

APB_S
ARADC_S

AR1_
PA

TT
_L

EN

15

18 15

APB_S
ARADC_S

AR_C
LK

_D
IV

4

14 7

APB_S
ARADC_S

AR_C
LK

_G
AT

ED

1

6

APB_S
ARADC_S

AR_S
EL

0

5

APB_S
ARADC_W

ORK_M
ODE

0

4 3

APB_S
ARADC_S

AR2_
M

UX

0

2

APB_S
ARADC_S

TA
RT

0

1

APB_S
ARADC_S

TA
RT_

FO
RCE

0

0

Reset

APB_SARADC_DATA_TO_I2S 1: I2S input data is from SAR ADC (for DMA), 0: I2S input data is

from GPIO matrix. (R/W)

APB_SARADC_DATA_SAR_SEL 1: sar_sel will be coded by the MSB of the 16-bit output data, in

this case, the resolution should not contain more than 11 bits; 0: using 12-bit SAR ADC resolution.

(R/W)

APB_SARADC_SAR2_PATT_P_CLEAR Clears the pointer of pattern table for DIG ADC2 CTRL.

(R/W)

APB_SARADC_SAR1_PATT_P_CLEAR Clears the pointer of pattern table for DIG ADC1 CTRL.

(R/W)

APB_SARADC_SAR2_PATT_LEN SAR ADC2, 0 - 15 means pattern table length of 1 - 16. (R/W)

APB_SARADC_SAR1_PATT_LEN SAR ADC1, 0 - 15 means pattern table length of 1 - 16. (R/W)

APB_SARADC_SAR_CLK_DIV SAR clock divider. (R/W)

APB_SARADC_SAR_CLK_GATED Reserved. Please initialize to 0b1 (R/W)

APB_SARADC_SAR_SEL 0: SAR1, 1: SAR2, this setting is applicable in the single SAR mode. (R/W)

APB_SARADC_WORK_MODE 0: single mode, 1: double mode, 2: alternate mode. (R/W)

APB_SARADC_SAR2_MUX 1: SAR ADC2 is controlled by DIG ADC2 CTRL, 0: SAR ADC2 is con-

trolled by PWDET CTRL. (R/W)

APB_SARADC_START Reserved. Please initialize to 0 (R/W)

APB_SARADC_START_FORCE Reserved. Please initialize to 0 (R/W)

Espressif Systems 649
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Register 29.25. APB_SARADC_CTRL2_REG (0x14)

(re
se

rve
d)

0 0

31 11

APB_S
ARADC_S

AR2_
IN

V

0

10

APB_S
ARADC_S

AR1_
IN

V

0

9

APB_S
ARADC_M

AX_
M

EAS_N
UM

255

8 1

APB_S
ARADC_M

EAS_N
UM

_L
IM

IT

0

0

Reset

APB_SARADC_SAR2_INV 1: data to DIG ADC2 CTRL is inverted, 0: data is not inverted. (R/W)

APB_SARADC_SAR1_INV 1: data to DIG ADC1 CTRL is inverted, 0: data is not inverted. (R/W)

APB_SARADC_MAX_MEAS_NUM Max conversion number. (R/W)

APB_SARADC_MEAS_NUM_LIMIT Reserved. Please initialize to 0b1 (R/W)

Register 29.26. APB_SARADC_FSM_REG (0x18)

APB_S
ARADC_S

AM
PLE

_C
YCLE

2

31 24

(re
se

rve
d)

0 0

47 24

Reset

APB_SARADC_SAMPLE_CYCLE Sample cycles. (R/W)

Register 29.27. APB_SARADC_SAR1_PATT_TAB1_REG (0x1C)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR1_PATT_TAB1_REG Pattern tables 0 - 3 for SAR ADC1, one byte for each

pattern table: [31:28] pattern0_channel, [27:26] pattern0_bit_width, [25:24] pattern0_attenuation,

[23:20] pattern1_channel, etc. (R/W)

Espressif Systems 650
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Register 29.28. APB_SARADC_SAR1_PATT_TAB2_REG (0x20)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR1_PATT_TAB2_REG Pattern tables 4 - 7 for SAR ADC1, one byte for each

pattern table: [31:28] pattern4_channel, [27:26] pattern4_bit_width, [25:24] pattern4_attenuation,

[23:20] pattern5_channel, etc. (R/W)

Register 29.29. APB_SARADC_SAR1_PATT_TAB3_REG (0x24)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR1_PATT_TAB3_REG Pattern tables 8 - 11 for SAR ADC1, one byte for each

pattern table: [31:28] pattern8_channel, [27:26] pattern8_bit_width, [25:24] pattern8_attenuation,

[23:20] pattern9_channel, etc. (R/W)

Register 29.30. APB_SARADC_SAR1_PATT_TAB4_REG (0x28)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR1_PATT_TAB4_REG Pattern tables 12 - 15 for SAR ADC1, one byte for

each pattern table: [31:28] pattern12_channel, [27:26] pattern12_bit_width, [25:24] pat-

tern12_attenuation, [23:20] pattern13_channel, etc. (R/W)

Register 29.31. APB_SARADC_SAR2_PATT_TAB1_REG (0x2C)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR2_PATT_TAB1_REG Pattern tables 0 - 3 for SAR ADC2, one byte for each

pattern table: [31:28] pattern0_channel, [27:26] pattern0_bit_width, [25:24] pattern0_attenuation,

[23:20] pattern1_channel, etc. (R/W)

Espressif Systems 651
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

29 On-Chip Sensors and Analog Signal Processing

Register 29.32. APB_SARADC_SAR2_PATT_TAB2_REG (0x30)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR2_PATT_TAB2_REG Pattern tables 4 - 7 for SAR ADC2, one byte for each

pattern table: [31:28] pattern4_channel, [27:26] pattern4_bit_width, [25:24] pattern4_attenuation,

[23:20] pattern5_channel, etc. (R/W)

Register 29.33. APB_SARADC_SAR2_PATT_TAB3_REG (0x34)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR2_PATT_TAB3_REG Pattern tables 8 - 11 for SAR ADC2, one byte for each

pattern table: [31:28] pattern8_channel, [27:26] pattern8_bit_width, [25:24] pattern8_attenuation,

[23:20] pattern9_channel, etc. (R/W)

Register 29.34. APB_SARADC_SAR2_PATT_TAB4_REG (0x38)

0x00F0F0F0F

31 0

Reset

APB_SARADC_SAR2_PATT_TAB4_REG Pattern tables 12 - 15 for SAR ADC2, one byte for

each pattern table: [31:28] pattern12_channel, [27:26] pattern12_bit_width, [25:24] pat-

tern12_attenuation, [23:20] pattern13_channel, etc. (R/W)

29.6.3 RTC I/O
For details, please refer to Section Registers in Chapter IO_MUX and GPIO Matrix.

Espressif Systems 652
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

30 ULP Coprocessor (ULP)

30.1 Introduction
The ULP coprocessor is an ultra-low-power processor that remains powered on during the Deep-sleep mode of

the main SoC. Hence, the developer can store in the RTC memory a program for the ULP coprocessor to access

peripheral devices, internal sensors and RTC registers during deep sleep. This is useful for designing applications

where the CPU needs to be woken up by an external event, or timer, or a combination of these, while maintaining

minimal power consumption.

30.2 Features
• Contains up to 8 KB of SRAM for instructions and data

• Uses RTC_FAST_CLK, which is 8 MHz

• Works both in normal and deep sleep

• Is able to wake up the digital core or send an interrupt to the CPU

• Can access peripheral devices, internal sensors and RTC registers

• Contains four 16-bit general-purpose registers (R0, R1, R2, R3) for manipulating data and accessing

memory

• Includes one 8-bit Stage_cnt register which can be manipulated by ALU and used in JUMP instructions

RTC Memory

I2C CTRL

RTC CNTL REG

SAR CTRL

TSENS CTRL

ESP32 RTC

APB Bus

b
rid

ge

RTC IO REG

RTC I2C REG

SARADC REG

Arbiter

ULP
Coprocessor

RTC Timer

Figure 301. ULP Coprocessor Diagram

Espressif Systems 653
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

30.3 Functional Description
The ULP coprocessor is a programmable FSM (Finite State Machine) that can work during deep sleep. Like

general-purpose CPUs, ULP coprocessor also has some instructions which can be useful for a relatively complex

logic, and also some special commands for RTC controllers/peripherals. The 8 KB of SRAM RTC slow memory

can be accessed by both the ULP coprocessor and the CPU; hence, it is usually used to store instructions and

share data between the ULP coprocessor and the CPU.

The ULP coprocessor can be started by software or a periodically-triggered timer. The operation of the ULP

coprocessor is ended by executing the HALT instruction. Meanwhile, it can access almost every module in RTC

domain, either through built-in instructions or RTC registers. In many cases the ULP coprocessor can be a good

supplement to, or replacement of, the CPU, especially for power-sensitive applications. Figure 30-1 shows the

overall layout of a ULP coprocessor.

30.4 Instruction Set
The ULP coprocessor provides the following instructions:

• Perform arithmetic and logic operations - ALU

• Load and store data - LD, ST, REG_RD and REG_WR

• Jump to a certain address - JUMP

• Manage program execution - WAIT/HALT

• Control sleep period of ULP coprocessor - SLEEP

• Wake up/communicate with SoC - WAKE

• Take measurements - ADC

• Communicate using I²C - I2C_RD/I2C_WR

The ULP coprocessor’s instruction format is shown in Figure 30-2.
0272831

OpCode Operands

Figure 302. The ULP Coprocessor Instruction Format

An instruction, which has one OpCode, can perform various different operations, depending on the setting of

Operands bits. A good example is the ALU instruction, which is able to perform 10 arithmetic and logic

operations; or the JUMP instruction, which may be conditional or unconditional, absolute or relative.

Each instruction has a fixed width of 32 bits. A series of instructions can make a program be executed by the

ULP coprocessor. The execution flow inside the program uses 32-bit addressing. The program is stored in a

dedicated region called Slow Memory (RTC_SLOW_MEM), which is visible to the main CPUs as one that has an

address range of 0x5000_0000 to 0x5000_1FFF (8 KB).

The OpCode in this chapter is represented by 4’dx, where 4 stands for 4-bit width, ’d is a decimal symbol, x

stands for the value of OpCode (x: 0 ~ 15).

30.4.1 ALU Perform Arithmetic/Logic Operations
The ALU (Arithmetic and Logic Unit) performs arithmetic and logic operations on values stored in ULP

coprocessor registers, and on immediate values stored in the instruction itself.

Espressif Systems 654
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

The following operations are supported:

• Arithmetic: ADD and SUB

• Logic: bitwise logical AND and bitwise logical OR

• Bit shifting: LSH and RSH

• Moving data to register: MOVE

• Stage count register manipulation: STAGE_RST, STAGE_INC and STAGE_DEC

The ALU instruction, which has one OpCode, can perform various different arithmetic and logic operations,

depending on the setting of the instruction’s bits [27:21] accordingly.

30.4.1.1 Operations Among Registers

012345212425272831

4’d7 3’b0 ALU_sel Rsrc2Rsrc1 Rdst

Figure 303. Instruction Type — ALU for Operations Among Registers

When bits [27:25] of the instruction in Figure 30-3 are set to 3’b0, ALU performs operations, using the ULP

coprocessor register R[0-3]. The types of operations depend on the setting of the instruction’s bits [24:21]

presented in Table 30-1.

Operand Description - see Figure 30-3

ALU_sel Type of ALU operation

Rdst Register R[0-3], destination

Rsrc1 Register R[0-3], source

Rsrc2 Register R[0-3], source

ALU_sel Instruction Operation Description

0 ADD Rdst = Rsrc1 + Rsrc2 Add to register

1 SUB Rdst = Rsrc1 - Rsrc2 Subtract from register

2 AND Rdst = Rsrc1 & Rsrc2 Bitwise logical AND of two operands

3 OR Rdst = Rsrc1 | Rsrc2 Bitwise logical OR of two operands

4 MOVE Rdst = Rsrc1 Move to register

5 LSH Rdst = Rsrc1 <<�Rsrc2 Bit shifting Left

6 RSH Rdst = Rsrc1 >>�Rsrc2 Bit shifting Right

Table 301. ALU Operations Among Registers

Note:

• ADD/SUB operations can be used to set/clear the overflow flag in ALU.

• All ALU operations can be used to set/clear the zero flag in ALU.

Espressif Systems 655
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

30.4.1.2 Operations with Immediate Value

0123419212425272831

4’d7 3’b1 ALU_sel Imm Rsrc1 Rdst

Figure 304. Instruction Type — ALU for Operations with Immediate Value

When bits [27:25] of the instruction in Figure 30-4 are set to 3’b1, ALU performs operations, using register R[0-3]

and the immediate value stored in [19:4]. The types of operations depend on the setting of the instruction’s bits

[24:21] presented in Table 30-2.

Operand Description - see Figure 30-4

ALU_sel Type of ALU operation

Rdst Register R[0-3], destination

Rsrc1 Register R[0-3], source

Imm 16-bit signed value

ALU_sel Instruction Operation Description

0 ADD Rdst = Rsrc1 + Imm Add to register

1 SUB Rdst = Rsrc1 - Imm Subtract from register

2 AND Rdst = Rsrc1 & Imm Bitwise logical AND of two operands

3 OR Rdst = Rsrc1 | Imm Bitwise logical OR of two operands

4 MOVE Rdst = Imm Move to register

5 LSH Rdst = Rsrc1 <<�Imm Bit shifting left

6 RSH Rdst = Rsrc1 >>�Imm Bit shifting right

Table 302. ALU Operations with Immediate Value

Note:

• ADD/SUB operations can be used to set/clear the overflow flag in ALU.

• All ALU operations can be used to set/clear the zero flag in ALU.

30.4.1.3 Operations with Stage Count Register

411212425272831

4’d7 3’d2 ALU_sel Imm

Figure 305. Instruction Type — ALU for Operations with Stage Count Register

ALU is also able to increment/decrement by a given value, or reset the 8-bit register Stage_cnt. To do so, bits

[27:25] of instruction in Figure 30-5 should be set to 3’b2. The type of operation depends on the setting of the

instruction’s bits [24:21] presented in Table 30-3. The Stage_cnt is a separate register and is not a part of the

instruction in Figure 30-5.

Operand Description - see Figure 30-5

ALU_sel Type of ALU operation

Stage_cnt Stage count register, a separate register [7:0] used to store variables, such as loop index

Imm 8-bit value

Espressif Systems 656
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

ALU_sel Instruction Operation Description

0 STAGE_INC Stage_cnt = Stage_cnt + Imm Increment stage count register

1 STAGE_DEC Stage_cnt = Stage_cnt - Imm Decrement stage count register

2 STAGE_RST Stage_cnt = 0 Reset stage count register

Table 303. ALU Operations with Stage Count Register

30.4.2 ST – Store Data in Memory
0123102025272831

4’d6 3’b100 4’b0 Offset 6’b0 Rdst Rsrc

Figure 306. Instruction Type — ST

Operand Description - see Figure 30-6

Offset 10-bit signed value, offset expressed in 32-bit words

Rsrc Register R[0-3], 16-bit value to store

Rdst Register R[0-3], address of the destination, expressed in 32-bit words

Description

The instruction stores the 16-bit value of Rsrc in the lower half-word of memory with address Rdst + Offset. The

upper half-word is written with the current program counter (PC) (expressed in words and shifted to the left by 5

bits) OR’d with Rdst (0..3):

Mem [Rdst + Offset]{31:0} = {PC[10:0], 3’b0, Rdst, Rsrc[15:0]}

The application can use the higher 16 bits to determine which instruction in the ULP program has written any

particular word into memory.

Note:

• This instruction can only access 32-bit memory words.

• Data from Rsrc is always stored in the lower 16 bits of a memory word. Differently put, it is not possible to

store Rsrc in the upper 16 bits of memory.

• The ”Mem” written is the RTC_SLOW_MEM memory. Address 0, as seen by the ULP coprocessor,

corresponds to address 0x50000000, as seen by the main CPUs.

30.4.3 LD – Load Data from Memory
012310202831

4’d13 Offset Rsrc Rdst

Figure 307. Instruction Type — LD

Operand Description - see Figure 30-7

Offset 10-bit signed value, offset expressed in 32-bit words

Rsrc Register R[0-3], address of destination memory, expressed in 32-bit words

Rdst Register R[0-3], destination

Description

Espressif Systems 657
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

The instruction loads the lower 16-bit half-word from memory with address Rsrc + offset into the destination

register Rdst:

Rdst[15:0] = Mem[Rsrc + Offset][15:0]

Note:

• This instruction can only access 32-bit memory words.

• In any case, it is always the lower 16 bits of a memory word that are loaded. Differently put, it is not

possible to read the upper 16 bits.

• The ”Mem” loaded is the RTC_SLOW_MEM memory. Address 0, as seen by the ULP coprocessor,

corresponds to address 0x50000000, as seen by the main CPUs.

30.4.4 JUMP – Jump to an Absolute Address
0121221222425272831

4’d8 3’b0 Type S
el ImmAddr Rdst

Figure 308. Instruction Type — JUMP

Operand Description - see Figure 30-8

Rdst Register R[0-3], address to jump to

ImmAddr 11-bit address, expressed in 32-bit words

Sel Selects the address to jump to:

0 - jump to the address contained in ImmAddr

1 - jump to the address contained in Rdst

Type Jump type:

0 - make an unconditional jump

1 - jump only if the last ALU operation has set the zero flag

2 - jump only if the last ALU operation has set the overflow flag

Description

The instruction prompts a jump to the specified address. The jump can be either unconditional or based on the

ALU flag.

Note:

All jump addresses are expressed in 32-bit words.

30.4.5 JUMPR – Jump to a Relative Offset (Conditional upon R0)
01516172425272831

4’d8 3’b1 Step

C
on

d

Threshold

Figure 309. Instruction Type — JUMPR

Espressif Systems 658
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

Operand Description - see Figure 30-9

Step Relative shift from current position, expressed in 32-bit words:

if Step[7] = 0 then PC = PC + Step[6:0]

if Step[7] = 1 then PC = PC - Step[6:0]

Threshold Threshold value for condition (see Cond below) to jump

Cond Condition to jump:

0 - jump if R0 < Threshold

1 - jump if R0 >= Threshold

Description

The instruction prompts a jump to a relative address, if the above-mentioned condition is true. The condition itself

is the result of comparing the R0 register value and the Threshold value.

Note:

All jump addresses are expressed in 32-bit words.

30.4.6 JUMPS – Jump to a Relative Address (Conditional upon Stage Count Regis

ter)
071516172425272831

4’d8 3’d2 Step Cond Threshold

Figure 3010. Instruction Type — JUMP

Operand Description - see Figure 30-10

Step Relative shift from current position, expressed in 32-bit words:

if Step[7] = 0, then PC = PC + Step[6:0]

if Step[7] = 1, then PC = PC - Step[6:0]

Threshold Threshold value for condition (see Cond below) to jump

Cond Condition of jump:

1X - jump if Stage_cnt <= Threshold

00 - jump if Stage_cnt < Threshold

01 - jump if Stage_cnt >= Threshold

Note:

• A description of how to set the stage count register is provided in section 30.4.1.3.

• All jump addresses are expressed in 32-bit words.

Description

The instruction prompts a jump to a relative address if the above-mentioned condition is true. The condition itself

is the result of comparing the value of Stage_cnt (stage count register) and the Threshold value.

30.4.7 HALT – End the Program
02831

4’d11

Figure 3011. Instruction Type — HALT

Description

Espressif Systems 659
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

The instruction ends the operation of the processor and puts it into power-down mode.

Note:

After executing this instruction, the ULP coprocessor timer gets started.

30.4.8 WAKE – Wake up the Chip
025272831

4’d9 3’b0 1’
b1

Figure 3012. Instruction Type — WAKE

Description

This instruction sends an interrupt from the ULP coprocessor to the RTC controller.

• If the SoC is in Deep-sleep mode, and the ULP wake-up is enabled, the above-mentioned interrupt will

wake up the SoC.

• If the SoC is not in Deep-sleep mode, and the ULP interrupt bit (RTC_CNTL_ULP_CP_INT_ENA) is set in

register RTC_CNTL_INT_ENA_REG, a RTC interrupt will be triggered.

30.4.9 Sleep – Set the ULP Timer’s Wakeup Period
0325272831

4’d9 3’b1 sleep_reg

Figure 3013. Instruction Type — SLEEP

Operand Description - see Figure 30-13

sleep_reg Selects one of five SENS_ULP_CP_SLEEP_CYCn_REG (n: 0-4) as the wake-up period

of the ULP coprocessor

Description

The instruction selects which one of the SENS_ULP_CP_SLEEP_CYCn_REG (n: 0-4) register values is to be

used by the ULP timer as the wake-up period. By default, the value of SENS_ULP_CP_SLEEP_CYC0_REG is

used.

30.4.10 WAIT – Wait for a Number of Cycles
0152831

4’d4 Cycles

Figure 3014. Instruction Type — WAIT

Operand Description - see Figure 30-14

Cycles the number of cycles to wait between sleeps

Description

The instruction will delay the ULP coprocessor from getting into sleep for a certain number of Cycles.

Espressif Systems 660
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

30.4.11 ADC – Take Measurement with ADC
012562831

4’d5 S
el Sar Mux Rdst

Figure 3015. Instruction Type — ADC

Operand Description - see Figure 30-15

Rdst Destination Register R[0-3], results will be stored in this register.

Sel Selected ADC: 0 = SAR ADC1, 1 = SAR ADC2, see Table 30-4.

Sar Mux SARADC Pad [Sar_Mux - 1] is enabled, see Table 30-4.

Table 304. Input Signals Measured Using the ADC Instruction

Pad Name/Signal/GPIO Sar_Mux Processed by /Sel

SENSOR_VP (GPIO36) 1

SAR ADC1/Sel = 0

SENSOR_CAPP (GPIO37) 2

SENSOR_CAPN (GPIO38) 3

SENSOR_VN (GPIO39) 4

32K_XP (GPIO33) 5

32K_XN (GPIO32) 6

VDET_1 (GPIO34) 7

VDET_2 (GPIO35) 8

GPIO4 1

SAR ADC2/Sel = 1

GPIO0 2

GPIO2 3

MTDO (GPIO15) 4

MTCK (GPIO13) 5

MTDI (GPIO12) 6

MTMS (GPIO14) 7

GPIO27 8

GPIO25 9

GPIO26 10

Description

The instruction prompts the taking of measurements with the use of ADC. Pads/signals available for ADC

measurement are provided in Table 30-4.

30.4.12 I2C_RD/I2C_WR – Read/Write I²C
07815161819212225272831

4’d3 R
/W I2C Sel High Low Data Sub-addr

Figure 3016. Instruction Type — I²C

Espressif Systems 661
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

Operand Description - see Figure 30-16

Sub-addr Slave register address

Data Data to write in I2C_WR operation (not used in I2C_RD operation)

Low High part of bit mask

High Low part of bit mask

I2C Sel Select register n of SENS_I2C_SLAVE_ADDRn (n: 0-7), which contains the I²C slave address.

R/W I²C communication direction:

1 - I²C write

0 - I²C read

Description

Communicate (read/write) with external I²C slave devices. Details on using the RTC I²C peripheral are provided in

section 30.6.

Note:

When working in master mode, RTC_I2C samples the SDA input on the negative edge of SCL.

30.4.13 REG_RD – Read from Peripheral Register
09182223272831

4’d2 High Low Addr

Figure 3017. Instruction Type — REG_RD

Operand Description - see Figure 30-17

Addr Register address, expressed in 32-bit words

High Register end bit number

Low Register start bit number

Description

The instruction prompts a read of up to 16 bits from a peripheral register into a general-purpose register

R0:

R0 = REG[Addr][High:Low]

In case of more than 16 bits being requested, i.e. High - Low + 1 > 16, then the instruction will return

[Low+15:Low].

Note:

• This instruction can access registers in RTC_CNTL, RTC_IO, SENS and RTC_I2C peripherals. The address

of the register, as seen from the ULP coprocessor, can be calculated from the address of the same register

on the DPORT bus, as follows:

addr_ulp = (addr_dport - DR_REG_RTCCNTL_BASE)/4

• The addr_ulp is expressed in 32-bit words (not in bytes), and value 0 maps onto the

DR_REG_RTCCNTL_BASE (as seen from the main CPUs). Thus, 10 bits of address cover a 4096-byte

range of peripheral register space, including regions DR_REG_RTCCNTL_BASE, DR_REG_RTCIO_BASE,

DR_REG_SENS_BASE and DR_REG_RTC_I2C_BASE.

Espressif Systems 662
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

30.4.14 REG_WR – Write to Peripheral Register
091017182223272831

4’d1 High Low Data Addr

Figure 3018. Instruction Type — REG_WR

Operand Description - see Figure 30-18

Addr Register address, expressed in 32-bit words

High Register end bit number

Low Register start bit number

Data Value to write, 8 bits

Description

The instruction prompts the writing of up to 8 bits from an immediate data value into a peripheral register.

REG[Addr][High:Low] = Data

If more than 8 bits are requested, i.e. High - Low + 1 > 8, then the instruction will pad with zeros the bits above

the eighth bit.

Note:

See notes regarding addr_ulp in section 30.4.13 above.

30.5 ULP Program Execution
The ULP coprocessor is designed to operate independently of the main CPUs, while they are either in deep sleep

or running.

In a typical power-saving scenario, the ULP coprocessor operates while the main CPUs are in deep sleep. To

save power even further, the ULP coprocessor can get into sleep mode, as well. In such a scenario, there is a

specific hardware timer in place to wake up the ULP coprocessor, since there is no software program running at

the same time. This timer should be configured in advance by setting and then selecting one of the

SENS_ULP_CP_SLEEP_CYCn_REG registers that contain the expiration period. This can be done either by the

main program, or the ULP program with the REG_WR and SLEEP instructions. Then, the ULP timer should be

enabled by setting bit RTC_CNTL_ULP_CP_SLP_TIMER_EN in the RTC_CNTL_STATE0_REG register.

Espressif Systems 663
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

Figure 3019. Control of ULP Program Execution

The ULP coprocessor puts itself into sleep mode by executing the HALT instruction. This also triggers the ULP

timer to start counting RTC_SLOW_CLK ticks which, by default, originate from an internal 150 kHz RC oscillator.

Once the timer expires, the ULP coprocessor is powered up and runs a program with the program counter (PC)

which is stored in register SENS_PC_INIT. The relationship between the described signals and registers is shown

in Figure 30-19.

On reset or power-up the above-mentioned ULP program may start up only after the expiration of

SENS_ULP_CP_SLEEP_CYC0_REG, which is the default selection period of the ULP timer.

A sample operation sequence of the ULP program is shown in Figure 30-20, where the following steps are

executed:

1. Software enables the ULP timer by using bit RTC_CNTL_ULP_CP_SLP_TIMER_EN.

2. The ULP timer expires and the ULP coprocessor starts running the program at PC = SENS_PC_INIT.

3. The ULP program executes the HALT instruction; the ULP coprocessor is halted and the timer gets

restarted.

4. The ULP program executes the SLEEP instruction to change the sleep timer period register.

5. The ULP program, or software, disables the ULP timer by using bit RTC_CNTL_ULP_CP_SLP_TIMER_EN.

Espressif Systems 664
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

Figure 3020. Sample of a ULP Operation Sequence

The specific timing of the wakeup, program execution and sleep sequence is governed by the ULP FSM as

follows:

1. On the ULP timer expiration the FSM wakes up the ULP and this process takes two clock cycles.

2. Then, before executing the program, the FSM waits for the number of cycles configured in

RTC_CNTL_ULPCP_TOUCH_START_WAIT field of the RTC_CNTL_TIMER2_REG register. This time is

spent waiting for the 8 MHz clock to get stable.

3. The ULP program is executed.

4. After calling HALT instruction, the program is stopped. The FSM requires additional two clock cycles to put

the ULP to sleep.

30.6 RTC_I2C Controller
The ULP coprocessor can use a separate I²C controller, located in the RTC domain, to communicate with

external I²C slave devices. RTC_I2C has a limited feature set, compared to I2C0/I2C1 peripherals.

30.6.1 Configuring RTC_I2C
Before the ULP coprocessor can use the I²C instruction, certain parameters of the RTC_I2C need to be

configured. This can be done by the program running on one of the main CPUs, or by the ULP coprocessor

itself. Configuration is performed by writing certain timing parameters into the RTC_I2C registers:

1. Set the low and high SCL half-periods by using RTC_I2C_SCL_LOW_PERIOD_REG and

RTC_I2C_SCL_HIGH_PERIOD_REG in RTC_FAST_CLK cycles (e.g. RTC_I2C_SCL_LOW_PERIOD=40,

RTC_I2C_SCL_HIGH_PERIOD=40 for 100 kHz frequency).

2. Set the number of cycles between the SDA switch and the falling edge of SCL by using

RTC_I2C_SDA_DUTY_REG in RTC_FAST_CLK (e.g. RTC_I2C_SDA_DUTY=16).

3. Set the waiting time after the START condition by using RTC_I2C_SCL_START_PERIOD_REG (e.g.

RTC_I2C_SCL_START_PERIOD=30).

4. Set the waiting time before the END condition by using RTC_I2C_SCL_STOP_PERIOD_REG (e.g.

RTC_I2C_SCL_STOP_PERIOD=44).

Espressif Systems 665
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

5. Set the transaction timeout by using RTC_I2C_TIMEOUT_REG (e.g. RTC_I2C_TIMEOUT=200).

6. Enable the master mode (set the RTC_I2C_MS_MODE bit in RTC_I2C_CTRL_REG).

7. Write the address(es) of external slave(s) to SENS_I2C_SLAVE_ADDRn (n: 0-7). Up to eight slave

addresses can be pre-programmed this way. One of these addresses can then be selected for each

transaction as part of the ULP I²C instruction.

Once RTC_I2C is configured, instructions ULP I2C_RD and I2C_WR can be used.

30.6.2 Using RTC_I2C
The ULP coprocessor supports two instructions (with a single OpCode) for using RTC_I2C: I2C_RD (read) and

I2C_WR (write).

30.6.2.1 I2C_RD Read a Single Byte

The I2C_RD instruction performs the following I²C transaction (see Figure 30-21):

1. Master generates a START condition.

2. Master sends slave address, with r/w bit set to 0 (“write”). Slave address is obtained from

SENS_I2C_SLAVE_ADDRn, where n is given as an argument to the I2C_RD instruction.

3. Slave generates ACK.

4. Master sends slave register address (given as an argument to the I2C_RD instruction).

5. Slave generates ACK.

6. Master generates a repeated START condition.

7. Master sends slave address, with r/w bit set to 1 (“read”).

8. Slave sends one byte of data.

9. Master generates NACK.

10. Master generates a STOP condition.

1 2 3 4 5 6 7 8 9 10

Master

S
TA

R
T

Slave Address W Reg Address

R
S

TR
T

Slave Address R

N
A

C
K

S
TO

P

Slave A
C

K

A
C

K Data

Figure 3021. I²C Read Operation

Note:

The RTC_I2C peripheral samples the SDA signals on the falling edge of SCL. If the slave changes SDA in less

than 0.38 microseconds, the master will receive incorrect data.

The byte received from the slave is stored into the R0 register.

30.6.2.2 I2C_WR Write a Single Byte

The I2C_WR instruction performs the following I²C transaction (see Figure 30-22):

Espressif Systems 666
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

1. Master generates a START condition.

2. Master sends slave address, with r/w bit set to 0 (“write”). Slave address is obtained from

SENS_I2C_SLAVE_ADDRn, where n is given as an argument to the I2C_WR instruction.

3. Slave generates ACK.

4. Master sends slave register address (given as an argument to the I2C_WR instruction).

5. Slave generates ACK.

6. Master generates a repeated START condition.

7. Master sends slave address, with r/w bit set to 0 (“write”).

8. Master sends one byte of data.

9. Slave generates ACK.

10. Master generates a STOP condition.

1 2 3 4 5 6 7 8 9 10

Master

S
TA

R
T

Slave Address W Reg Address
R

S
TR

T
Slave Address W Data S

TO
P

Slave A
C

K

A
C

K

A
C

K

Figure 3022. I²C Write Operation

30.6.2.3 Detecting Error Conditions

ULP I2C_RD and I2C_WR instructions will not report error conditions, such as a NACK from a slave, via ULP

registers. Instead, applications can query specific bits in the RTC_I2C_INT_ST_REG register to determine if the

transaction was successful. To enable checking for specific communication events, their corresponding bits

should be set in register RTC_I2C_INT_EN_REG. Note that the bit map is shifted by 1. If a specific

communication event is detected and set in register RTC_I2C_INT_ST_REG, it can then be cleared using

RTC_I2C_INT_CLR_REG.

30.6.2.4 Connecting I²C Signals

SDA and SCL signals can be mapped onto two out of the four GPIO pins, which are identified in Table RTC_MUX

Pin Summary in Chapter IO_MUX and GPIO Matrix, using the RTCIO_SAR_I2C_IO_REG register.

30.7 Register Summary
30.7.1 SENS_ULP Address Space

Name Description Address Access

ULP Timer cycles select

SENS_ULP_CP_SLEEP_CYC0_REG Timer cycles setting 0 0x3FF48818 R/W

SENS_ULP_CP_SLEEP_CYC1_REG Timer cycles setting 1 0x3FF4881C R/W

SENS_ULP_CP_SLEEP_CYC2_REG Timer cycles setting 2 0x3FF48820 R/W

SENS_ULP_CP_SLEEP_CYC3_REG Timer cycles setting 3 0x3FF48824 R/W

SENS_ULP_CP_SLEEP_CYC4_REG Timer cycles setting 4 0x3FF48828 R/W

Espressif Systems 667
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

RTC I2C slave address select

SENS_SAR_SLAVE_ADDR1_REG I²C addresses 0 and 1 0x3FF4883C R/W

SENS_SAR_SLAVE_ADDR2_REG I²C addresses 2 and 3 0x3FF48840 R/W

SENS_SAR_SLAVE_ADDR3_REG I²C addresses 4 and 5 0x3FF48844 R/W

SENS_SAR_SLAVE_ADDR4_REG I²C addresses 6 and 7, I2C control 0x3FF48848 R/W

RTC I²C control

SENS_SAR_I2C_CTRL_REG I²C control registers 0x3FF48850 R/W

30.7.2 RTC_I2C Address Space

Name Description Address Access

RTC I²C control registers

RTC_I2C_CTRL_REG Transmission setting 0x3FF48C04 R/W

RTC_I2C_DEBUG_STATUS_REG Debug status 0x3FF48C08 R/W

RTC_I2C_TIMEOUT_REG Timeout setting 0x3FF48C0C R/W

RTC_I2C_SLAVE_ADDR_REG Local slave address setting 0x3FF48C10 R/W

RTC I2C signal setting registers

RTC_I2C_SDA_DUTY_REG
Configures the SDA hold time after a nega-

tive SCL edge
0x3FF48C30 R/W

RTC_I2C_SCL_LOW_PERIOD_REG Configures the low level width of SCL 0x3FF48C00 R/W

RTC_I2C_SCL_HIGH_PERIOD_REG Configures the high level width of SCL 0x3FF48C38 R/W

RTC_I2C_SCL_START_PERIOD_REG
Configures the delay between the SDA and

SCL negative edge for a start condition
0x3FF48C40 R/W

RTC_I2C_SCL_STOP_PERIOD_REG
Configures the delay between the SDA and

SCL positive edge for a stop condition
0x3FF48C44 R/W

RTC I²C interrupt registers listed only for debugging

RTC_I2C_INT_CLR_REG Clear status of I²C communication events 0x3FF48C24 R/W

RTC_I2C_INT_EN_REG
Enable capture of I²C communication status

events
0x3FF48C28 R/W

RTC_I2C_INT_ST_REG
Status of captured I²C communication

events
0x3FF48C2C R/O

Note:

Interrupts from RTC_I2C are not connected. The interrupt registers above are listed only for debugging

purposes.

Espressif Systems 668
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

30.8 Registers
30.8.1 SENS_ULP Address Space
The addresses in parenthesis besides register names are the register addresses relative to (the RTC base address

+ 0x0800). The RTC base address is provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and

Memory. The absolute register addresses are listed in Section 30.7.1 SENS_ULP Address Space.

Register 30.1. SENS_ULP_CP_SLEEP_CYCn_REG (n: 04) (0x18+0x4*n)

20

31 0

Reset

SENS_ULP_CP_SLEEP_CYCn_REG ULP timer cycles setting n; the ULP coprocessor can select

one of such registers by using the SLEEP instruction. (R/W)

Register 30.2. SENS_SAR_START_FORCE_REG (0x002c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

SENS_P
C_IN

IT

0 0 0 0 0 0 0 0 0 0 0

21 11

(re
se

rve
d)

0

10

SENS_U
LP

_C
P_S

TA
RT_

TO
P

0

9

SENS_U
LP

_C
P_F

ORCE_S
TA

RT_
TO

P

0

8

(re
se

rve
d)

0 0 0 0 0 0 0 0

7 0

Reset

SENS_PC_INIT ULP PC entry address. (R/W)

SENS_ULP_CP_START_TOP Set this bit to start the ULP coprocessor; it is active only when

SENS_ULP_CP_FORCE_START_TOP = 1. (R/W)

SENS_ULP_CP_FORCE_START_TOP 1: ULP coprocessor is started by

SENS_ULP_CP_START_TOP; 0: ULP coprocessor is started by timer. (R/W)

Register 30.3. SENS_SAR_SLAVE_ADDR1_REG (0x003c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

SENS_I2
C_S

LA
VE_A

DDR0

0x000

21 11

SENS_I2
C_S

LA
VE_A

DDR1

0x000

10 0

Reset

SENS_I2C_SLAVE_ADDR0 I2C slave address 0. (R/W)

SENS_I2C_SLAVE_ADDR1 I2C slave address 1. (R/W)

Espressif Systems 669
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

Register 30.4. SENS_SAR_SLAVE_ADDR2_REG (0x0040)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

SENS_I2
C_S

LA
VE_A

DDR2

0x000

21 11

SENS_I2
C_S

LA
VE_A

DDR3

0x000

10 0

Reset

SENS_I2C_SLAVE_ADDR2 I2C slave address 2. (R/W)

SENS_I2C_SLAVE_ADDR3 I2C slave address 3. (R/W)

Register 30.5. SENS_SAR_SLAVE_ADDR3_REG (0x0044)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

SENS_I2
C_S

LA
VE_A

DDR4

0x000

21 11

SENS_I2
C_S

LA
VE_A

DDR5

0x000

10 0

Reset

SENS_I2C_SLAVE_ADDR4 I2C slave address 4. (R/W)

SENS_I2C_SLAVE_ADDR5 I2C slave address 5. (R/W)

Register 30.6. SENS_SAR_SLAVE_ADDR4_REG (0x0048)

(re
se

rve
d)

0

31

SENS_I2
C_D

ONE

0

30

SENS_I2
C_R

DAT
A

0x000

29 22

SENS_I2
C_S

LA
VE_A

DDR6

0x000

21 11

SENS_I2
C_S

LA
VE_A

DDR7

0x000

10 0

Reset

SENS_I2C_DONE Indicate I2C done. (RO)

SENS_I2C_RDATA I2C read data. (RO)

SENS_I2C_SLAVE_ADDR6 I2C slave address 6. (R/W)

SENS_I2C_SLAVE_ADDR7 I2C slave address 7. (R/W)

Espressif Systems 670
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

Register 30.7. SENS_SAR_I2C_CTRL_REG (0x0050)

(re
se

rve
d)

0 0

31 30

SENS_S
AR_I2

C_S
TA

RT_
FO

RCE

0

29

SENS_S
AR_I2

C_S
TA

RT

0

28

SENS_S
AR_I2

C_C
TR

L

0 0

27 0

Reset

SENS_SAR_I2C_START_FORCE 1: I2C started by SW, 0: I2C started by FSM. (R/W)

SENS_SAR_I2C_START Start I2C; active only when SENS_SAR_I2C_START_FORCE = 1. (R/W)

SENS_SAR_I2C_CTRL I2C control data; active only when SENS_SAR_I2C_START_FORCE = 1.

(R/W)

30.8.2 RTC_I2C Address Space
The addresses in parenthesis besides register names are the register addresses relative to (the RTC base address

+ 0x0C00). The RTC base address is provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and

Memory. The absolute register addresses are listed in Section 30.7.2 RTC_I2C Address Space.

Register 30.8. RTC_I2C_SCL_LOW_PERIOD_REG (0x000)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

RTC
_I2

C_S
CL_

LO
W

_P
ERIO

D

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0

Reset

RTC_I2C_SCL_LOW_PERIOD Number of RTC_FAST_CLK cycles when SCL == 0. (R/W)

Espressif Systems 671
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

Register 30.9. RTC_I2C_CTRL_REG (0x004)

(re
se

rve
d)

0 0

31 8

RTC
_I2

C_R
X_

LS
B_F

IR
ST

0

7

RTC
_I2

C_T
X_

LS
B_F

IR
ST

0

6

RTC
_I2

C_T
RANS_S

TA
RT

0

5

RTC
_I2

C_M
S_M

ODE

0

4

(re
se

rve
d)

0 0

3 2

RTC
_I2

C_S
CL_

FO
RCE_O

UT

0

1

RTC
_I2

C_S
DA_F

ORCE_O
UT

0

0

Reset

RTC_I2C_RX_LSB_FIRST Receive LSB first. (R/W)

RTC_I2C_TX_LSB_FIRST Send LSB first. (R/W)

RTC_I2C_TRANS_START Force to generate a start condition. (R/W)

RTC_I2C_MS_MODE Master (1), or slave (0). (R/W)

RTC_I2C_SCL_FORCE_OUT SCL is push-pull (1) or open-drain (0). (R/W)

RTC_I2C_SDA_FORCE_OUT SDA is push-pull (1) or open-drain (0). (R/W)

Register 30.10. RTC_I2C_DEBUG_STATUS_REG (0x008)

(re
se

rve
d)

0

31

RTC
_I2

C_S
CL_

STA
TE

0 0 0

30 28

RTC
_I2

C_M
AIN

_S
TA

TE

0 0 0

27 25

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 7

RTC
_I2

C_B
YTE

_T
RANS

0

6

RTC
_I2

C_S
LA

VE_A
DDR_M

AT
CH

0

5

RTC
_I2

C_B
US_B

USY

0

4

RTC
_I2

C_A
RB_L

OST

0

3

RTC
_I2

C_T
IM

ED_O
UT

0

2

RTC
_I2

C_S
LA

VE_R
W

0

1

RTC
_I2

C_A
CK_V

AL

0

0

Reset

RTC_I2C_SCL_STATE State of SCL machine. (R/W)

RTC_I2C_MAIN_STATE State of the main machine. (R/W)

RTC_I2C_BYTE_TRANS 8-bit transmit done. (R/W)

RTC_I2C_SLAVE_ADDR_MATCH Indicates whether the addresses are matched, when in slave

mode. (R/W)

RTC_I2C_BUS_BUSY Operation is in progress. (R/W)

RTC_I2C_ARB_LOST Indicates the loss of I2C bus control, when in master mode. (R/W)

RTC_I2C_TIMED_OUT Transfer has timed out. (R/W)

RTC_I2C_SLAVE_RW Indicates the value of the received R/W bit, when in slave mode. (R/W)

RTC_I2C_ACK_VAL The value of ACK signal on the bus. (R/W)

Espressif Systems 672
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

Register 30.11. RTC_I2C_TIMEOUT_REG (0x00c)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

RTC
_I2

C_T
IM

EOUT

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

RTC_I2C_TIMEOUT Maximum number of RTC_FAST_CLK cycles that the transmission can take.

(R/W)

Register 30.12. RTC_I2C_SLAVE_ADDR_REG (0x010)

RTC
_I2

C_S
LA

VE_A
DDR_1

0B
IT

0

31

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 15

RTC
_I2

C_S
LA

VE_A
DDR

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0

Reset

RTC_I2C_SLAVE_ADDR_10BIT Set if local slave address is 10-bit. (R/W)

RTC_I2C_SLAVE_ADDR Local slave address. (R/W)

Espressif Systems 673
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

Register 30.13. RTC_I2C_INT_CLR_REG (0x024)

(re
se

rve
d)

0 0

31 9

RTC
_I2

C_T
IM

E_O
UT_

IN
T_

CLR

0

8

RTC
_I2

C_T
RANS_C

OM
PLE

TE
_IN

T_
CLR

0

7

RTC
_I2

C_M
ASTE

R_T
RANS_C

OM
PLE

TE
_IN

T_
CLR

0

6

RTC
_I2

C_A
RBITR

AT
IO

N_L
OST_

IN
T_

CLR

0

5

RTC
_I2

C_S
LA

VE_T
RANS_C

OM
PLE

TE
_IN

T_
CLR

0

4

(re
se

rve
d)

0 0 0 0

3 0

Reset

RTC_I2C_TIME_OUT_INT_CLR Clear interrupt upon timeout. (R/W)

RTC_I2C_TRANS_COMPLETE_INT_CLR Clear interrupt upon detecting a stop pattern. (R/W)

RTC_I2C_MASTER_TRANS_COMPLETE_INT_CLR Clear interrupt upon completion of transaction,

when in master mode. (R/W)

RTC_I2C_ARBITRATION_LOST_INT_CLR Clear interrupt upon losing control of the bus, when in

master mode. (R/W)

RTC_I2C_SLAVE_TRANS_COMPLETE_INT_CLR Clear interrupt upon completion of transaction,

when in slave mode. (R/W)

Register 30.14. RTC_I2C_INT_EN_REG (0x028)

(re
se

rve
d)

0 0

31 9

RTC
_I2

C_T
IM

E_O
UT_

IN
T_

ENA

0

8

RTC
_I2

C_T
RANS_C

OM
PLE

TE
_IN

T_
ENA

0

7

RTC
_I2

C_M
ASTE

R_T
RAN_C

OM
P_IN

T_
ENA

0

6

RTC
_I2

C_A
RBITR

AT
IO

N_L
OST_

IN
T_

ENA

0

5

(re
se

rve
d)

0 0 0 0 0

4 0

Reset

RTC_I2C_TIME_OUT_INT_ENA Enable interrupt upon timeout. (R/W)

RTC_I2C_TRANS_COMPLETE_INT_ENA Enable interrupt upon detecting a stop pattern. (R/W)

RTC_I2C_MASTER_TRAN_COMP_INT_ENA Enable interrupt upon completion of transaction,

when in master mode. (R/W)

RTC_I2C_ARBITRATION_LOST_INT_ENA Enable interrupt upon losing control of the bus, when in

master mode. (R/W)

Espressif Systems 674
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

Register 30.15. RTC_I2C_INT_ST_REG (0x02c)

(re
se

rve
d)

0 0

31 8

RTC
_I2

C_T
IM

E_O
UT_

IN
T_

ST

0

7

RTC
_I2

C_T
RANS_C

OM
PLE

TE
_IN

T_
ST

0

6

RTC
_I2

C_M
ASTE

R_T
RAN_C

OM
P_IN

T_
ST

0

5

RTC
_I2

C_A
RBITR

AT
IO

N_L
OST_

IN
T_

ST

0

4

(re
se

rve
d)

0 0 0 0

3 0

Reset

RTC_I2C_TIME_OUT_INT_ST Detected timeout. (R/O)

RTC_I2C_TRANS_COMPLETE_INT_ST Detected stop pattern on I2C bus. (R/O)

RTC_I2C_MASTER_TRAN_COMP_INT_ST Transaction completed, when in master mode. (R/O)

RTC_I2C_ARBITRATION_LOST_INT_ST Bus control lost, when in master mode. (R/O)

Register 30.16. RTC_I2C_SDA_DUTY_REG (0x030)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

RTC
_I2

C_S
DA_D

UTY

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

RTC_I2C_SDA_DUTY Number of RTC_FAST_CLK cycles between the SDA switch and the falling

edge of SCL. (R/W)

Register 30.17. RTC_I2C_SCL_HIGH_PERIOD_REG (0x038)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

RTC
_I2

C_S
CL_

HIG
H_P

ERIO
D

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

RTC_I2C_SCL_HIGH_PERIOD Number of RTC_FAST_CLK cycles when SCL == 1. (R/W)

Espressif Systems 675
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

30 ULP Coprocessor (ULP)

Register 30.18. RTC_I2C_SCL_START_PERIOD_REG (0x040)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

RTC
_I2

C_S
CL_

STA
RT_

PERIO
D

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

RTC_I2C_SCL_START_PERIOD Number of RTC_FAST_CLK cycles to wait before generating a start

condition. (R/W)

Register 30.19. RTC_I2C_SCL_STOP_PERIOD_REG (0x044)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

RTC
_I2

C_S
CL_

STO
P_P

ERIO
D

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

RTC_I2C_SCL_STOP_PERIOD Number of RTC_FAST_CLK cycles to wait before generating a stop

condition. (R/W)

Espressif Systems 676
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

31 LowPower Management (RTC_CNTL)

31.1 Introduction
ESP32 offers efficient and flexible power-management technology to achieve the best balance between power

consumption, wakeup latency and available wakeup sources. Users can select out of five predefined power

modes of the main processors to suit specific needs of the application. In addition, to save power in power-

sensitive applications, control may be executed by the Ultra-Low-Power coprocessor (ULP coprocessor), while

the main processors are in Deep-sleep mode.

31.2 Features
• Five predefined power modes to support various applications

• Up to 16 KB of retention memory

• 8 x 32 bits of retention registers

• ULP coprocessor enabled in all low-power modes

• RTC boot supported to shorten the wakeup latency

Figure 311. ESP32 Power Control

31.3 Functional Description

Espressif Systems 677
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

31.3.1 Overview
The low-power management unit includes voltage regulators, a power controller, power switch cells, power domain

isolation cells, etc. Figure 31-1 shows the high-level architecture of ESP32’s low-power management.

31.3.2 Digital Core Voltage Regulator
The built-in voltage regulator can convert the external power supply (typically 3.3V) to 1.1V to support the internal

digital core. It receives a wide range of external power supply from 1.8V to 3.6V, and provides an output voltage

from 0.90V to 1.25V.

1. When XPD_DIG_REG == 1, the regulator outputs a 1.1V voltage and the digital core is able to run; when

XPD_DIG_REG == 0, both the regulator and the digital core stop running.

2. DIG_REG_DBIAS[2:0] tunes the supply voltage of the digital core:

VDD_DIG = 0.90 + DBIAS · 0.05V

3. The current to the digital core comes from pin VDD3P3_CPU and pin VDD3P3_RTC.

Figure 31-2 shows the structure of a digital core’s voltage regulator.

90

Figure 312. Digital Core Voltage Regulator

31.3.3 LowPower Voltage Regulator
The built-in low-power voltage regulator can convert the external power supply (typically 3.3V) to 1.1V to support

the internal RTC core. To save power, it receives a wide range of external power supply from 1.8V to 3.6V, and

supports an adjustable output voltage of 0.90V to 1.25V in normal work mode, a fixed output voltage of about

0.75V both in Deep-sleep mode and Hibernation mode.

1. When the pin CHIP_PU is at a high level, the low-power voltage regulator cannot be turned off. It should be

switched only between normal-work mode and Deep-sleep mode.

Espressif Systems 678
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

2. In normal-work mode, RTC_DBIAS[2:0] can be used to tune the output voltage:

VDD_RTC = 0.90 + DBIAS · 0.05V

3. In Deep-sleep mode, the output voltage of the regulator is fixed at about 0.75V.

4. The current to the RTC core comes from pin VDD3P3_RTC.

Figure 31-3 shows the structure of a low-power voltage regulator.

90

Figure 313. LowPower Voltage Regulator

31.3.4 Flash Voltage Regulator
The built-in flash voltage regulator can supply a voltage of 3.3V or 1.8V to other devices (flash, for example) in the

system, with a maximum output current of 40 mA.

1. When XPD_SDIO_VREG == 1, the regulator outputs a voltage of 3.3V or 1.8V; when XPD_SDIO_VREG ==

0, the output is high-impedance and, in this case, the voltage is provided by the external power supply.

2. When SDIO_TIEH == 1, the regulator shorts pin VDD_SDIO to pin VDD3P3_RTC. The regulator then outputs

a voltage of 3.3V which is the voltage of pin VDD3P3_RTC. When SDIO_TIEH == 0, the inner loop ties the

regulator output to the voltage of VREF, which is typically 1.8V.

3. DREFH_SDIO, DREFM_SDIO and DREFL_SDIO could be used to tune the reference voltage VREF slightly.

However, it is recommended that users do not change the value of these registers, since it may affect the

stability of the inner loop.

4. When the regulator output is 3.3V or 1.8V, the output current comes from the pin VDD3P3_RTC.

Figure 31-4 shows the structure of a flash voltage regulator.

Espressif Systems 679
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Figure 314. Flash Voltage Regulator

31.3.5 Brownout Detector
The brownout detector checks the voltage of pin VDD3P3_RTC. If the voltage drops rapidly and becomes too

low, the detector would trigger a signal to shut down some power-consuming blocks (such as LNA, PA, etc.) to

allow extra time for the digital block to save and transfer important data. The power consumption of the detector

is ultra low. It remains enabled whenever the chip is powered on, with an adjustable trigger level calibrated around

2.5V.

1. As the output of the brownout detector, RTC_CNTL_BROWN_OUT_DET goes high when the voltage of pin

VDD3P3_RTC is lower than the threshold value.

2. RTC_CNTL_DBROWN_OUT_THRES[2:0] is used to tune the threshold voltage, which is usually calibrated

around 2.5V.

Figure 31-5 shows the structure of a brownout detector.

Figure 315. Brownout Detector

31.3.6 RTC Module
The RTC module is designed to handle the entry into, and exit from, the low-power mode, and control the clock

sources, PLL, power switch and isolation cells to generate power-gating, clock-gating, and reset signals. As for

the low-power management, RTC is composed of the following modules (see Figure 31-6):

• RTC main state machine: records the power state.

Espressif Systems 680
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

• Digital & analog power controller: generates actual power-gating/clock-gating signals for digital parts and

analog parts.

• Sleep & wakeup controller: handles the entry into & exit from the low-power mode.

• Timers: include RTC main timer, ULP coprocessor timer and touch timer.

• Low-Power processor and sensor controllers: include ULP coprocessor, touch controller, SAR ADC con-

troller, etc.

• Retention memory:

– RTC slow memory: an 8 KB SRAM, mostly used as retention memory or instruction & data memory for

the ULP coprocessor. The CPU accesses it through the APB, starting from address 0x50000000.

– RTC fast memory: an 8 KB SRAM, mostly used as retention memory. The CPU accesses it through

IRAM0/DRAM0. Fast RTC memory is about 10 times faster than the RTC slow memory.

• Retention registers: always-on registers of 8 x 32 bits, serving as data storage.

• RTC IO pads: 18 always-on analog pads, usually functioning as wake-up sources.

Figure 316. RTC Structure

Espressif Systems 681
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

31.3.7 LowPower Clocks
In the low-power mode, the 40 MHz crystal and PLL are usually powered down to save power. But clocks are

needed for the chip to remain active in the low-power mode.

For the RTC core, there are five possible clock sources:

• external low-speed (32.768 kHz) crystal clock XTL32K_CLK,

• external high-speed (2 MHz ~ 40 MHz) crystal clock XTAL_DIV_CLK,

• internal RC oscillator RC_SLOW_CLK (typically about 150 kHz and adjustable),

• internal 8-MHz oscillator RC_FAST_CLK, and

• internal 31.25-kHz clock RC_FAST_DIV_CLK (derived from the internal 8-MHz oscillator divided by 256).

With these clocks, RTC_FAST_CLK and RTC_SLOW_CLK is derived. By default, RTC_FAST_CLK is RC_FAST_CLK

while RTC_SLOW_CLK is RC_SLOW_CLK. For details, please see Figure 31-7.
ESP32

RTC Clock

RC_SLOW_CLK

XTL32K_CLK

 RC_FAST_DIV_CLK

RTC Timer

RTC_SLOW_CLK

Selection Signal

0

1

2

XTAL_DIV_CLK

RC_FAST_CLK

ULP Coprocessor

RTC_FAST_CLK
0

1

Selection Signal

RTC Main State

Sensor Controller

RTC Memory

RTC Registers

RTC Fast Clock

RTC Slow Clock
PMU

Figure 317. RTC LowPower Clocks

For the digital core, LOW_POWERE_CLK is switched among four sources. For details, please see Figure 31-

8.

Espressif Systems 682
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

ESP32

Low-power Clock

LOW_POWER_CLK Wireless

RC_FAST_CLK

 XTL_CLK

Selection Signals

LP
_M

U
X

RC_SLOW_CLK

RTC_SLOW_CLK

Figure 318. Digital LowPower Clocks

31.3.8 PowerGating Implementation

Figure 319. RTC States

The switch among power-gating states can be see in Figure 31-9. The actual power-control signals could also be

set by software as force-power-up (FPU) or force-power-down (FPD). Since the power domains can be power-

gated independently, there are many combinations for different applications. Table 31-1 shows how the power

domains in ESP32 are controlled.

Table 311. RTC Power Domains

RTC Main State S/W Options
Power Domains

DIG Active RTC Active RTC Sleep FPU FPD
Notes*

RTC

RTC Digital Core ON ON ON N N 1

RTC Peripherals ON ON OFF Y Y 2

RTC Slow Memory ON OFF OFF Y Y 3

RTC Fast Memory ON OFF OFF Y Y 4

Digital

Digital Core ON OFF OFF Y Y 5

Wi-Fi ON OFF OFF Y Y 6

Espressif Systems 683
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

ROM ON OFF OFF Y Y -

Internal SRAM ON OFF OFF Y Y 7

Analog

40 MHz Crystal ON OFF OFF Y Y -

PLL ON OFF OFF Y Y -

8 MHz OSC ON OFF OFF Y Y -

Radio - - - Y Y -

Notes*:

1. The power-domain RTC core is the “always-on” power domain, and the FPU/FPD option is not available.

2. The power-domain RTC peripherals include most of the fast logic in RTC, including the ULP co-processor,

sensor controllers, etc.

3. The power-domain RTC slow memory should be forced to power on when it is used as retention memory, or

when the ULP co-processor is working.

4. The power-domain RTC fast memory should be forced to power on, when it is used as retention memory.

5. When the power-domain digital core is powered down, all included in power domains are powered down.

6. The power-domain Wi-Fi includes the Wi-Fi MAC and BB.

7. Each internal SRAM can be power-gated independently.

31.3.9 Predefined Power Modes
In ESP32, we recommend that you always use the predefined power modes first, before trying to tune each power

control signal. The predefined power modes should cover most scenarios:

• Active mode

– The CPU is clocked at XTAL_DIV_N (40 MHz/26 MHz) or PLL (80 MHz/160 MHz/240 MHz).

– The chip can receive, transmit, or listen.

• Modem-sleep mode

– The CPU is operational and the clock is configurable.

– The Wi-Fi/Bluetooth baseband is clock-gated or powered down. The radio is turned off.

– Current consumption: ∼30 mA with 80 MHz PLL.

– Current consumption: ∼3 mA with 2 MHz XTAL.

– Immediate wake-up.

• Light-sleep mode

– The internal 8 MHz oscillator, 40 MHz high-speed crystal, PLL, and radio are disabled.

– The clock in the digital core is gated. The CPUs are stalled.

– The ULP coprocessor and touch controller can be periodically triggered by monitor sensors.

– Current consumption: ∼ 800 µA.

– Wake-up latency: less than 1 ms.

• Deep-sleep mode

– The internal 8 MHz oscillator, 40 MHz high-speed crystal, PLL and radio are disabled.

– The digital core is powered down. The CPU context is lost.

Espressif Systems 684
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

– The supply voltage to the RTC core drops to 0.7V.

– 8 x 32 bits of data are kept in general-purpose retention registers.

– The RTC memory and fast RTC memory can be retained.

– Current consumption: ∼ 6.5 µA.

– Wake-up latency: less than 1 ms.

– Recommended for ultra-low-power infrequently-connected Wi-Fi/Bluetooth applications.

• Hibernatation mode

– The internal 8 MHz oscillator, 40 MHz high-speed crystal, PLL, and radio are disabled.

– The digital core is powered down. The CPU context is lost.

– The RTC peripheral domain is powered down.

– The supply voltage to the RTC core drops to 0.7V.

– 8 x 32 bits of data are kept in general-purpose retention registers.

– The RTC memory and fast RTC memory are powered down.

– Current consumption: ∼ 4.5 µA.

– Wake-up source: RTC timer only.

– Wake-up latency: less than 1 ms.

– Recommended for ultra-low-power infrequently-connected Wi-Fi/Bluetooth applications.

Figure 3110. Power Modes

By default, the ESP32 is in active mode after a system reset.There are several low-power modes for saving power

when the CPU does not need to be kept running, for example, when waiting for an external event. It is up to the

Espressif Systems 685
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

user to select the mode that best balances power consumption, wake-up latency and available wake-up sources.

For details, please see Figure 31-10.

Please note that the predefined power mode could be further optimized and adapted to any application.

31.3.10 Wakeup Source
The ESP32 supports various wake-up sources, which could wake up the CPU in different sleep modes. The

wake-up source is determined by RTC_CNTL_WAKEUP_ENA, as shown in Table 31-2.

Table 312. Wakeup Source

WAKEUP_ENA Wakeup Source1 Lightsleep Deepsleep Hibernation

0x1 EXT02 Y Y -

0x2 EXT13 Y Y Y

0x4 GPIO4 Y Y -

0x8 RTC timer Y Y Y

0x10 SDIO5 Y - -

0x20 Wi-Fi6 Y - -

0x40 UART0 7 Y - -

0x80 UART1 7 Y - -

0x100 TOUCH Y Y -

0x200 ULP co-processor Y Y -

0x400 BT 6 Y - -

1 All wakeup sources can also be configured as the causes to reject sleep, except

UART.
2 EXT0 can only wake up the chip in light-sleep/deep-sleep mode.

If RTC_CNTL_EXT_WAKEUP0_LV is 1, it is pad high-level triggered; otherwise, it is

low-level triggered. Users can set RTCIO_EXT_WAKEUP0_SEL[4:0] to select one

of the RTC PADs to be the wake-up source.
3 EXT1 is especially designed to wake up the chip from any sleep mode, and it also

supports multiple pads’ combinations.

First, RTC_CNTL_EXT_WAKEUP1_SEL[17:0] should be configured with the bitmap

of PADS selected as a wake-up source. Then, if RTC_CNTL_EXT_WAKEUP1_LV

is 1, as long as one of the PADs is at high-voltage level, it can trigger a wake-up.

However, if RTC_CNTL_EXT_WAKEUP1_LV is 0, it needs all selected PADs to be

at low-voltage level to trigger a wake-up.
4 In Deep-sleep mode, only RTC GPIOs (not DIGITAL GPIOs) can work as wakeup

source.
5 Wake-up is triggered by receiving any SDIO command.
6 To wake up the chip with a Wi-Fi or BT source, the power mode switches between

the Active, Modem- and Light-sleep modes. The CPU, Wi-Fi, Bluetooth, and radio

are woken up at predetermined intervals to keep Wi-Fi/BT connections active.
7 Wake-up is triggered when the number or positive edges of RxD signal is greater

than or equal to (UART_ACTIVE_THRESHOLD+2). Note that the RxD signal cannot

be input through GPIO Matrix but only through IO_MUX.

Espressif Systems 686
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

31.3.11 Reject Sleep
ESP32 implements a hardware mechanism that equips the chip with the ability to reject to sleep, which prevents

the chip from going to sleep unexpectedly when some peripherals are still working but not detected by the CPU,

thus guaranteeing the proper functioning of the peripherals.

All the wakeup sources specified in Table 31-2 (except UART) can also be configured as the causes to reject

sleep.

Users can configure the reject to sleep option via the following registers.

• Configure the RTC_CNTL_SLP_REJECT field to enable or disable the option to reject to sleep:

– Set RTC_CNTL_LIGHT_SLP_REJECT_EN to enable reject-to-light-sleep.

– Set RTC_CNTL_DEEP_SLP_REJECT_EN to enable reject-to-deep-sleep.

• Read RTC_CNTL_REJECT_CAUSE to check the reason for rejecting to sleep.

31.3.12 RTC Timer
The RTC timer is a 48-bit counter that can be read. The clock is RTC_SLOW_CLK. Any reset/sleep mode, except

for the power-up reset, will not stop or reset the RTC timer.

The RTC timer can be used to wake up the CPU at a designated time, and to wake up TOUCH or the ULP

coprocessor periodically.

31.3.13 RTC Boot
Since the CPU, ROM and RAM are powered down during Deep-sleep and Hibernation mode, the wake-up time

is much longer than that in Light sleep/Modem sleep, because of the ROM unpacking and data-copying from the

flash (SPI booting). There are two types of SRAM in the RTC, named slow RTC memory and fast RTC memory,

which remain powered-on in Deep-sleep mode. For small-scale codes (less than 8 KB), there are two methods of

speeding up the wake-up time, i.e. avoiding ROM unpacking and SPI booting.

The first method is to use the RTC slow memory:

1. Set register RTC_CNTL_PROCPU_STAT_VECTOR_SEL for PRO_CPU (or register RTC_CNTL_APPCPU_STAT_VECTOR_SEL

for APP_CPU) to 0.

2. Put the chip into sleep.

3. When the CPU is powered up, the reset vector starts from 0x50000000, instead of 0x40000400. ROM

unpacking & SPI boot are not needed. The code in RTC memory has to do itself some initialization for the C

program environment.

The second method is to use the fast RTC memory:

1. Set register RTC_CNTL_PROCPU_STAT_VECTOR_SEL for PRO_CPU (or register RTC_CNTL_APPCPU_STAT_VECTOR_SEL

for APP_CPU) to 1.

2. Calculate CRC for the fast RTC memory, and save the result in register RTC_CNTL_RTC_STORE6_REG[31:0].

3. Input register RTC_CNTL_RTC_STORE7_REG[31:0] with the entry address in the fast RTC memory.

4. Put the chip into sleep.

5. When the CPU is powered up, after ROM unpacking and some necessary initialization, the CRC is calculated

again. If the result matches with register RTC_CNTL_RTC_STORE6_REG[31:0], the CPU will jump to the

Espressif Systems 687
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

entry address.

The boot flow is shown in Figure 31-11.

Figure 3111. ESP32 Boot Flow

31.4 Register Summary
Notes:

• The registers listed below have been grouped according to their functionality. This particular grouping does

not reflect the exact sequential order in which they are stored in memory.

• The base address for registers is 0x60008000 when accessed by AHB, and 0x3FF48000 when accessed

by DPORT bus.

Name Description Address Access

RTC option register

RTC_CNTL_OPTIONS0_REG Configure RTC options 0x3FF48000 R/W

Control and configuration of RTC timer registers

RTC_CNTL_SLP_TIMER0_REG RTC sleep timer 0x3FF48004 R/W

RTC_CNTL_SLP_TIMER1_REG RTC sleep timer, alarm and control 0x3FF48008 R/W

RTC_CNTL_TIME_UPDATE_REG Update control of RTC timer 0x3FF4800C RO

RTC_CNTL_TIME0_REG RTC timer low 32 bits 0x3FF48010 RO

RTC_CNTL_TIME1_REG RTC timer high 16 bits 0x3FF48014 RO

RTC_CNTL_STATE0_REG RTC sleep, SDIO and ULP control 0x3FF48018 R/W

RTC_CNTL_TIMER1_REG CPU stall enable 0x3FF4801C R/W

Espressif Systems 688
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Name Description Address Access

RTC_CNTL_TIMER2_REG
Slow clock and touch controller config-

uration
0x3FF48020 R/W

RTC_CNTL_TIMER5_REG Minimal sleep cycles in slow clock 0x3FF4802C R/W

Reset state and wakeup control registers

RTC_CNTL_RESET_STATE_REG Reset state control and cause of CPUs 0x3FF48034 RO

RTC_CNTL_WAKEUP_STATE_REG Wake-up filter, enable and cause 0x3FF48038 RO

RTC_CNTL_EXT_WAKEUP_CONF_REG
Configuration of wake-up at low/high

level
0x3FF48060 R/W

RTC_CNTL_EXT_WAKEUP1_REG
Selection of pads for external wake-up

and wake-up clear bit
0x3FF480CC R/W

RTC_CNTL_EXT_WAKEUP1_STATUS_REG External wake-up status 0x3FF480D0 RO

RTC interrupt control and status registers

RTC_CNTL_INT_ENA_REG Interrupt enable bits 0x3FF4803C R/W

RTC_CNTL_INT_RAW_REG Raw interrupt status 0x3FF48040 RO

RTC_CNTL_INT_ST_REG Masked interrupt status 0x3FF48044 RO

RTC_CNTL_INT_CLR_REG Interrupt clear bits 0x3FF48048 WO

RTC general purpose retention registers

RTC_CNTL_STORE0_REG General purpose retention register 0 0x3FF4804C R/W

RTC_CNTL_STORE1_REG General purpose retention register 1 0x3FF48050 R/W

RTC_CNTL_STORE2_REG General purpose retention register 2 0x3FF48054 R/W

RTC_CNTL_STORE3_REG General purpose retention register 3 0x3FF48058 R/W

RTC_CNTL_STORE4_REG General purpose retention register 4 0x3FF480B0 R/W

RTC_CNTL_STORE5_REG General purpose retention register 5 0x3FF480B4 R/W

RTC_CNTL_STORE6_REG General purpose retention register 6 0x3FF480B8 R/W

RTC_CNTL_STORE7_REG General purpose retention register 7 0x3FF480BC R/W

Internal power management registers

RTC_CNTL_ANA_CONF_REG Power-up/down configuration 0x3FF48030 R/W

RTC_CNTL_VREG_REG Internal power distribution and control 0x3FF4807C R/W

RTC_CNTL_PWC_REG RTC domain power management 0x3FF48080 R/W

RTC_CNTL_DIG_PWC_REG Digital domain power management 0x3FF48084 R/W

RTC_CNTL_DIG_ISO_REG Digital domain isolation control 0x3FF48088 RO

RTC watchdog configuration and control registers

RTC_CNTL_WDTCONFIG0_REG WDT Configuration register 0 0x3FF4808C R/W

RTC_CNTL_WDTCONFIG1_REG WDT Configuration register 1 0x3FF48090 R/W

RTC_CNTL_WDTCONFIG2_REG WDT Configuration register 2 0x3FF48094 R/W

RTC_CNTL_WDTCONFIG3_REG WDT Configuration register 3 0x3FF48098 R/W

RTC_CNTL_WDTCONFIG4_REG WDT Configuration register 4 0x3FF4809C R/W

RTC_CNTL_WDTFEED_REG Watchdog feed register 0x3FF480A0 WO

RTC_CNTL_WDTWPROTECT_REG Watchdog write protect register 0x3FF480A4 R/W

Miscellaneous RTC configuration registers

RTC_CNTL_EXT_XTL_CONF_REG XTAL control by external pads 0x3FF4805C R/W

RTC_CNTL_SLP_REJECT_CONF_REG Reject cause and enable control 0x3FF48064 R/W

RTC_CNTL_CPU_PERIOD_CONF_REG CPU period select 0x3FF48068 R/W

Espressif Systems 689
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Name Description Address Access

RTC_CNTL_CLK_CONF_REG Configuration of RTC clocks 0x3FF48070 R/W

RTC_CNTL_SDIO_CONF_REG SDIO configuration 0x3FF48074 R/W

RTC_CNTL_SW_CPU_STALL_REG Stall of CPUs 0x3FF480AC R/W

RTC_CNTL_HOLD_FORCE_REG RTC pad hold register 0x3FF480C8 R/W

RTC_CNTL_BROWN_OUT_REG Brownout management 0x3FF480D4 R/W

31.5 Registers
The addresses in parenthesis besides register names are the register addresses relative to the Low-power Man-

agement (RTC) base address provided in Table 1-6 Peripheral Address Mapping in Chapter 1 System and Memory.

The absolute register addresses are listed in Section 31.4 Register Summary.

Espressif Systems 690
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.1. RTC_CNTL_OPTIONS0_REG (0x0000)

RTC
_C

NTL
_S

W
_S

YS_R
ST

0

31

RTC
_C

NTL
_D

G_W
RAP_F

ORCE_N
ORST

0

30

RTC
_C

NTL
_D

G_W
RAP_F

ORCE_R
ST

0

29

(re
se

rve
d)

0 0 0 0 0 0

28 23

RTC
_C

NTL
_B

IA
S_C

ORE_F
ORCE_P

U

1

22

RTC
_C

NTL
_B

IA
S_C

ORE_F
ORCE_P

D

0

21

RTC
_C

NTL
_B

IA
S_C

ORE_F
OLW

_8
M

0

20

RTC
_C

NTL
_B

IA
S_I2

C_F
ORCE_P

U

1

19

RTC
_C

NTL
_B

IA
S_I2

C_F
ORCE_P

D

0

18

RTC
_C

NTL
_B

IA
S_I2

C_F
OLW

_8
M

0

17

RTC
_C

NTL
_B

IA
S_F

ORCE_N
OSLE

EP

1

16

RTC
_C

NTL
_B

IA
S_F

ORCE_S
LE

EP

0

15

RTC
_C

NTL
_B

IA
S_S

LE
EP_F

OLW
_8

M

0

14

RTC
_C

NTL
_X

TL
_F

ORCE_P
U

1

13

RTC
_C

NTL
_X

TL
_F

ORCE_P
D

0

12

RTC
_C

NTL
_B

BPLL
_F

ORCE_P
U

0

11

RTC
_C

NTL
_B

BPLL
_F

ORCE_P
D

0

10

RTC
_C

NTL
_B

BPLL
_I2

C_F
ORCE_P

U

0

9

RTC
_C

NTL
_B

BPLL
_I2

C_F
ORCE_P

D

0

8

RTC
_C

NTL
_B

B_I2
C_F

ORCE_P
U

0

7

RTC
_C

NTL
_B

B_I2
C_F

ORCE_P
D

0

6

RTC
_C

NTL
_S

W
_P

ROCPU_R
ST

0

5

RTC
_C

NTL
_S

W
_A

PPCPU_R
ST

0

4

RTC
_C

NTL
_S

W
_S

TA
LL

_P
ROCPU_C

0

0 0

3 2

RTC
_C

NTL
_S

W
_S

TA
LL

_A
PPCPU_C

0

0 0

1 0

Reset

RTC_CNTL_SW_SYS_RST SW system reset. (WO)

RTC_CNTL_DG_WRAP_FORCE_NORST The digital core forces no reset in deep sleep. (R/W)

RTC_CNTL_DG_WRAP_FORCE_RST The digital core can force a reset in deep sleep. (R/W)

RTC_CNTL_BIAS_CORE_FORCE_PU BIAS_CORE force power up. (R/W)

RTC_CNTL_BIAS_CORE_FORCE_PD BIAS_CORE force power down. (R/W)

RTC_CNTL_BIAS_CORE_FOLW_8M BIAS_CORE follow CK8M. (R/W)

RTC_CNTL_BIAS_I2C_FORCE_PU BIAS_I2C force power up. (R/W)

RTC_CNTL_BIAS_I2C_FORCE_PD BIAS_I2C force power down. (R/W)

RTC_CNTL_BIAS_I2C_FOLW_8M BIAS_I2C follow CK8M. (R/W)

RTC_CNTL_BIAS_FORCE_NOSLEEP BIAS_SLEEP force no sleep. (R/W)

RTC_CNTL_BIAS_FORCE_SLEEP BIAS_SLEEP force sleep. (R/W)

RTC_CNTL_BIAS_SLEEP_FOLW_8M BIAS_SLEEP follow CK8M. (R/W)

RTC_CNTL_XTL_FORCE_PU Crystal force power up. (R/W)

RTC_CNTL_XTL_FORCE_PD Crystal force power down. (R/W)

RTC_CNTL_BBPLL_FORCE_PU BB_PLL force power up. (R/W)

RTC_CNTL_BBPLL_FORCE_PD BB_PLL force power down. (R/W)

RTC_CNTL_BBPLL_I2C_FORCE_PU BB_PLL_I2C force power up. (R/W)

RTC_CNTL_BBPLL_I2C_FORCE_PD BB_PLL _I2C force power down. (R/W)

RTC_CNTL_BB_I2C_FORCE_PU BB_I2C force power up. (R/W)

RTC_CNTL_BB_I2C_FORCE_PD BB_I2C force power down. (R/W)

Continued on the next page...

Espressif Systems 691
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.1. RTC_CNTL_OPTIONS0_REG (0x0000)

Continued from the previous page...

RTC_CNTL_SW_PROCPU_RST PRO_CPU SW reset. (WO)

RTC_CNTL_SW_APPCPU_RST APP_CPU SW reset. (WO)

RTC_CNTL_SW_STALL_PROCPU_C0 described under RTC_CNTL_SW_CPU_STALL_REG. (R/W)

RTC_CNTL_SW_STALL_APPCPU_C0 described under RTC_CNTL_SW_CPU_STALL_REG. (R/W)

Register 31.2. RTC_CNTL_SLP_TIMER0_REG (0x0004)

0x000000000

31 0

Reset

RTC_CNTL_SLP_TIMER0_REG RTC sleep timer low 32 bits. (R/W)

Register 31.3. RTC_CNTL_SLP_TIMER1_REG (0x0008)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

RTC
_C

NTL
_M

AIN
_T

IM
ER_A

LA
RM

_E
N

0

16

RTC
_C

NTL
_S

LP
_V

AL_
HI

0x00000

15 0

Reset

RTC_CNTL_MAIN_TIMER_ALARM_EN Timer alarm enable bit. (R/W)

RTC_CNTL_SLP_VAL_HI RTC sleep timer high 16 bits. (R/W)

Espressif Systems 692
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.4. RTC_CNTL_TIME_UPDATE_REG (0x000C)

RTC
_C

NTL
_T

IM
E_U

PDAT
E

0

31

RTC
_C

NTL
_T

IM
E_V

ALID

0

30

(re
se

rve
d)

0 0

59 30

Reset

RTC_CNTL_TIME_UPDATE Set 1: to update register with RTC timer. (WO)

RTC_CNTL_TIME_VALID Indicates that the register is updated. (RO)

Register 31.5. RTC_CNTL_TIME0_REG (0x0010)

0x000000000

31 0

Reset

RTC_CNTL_TIME0_REG RTC timer low 32 bits. (RO)

Register 31.6. RTC_CNTL_TIME1_REG (0x0014)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

RTC
_C

NTL
_T

IM
E_H

I

0x00000

15 0

Reset

RTC_CNTL_TIME_HI RTC timer high 16 bits. (RO)

Espressif Systems 693
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.7. RTC_CNTL_STATE0_REG (0x0018)

RTC
_C

NTL
_S

LE
EP_E

N

0

31

RTC
_C

NTL
_S

LP
_R

EJE
CT

0

30

RTC
_C

NTL
_S

LP
_W

AKEUP

0

29

RTC
_C

NTL
_S

DIO
_A

CTIV
E_IN

D

0

28

(re
se

rve
d)

0 0 0

27 25

RTC
_C

NTL
_U

LP
_C

P_S
LP

_T
IM

ER_E
N

0

24

RTC
_C

NTL
_T

OUCH_S
LP

_T
IM

ER_E
N

0

23

(re
se

rve
d)

0 0

22 0

Reset

RTC_CNTL_SLEEP_EN Sleep enable bit. (R/W)

RTC_CNTL_SLP_REJECT Sleep reject bit. (R/W)

RTC_CNTL_SLP_WAKEUP Sleep wake-up bit. (R/W)

RTC_CNTL_SDIO_ACTIVE_IND SDIO active indication. (RO)

RTC_CNTL_ULP_CP_SLP_TIMER_EN ULP coprocessor timer enable bit. (R/W)

RTC_CNTL_TOUCH_SLP_TIMER_EN Touch timer enable bit. (R/W)

Register 31.8. RTC_CNTL_TIMER1_REG (0x001C)

(re
se

rve
d)

0 0

31 1

RTC
_C

NTL
_C

PU_S
TA

LL
_E

N

1

0

Reset

RTC_CNTL_CPU_STALL_EN CPU stall enable bit. (R/W)

Espressif Systems 694
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.9. RTC_CNTL_TIMER2_REG (0x0020)

RTC
_C

NTL
_M

IN
_T

IM
E_C

K8M
_O

FF

0x001

31 24

RTC
_C

NTL
_U

LP
CP_T

OUCH_S
TA

RT_
W

AIT

0x010

23 15

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0

Reset

RTC_CNTL_MIN_TIME_CK8M_OFF Minimal amount of cycles in RTC_SLOW_CLK to power down

CK8M. (R/W)

RTC_CNTL_ULPCP_TOUCH_START_WAIT Awaited cycles in RTC_SLOW_CLK before

ULP coprocessor/touch controller starts working. (R/W)

Register 31.10. RTC_CNTL_TIMER5_REG (0x002C)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

RTC
_C

NTL
_M

IN
_S

LP
_V

AL

0x080

15 8

(re
se

rve
d)

0 0 0 0 0 0 0 0

7 0

Reset

RTC_CNTL_MIN_SLP_VAL Minimal amount of sleep cycles in RTC_SLOW_CLK. (R/W)

Espressif Systems 695
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.11. RTC_CNTL_ANA_CONF_REG (0x0030)

RTC
_C

NTL
_P

LL
_I2

C_P
U

0

31

RTC
_C

NTL
_C

KGEN_I2
C_P

U

0

30

(re
se

rve
d)

0

29

RTC
_C

NTL
_R

FR
X_

PBUS_P
U

0

28

RTC
_C

NTL
_T

XR
F_

I2C
_P

U

0

27

RTC
_C

NTL
_P

VTM
ON_P

U

0

26

(re
se

rve
d)

0

25

RTC
_C

NTL
_P

LL
A_F

ORCE_P
U

0

24

RTC
_C

NTL
_P

LL
A_F

ORCE_P
D

1

23

(re
se

rve
d)

0 0

22 0

Reset

RTC_CNTL_PLL_I2C_PU 1: PLL_I2C power up, otherwise power down. (R/W)

RTC_CNTL_CKGEN_I2C_PU 1: CKGEN_I2C power up, otherwise power down. (R/W)

RTC_CNTL_RFRX_PBUS_PU 1: RFRX_PBUS power up, otherwise power down. (R/W)

RTC_CNTL_TXRF_I2C_PU 1: TXRF_I2C power up, otherwise power down. (R/W)

RTC_CNTL_PVTMON_PU 1: PVTMON power up, otherwise power down. (R/W)

RTC_CNTL_PLLA_FORCE_PU PLLA force power up. (R/W)

RTC_CNTL_PLLA_FORCE_PD PLLA force power down. (R/W)

Register 31.12. RTC_CNTL_RESET_STATE_REG (0x0034)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

RTC
_C

NTL
_P

ROCPU_S
TA

T_
VECTO

R_S
EL

1

13

RTC
_C

NTL
_A

PPCPU_S
TA

T_
VECTO

R_S
EL

1

12

RTC
_C

NTL
_R

ESET_
CAUSE_A

PPCPU

x x x x x x

11 6

RTC
_C

NTL
_R

ESET_
CAUSE_P

ROCPU

x x x x x x

5 0

Reset

RTC_CNTL_PROCPU_STAT_VECTOR_SEL PRO_CPU state vector selection. (R/W)

RTC_CNTL_APPCPU_STAT_VECTOR_SEL APP_CPU state vector selection. (R/W)

RTC_CNTL_RESET_CAUSE_APPCPU Reset cause for APP_CPU. (RO)

RTC_CNTL_RESET_CAUSE_PROCPU Reset cause for PRO_CPU. (RO)

Espressif Systems 696
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.13. RTC_CNTL_WAKEUP_STATE_REG (0x0038)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0

31 23

RTC
_C

NTL
_G

PIO
_W

AKEUP_F
ILT

ER

0

22

RTC
_C

NTL
_W

AKEUP_E
NA

0 0 0 0 0 0 0 1 1 0 0

21 11

RTC
_C

NTL
_W

AKEUP_C
AUSE

0x000

10 0

Reset

RTC_CNTL_GPIO_WAKEUP_FILTER Enable filter for GPIO wake-up event. (R/W)

RTC_CNTL_WAKEUP_ENA Wake-up enable bitmap. (R/W)

RTC_CNTL_WAKEUP_CAUSE Wake-up cause. (RO)

Espressif Systems 697
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.14. RTC_CNTL_INT_ENA_REG (0x003C)

(re
se

rve
d)

0 0

31 9

RTC
_C

NTL
_M

AIN
_T

IM
ER_IN

T_
ENA

0

8

RTC
_C

NTL
_B

ROW
N_O

UT_
IN

T_
ENA

0

7

RTC
_C

NTL
_T

OUCH_IN
T_

ENA

0

6

RTC
_C

NTL
_U

LP
_C

P_IN
T_

ENA

0

5

RTC
_C

NTL
_T

IM
E_V

ALID
_IN

T_
ENA

0

4

RTC
_C

NTL
_W

DT_
IN

T_
ENA

0

3

RTC
_C

NTL
_S

DIO
_ID

LE
_IN

T_
ENA

0

2

RTC
_C

NTL
_S

LP
_R

EJE
CT_

IN
T_

ENA

0

1

RTC
_C

NTL
_S

LP
_W

AKEUP_IN
T_

ENA

0

0

Reset

RTC_CNTL_MAIN_TIMER_INT_ENA The interrupt enable bit for the RTC_CNTL_MAIN_TIMER_INT

interrupt. (R/W)

RTC_CNTL_BROWN_OUT_INT_ENA The interrupt enable bit for the

RTC_CNTL_BROWN_OUT_INT interrupt. (R/W)

RTC_CNTL_TOUCH_INT_ENA The interrupt enable bit for the RTC_CNTL_TOUCH_INT interrupt.

(R/W)

RTC_CNTL_ULP_CP_INT_ENA The interrupt enable bit for the RTC_CNTL_ULP_CP_INT interrupt.

(R/W)

RTC_CNTL_TIME_VALID_INT_ENA The interrupt enable bit for the RTC_CNTL_TIME_VALID_INT in-

terrupt. (R/W)

RTC_CNTL_WDT_INT_ENA The interrupt enable bit for the RTC_CNTL_WDT_INT interrupt. (R/W)

RTC_CNTL_SDIO_IDLE_INT_ENA The interrupt enable bit for the RTC_CNTL_SDIO_IDLE_INT in-

terrupt. (R/W)

RTC_CNTL_SLP_REJECT_INT_ENA The interrupt enable bit for the RTC_CNTL_SLP_REJECT_INT

interrupt. (R/W)

RTC_CNTL_SLP_WAKEUP_INT_ENA The interrupt enable bit for the

RTC_CNTL_SLP_WAKEUP_INT interrupt. (R/W)

Espressif Systems 698
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.15. RTC_CNTL_INT_RAW_REG (0x0040)

(re
se

rve
d)

0 0

31 9

RTC
_C

NTL
_M

AIN
_T

IM
ER_IN

T_
RAW

0

8

RTC
_C

NTL
_B

ROW
N_O

UT_
IN

T_
RAW

0

7

RTC
_C

NTL
_T

OUCH_IN
T_

RAW

0

6

RTC
_C

NTL
_U

LP
_C

P_IN
T_

RAW

0

5

RTC
_C

NTL
_T

IM
E_V

ALID
_IN

T_
RAW

0

4

RTC
_C

NTL
_W

DT_
IN

T_
RAW

0

3

RTC
_C

NTL
_S

DIO
_ID

LE
_IN

T_
RAW

0

2

RTC
_C

NTL
_S

LP
_R

EJE
CT_

IN
T_

RAW

0

1

RTC
_C

NTL
_S

LP
_W

AKEUP_IN
T_

RAW

0

0

Reset

RTC_CNTL_MAIN_TIMER_INT_RAW The raw interrupt status bit for the

RTC_CNTL_MAIN_TIMER_INT interrupt. (RO)

RTC_CNTL_BROWN_OUT_INT_RAW The raw interrupt status bit for the

RTC_CNTL_BROWN_OUT_INT interrupt. (RO)

RTC_CNTL_TOUCH_INT_RAW The raw interrupt status bit for the RTC_CNTL_TOUCH_INT inter-

rupt. (RO)

RTC_CNTL_ULP_CP_INT_RAW The raw interrupt status bit for the RTC_CNTL_ULP_CP_INT inter-

rupt. (RO)

RTC_CNTL_TIME_VALID_INT_RAW The raw interrupt status bit for the

RTC_CNTL_TIME_VALID_INT interrupt. (RO)

RTC_CNTL_WDT_INT_RAW The raw interrupt status bit for the RTC_CNTL_WDT_INT interrupt.

(RO)

RTC_CNTL_SDIO_IDLE_INT_RAW The raw interrupt status bit for the RTC_CNTL_SDIO_IDLE_INT

interrupt. (RO)

RTC_CNTL_SLP_REJECT_INT_RAW The raw interrupt status bit for the

RTC_CNTL_SLP_REJECT_INT interrupt. (RO)

RTC_CNTL_SLP_WAKEUP_INT_RAW The raw interrupt status bit for the

RTC_CNTL_SLP_WAKEUP_INT interrupt. (RO)

Espressif Systems 699
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.16. RTC_CNTL_INT_ST_REG (0x0044)

(re
se

rve
d)

0 0

31 9

RTC
_C

NTL
_M

AIN
_T

IM
ER_IN

T_
ST

0

8

RTC
_C

NTL
_B

ROW
N_O

UT_
IN

T_
ST

0

7

RTC
_C

NTL
_T

OUCH_IN
T_

ST

0

6

RTC
_C

NTL
_S

AR_IN
T_

ST

0

5

RTC
_C

NTL
_T

IM
E_V

ALID
_IN

T_
ST

0

4

RTC
_C

NTL
_W

DT_
IN

T_
ST

0

3

RTC
_C

NTL
_S

DIO
_ID

LE
_IN

T_
ST

0

2

RTC
_C

NTL
_S

LP
_R

EJE
CT_

IN
T_

ST

0

1

RTC
_C

NTL
_S

LP
_W

AKEUP_IN
T_

ST

0

0

Reset

RTC_CNTL_MAIN_TIMER_INT_ST The masked interrupt status bit for the

RTC_CNTL_MAIN_TIMER_INT interrupt. (RO)

RTC_CNTL_BROWN_OUT_INT_ST The masked interrupt status bit for the

RTC_CNTL_BROWN_OUT_INT interrupt. (RO)

RTC_CNTL_TOUCH_INT_ST The masked interrupt status bit for the RTC_CNTL_TOUCH_INT inter-

rupt. (RO)

RTC_CNTL_SAR_INT_ST The masked interrupt status bit for the RTC_CNTL_SAR_INT interrupt.

(RO)

RTC_CNTL_TIME_VALID_INT_ST The masked interrupt status bit for the

RTC_CNTL_TIME_VALID_INT interrupt. (RO)

RTC_CNTL_WDT_INT_ST The masked interrupt status bit for the RTC_CNTL_WDT_INT interrupt.

(RO)

RTC_CNTL_SDIO_IDLE_INT_ST The masked interrupt status bit for the

RTC_CNTL_SDIO_IDLE_INT interrupt. (RO)

RTC_CNTL_SLP_REJECT_INT_ST The masked interrupt status bit for the

RTC_CNTL_SLP_REJECT_INT interrupt. (RO)

RTC_CNTL_SLP_WAKEUP_INT_ST The masked interrupt status bit for the

RTC_CNTL_SLP_WAKEUP_INT interrupt. (RO)

Espressif Systems 700
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.17. RTC_CNTL_INT_CLR_REG (0x0048)

(re
se

rve
d)

0 0

31 9

RTC
_C

NTL
_M

AIN
_T

IM
ER_IN

T_
CLR

0

8

RTC
_C

NTL
_B

ROW
N_O

UT_
IN

T_
CLR

0

7

RTC
_C

NTL
_T

OUCH_IN
T_

CLR

0

6

RTC
_C

NTL
_S

AR_IN
T_

CLR

0

5

RTC
_C

NTL
_T

IM
E_V

ALID
_IN

T_
CLR

0

4

RTC
_C

NTL
_W

DT_
IN

T_
CLR

0

3

RTC
_C

NTL
_S

DIO
_ID

LE
_IN

T_
CLR

0

2

RTC
_C

NTL
_S

LP
_R

EJE
CT_

IN
T_

CLR

0

1

RTC
_C

NTL
_S

LP
_W

AKEUP_IN
T_

CLR

0

0

Reset

RTC_CNTL_MAIN_TIMER_INT_CLR Set this bit to clear the RTC_CNTL_MAIN_TIMER_INT inter-

rupt. (WO)

RTC_CNTL_BROWN_OUT_INT_CLR Set this bit to clear the RTC_CNTL_BROWN_OUT_INT inter-

rupt. (WO)

RTC_CNTL_TOUCH_INT_CLR Set this bit to clear the RTC_CNTL_TOUCH_INT interrupt. (WO)

RTC_CNTL_SAR_INT_CLR Set this bit to clear the RTC_CNTL_SAR_INT interrupt. (WO)

RTC_CNTL_TIME_VALID_INT_CLR Set this bit to clear the RTC_CNTL_TIME_VALID_INT interrupt.

(WO)

RTC_CNTL_WDT_INT_CLR Set this bit to clear the RTC_CNTL_WDT_INT interrupt. (WO)

RTC_CNTL_SDIO_IDLE_INT_CLR Set this bit to clear the RTC_CNTL_SDIO_IDLE_INT interrupt.

(WO)

RTC_CNTL_SLP_REJECT_INT_CLR Set this bit to clear the RTC_CNTL_SLP_REJECT_INT inter-

rupt. (WO)

RTC_CNTL_SLP_WAKEUP_INT_CLR Set this bit to clear the RTC_CNTL_SLP_WAKEUP_INT inter-

rupt. (WO)

Register 31.18. RTC_CNTL_STOREn_REG (n: 03) (0x004C+4*n)

x x

31 0

Reset

RTC_CNTL_STOREn_REG 32-bit general-purpose retention register. (R/W)

Espressif Systems 701
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.19. RTC_CNTL_LOW_POWER_ST_REG (0x00D0)

(re
se

rve
d)

0 0 0 0

31 28

RTC
_C

NTL
_M

AIN
_S

TA
TE

_IN
_ID

EL

0

27

(re
se

rve
d)

0 0 0 0 0 0 0

26 20

RTC
_C

NTL
_R

TC
_R

DY_F
OR_W

AKEUP

0

19

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0

Reset

RTC_CNTL_RTC_RDY_FOR_WAKEUP Indicates the RTC is ready to be triggered by any wakeup

source. (RO)

RTC_CNTL_MAIN_STATE_IN_IDLE Indicates the RTC state.

• 0: the chip can be either

– in sleep modes.

– entering sleep modes. In this case, wait until RTC_CNTL_RTC_RDY_FOR_WAKEUP bit

is set, then you can wake up the chip.

– exiting sleep mode. In this case, RTC_CNTL_MAIN_STATE_IN_IDLE will eventually be-

come 1.

• 1: the chip is not in sleep modes (i.e. running normally).

Register 31.20. RTC_CNTL_EXT_XTL_CONF_REG (0x005C)

RTC
_C

NTL
_X

TL
_E

XT
_C

TR
_E

N

0

31

RTC
_C

NTL
_X

TL
_E

XT
_C

TR
_L

V

0

30

(re
se

rve
d)

0 0

29 0

Reset

RTC_CNTL_XTL_EXT_CTR_EN Enable control XTAL with external pads. (R/W)

RTC_CNTL_XTL_EXT_CTR_LV 0: power down XTAL at high level, 1: power down XTAL at low level.

(R/W)

Espressif Systems 702
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.21. RTC_CNTL_EXT_WAKEUP_CONF_REG (0x0060)

RTC
_C

NTL
_E

XT
_W

AKEUP1_
LV

0

31

RTC
_C

NTL
_E

XT
_W

AKEUP0_
LV

0

30

(re
se

rve
d)

0 0

29 0

Reset

RTC_CNTL_EXT_WAKEUP1_LV 0: external wake-up at low level, 1: external wake-up at high level.

(R/W)

RTC_CNTL_EXT_WAKEUP0_LV 0: external wake-up at low level, 1: external wake-up at high level.

(R/W)

Register 31.22. RTC_CNTL_SLP_REJECT_CONF_REG (0x0064)

RTC
_C

NTL
_R

EJE
CT_

CAUSE

0 0 0 0

31 28

RTC
_C

NTL
_D

EEP_S
LP

_R
EJE

CT_
EN

0

27

RTC
_C

NTL
_L

IG
HT_

SLP
_R

EJE
CT_

EN

0

26

RTC
_C

NTL
_S

DIO
_R

EJE
CT_

EN

0

25

RTC
_C

NTL
_G

PIO
_R

EJE
CT_

EN

0

24

(re
se

rve
d)

0 0

23 0

Reset

RTC_CNTL_REJECT_CAUSE Sleep reject cause. (RO)

RTC_CNTL_DEEP_SLP_REJECT_EN Enable reject for deep sleep. (R/W)

RTC_CNTL_LIGHT_SLP_REJECT_EN Enable reject for light sleep. (R/W)

RTC_CNTL_SDIO_REJECT_EN Enable SDIO reject. (R/W)

RTC_CNTL_GPIO_REJECT_EN Enable GPIO reject. (R/W)

Espressif Systems 703
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.23. RTC_CNTL_CPU_PERIOD_CONF_REG (0x0068)

RTC
_C

NTL
_R

TC
_C

PUPERIO
D_S

EL

0 0

31 30

RTC
_C

NTL
_C

PUSEL_
CONF

0

29

(re
se

rve
d)

0 0

28 0

Reset

RTC_CNTL_RTC_CPUPERIOD_SEL CPU period selection. (R/W)

RTC_CNTL_CPUSEL_CONF CPU selection option. (R/W)

Espressif Systems 704
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.24. RTC_CNTL_CLK_CONF_REG (0x0070)

RTC
_C

NTL
_A

NA_C
LK

_R
TC

_S
EL

0

31 30

RTC
_C

NTL
_R

TC
_F

AST_
CLK

_S
EL

0

29

RTC
_C

NTL
_S

OC_C
LK

_S
EL

0

28 27

RTC
_C

NTL
_C

K8M
_F

ORCE_P
U

0

26

RTC
_C

NTL
_C

K8M
_F

ORCE_P
D

0

25

RTC
_C

NTL
_C

K8M
_D

FR
EQ

0

24 17

(re
se

rve
d)

0 0

16 15

RTC
_C

NTL
_C

K8M
_D

IV_S
EL

2

14 12

(re
se

rve
d)

0

11

RTC
_C

NTL
_D

IG
_C

LK
8M

_E
N

0

10

RTC
_C

NTL
_D

IG
_C

LK
8M

_D
25

6_
EN

1

9

RTC
_C

NTL
_D

IG
_X

TA
L3

2K
_E

N

0

8

RTC
_C

NTL
_E

NB_C
K8M

_D
IV

0

7

RTC
_C

NTL
_E

NB_C
K8M

0

6

RTC
_C

NTL
_C

K8M
_D

IV

0 1

5 4

(re
se

rve
d)

0 0 0 0

3 0

Reset

RTC_CNTL_ANA_CLK_RTC_SEL RTC_SLOW_CLK sel. 0: RC_SLOW_CLK, 1: XTL32K_CLK,

2: RC_FAST_DIV_CLK. (R/W)

RTC_CNTL_RTC_FAST_CLK_SEL RTC_FAST_CLK sel. 0: XTAL div 4, 1: CK8M. (R/W)

RTC_CNTL_SOC_CLK_SEL SoC clock selection. 0: XTAL, 1: PLL, 2: CK8M, 3: APLL. (R/W)

RTC_CNTL_CK8M_FORCE_PU CK8M force power up. (R/W)

RTC_CNTL_CK8M_FORCE_PD CK8M force power down. (R/W)

RTC_CNTL_CK8M_DFREQ CK8M_DFREQ. (R/W)

RTC_CNTL_CK8M_DIV_SEL Divider = reg_rtc_cntl_ck8m_div_sel + 1. (R/W)

RTC_CNTL_DIG_CLK8M_EN Enable CK8M for digital core (no relation to RTC core). (R/W)

RTC_CNTL_DIG_CLK8M_D256_EN Enable RC_FAST_DIV_CLK for digital core (no relation to RTC

core). (R/W)

RTC_CNTL_DIG_XTAL32K_EN Enable XTL32K_CLK for digital core (no relation to RTC core). (R/W)

RTC_CNTL_ENB_CK8M_DIV 1: RC_FAST_DIV_CLK is actually CK8M, 0: RC_FAST_DIV_CLK is

CK8M divided by 256. (R/W)

RTC_CNTL_ENB_CK8M Disable CK8M and RC_FAST_DIV_CLK. (R/W)

RTC_CNTL_CK8M_DIV RC_FAST_DIV_CLK divider. 00: div128, 01: div256, 10: div512, 11:

div1024. (R/W)

Espressif Systems 705
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.25. RTC_CNTL_SDIO_CONF_REG (0x0074)

RTC
_C

NTL
_X

PD_S
DIO

_V
REG

0

31

RTC
_C

NTL
_D

REFH
_S

DIO

0 0

30 29

RTC
_C

NTL
_D

REFM
_S

DIO

0 0

28 27

RTC
_C

NTL
_D

REFL
_S

DIO

0 1

26 25

RTC
_C

NTL
_R

EG1P
8_

READY

0

24

RTC
_C

NTL
_S

DIO
_T

IEH

1

23

RTC
_C

NTL
_S

DIO
_F

ORCE

0

22

RTC
_C

NTL
_S

DIO
_V

REG_P
D_E

N

1

21

(re
se

rve
d)

0 0

20 0

Reset

RTC_CNTL_XPD_SDIO_VREG SW option for XPD_SDIO_VREG; active only when

reg_rtc_cntl_sdio_force == 1. (R/W)

RTC_CNTL_DREFH_SDIO SW option for DREFH_SDIO; active only when reg_rtc_cntl_sdio_force

== 1. (R/W)

RTC_CNTL_DREFM_SDIO SW option for DREFM_SDIO; active only when reg_rtc_cntl_sdio_force

== 1. (R/W)

RTC_CNTL_DREFL_SDIO SW option for DREFL_SDIO; active only when reg_rtc_cntl_sdio_force ==

1. (R/W)

RTC_CNTL_REG1P8_READY Read-only register for REG1P8_READY. (RO)

RTC_CNTL_SDIO_TIEH SW option for SDIO_TIEH; active only when reg_rtc_cntl_sdio_force == 1.

(R/W)

RTC_CNTL_SDIO_FORCE 1: use SW option to control SDIO_VREG; 0: use state machine to control

SDIO_VREG. (R/W)

RTC_CNTL_SDIO_VREG_PD_EN Power down SDIO_VREG in sleep; active only when

reg_rtc_cntl_sdio_force == 0. (R/W)

Espressif Systems 706
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.26. RTC_CNTL_VREG_REG (0x007C)

RTC
_C

NTL
_P

REG_F
ORCE_P

U

1

31

RTC
_C

NTL
_P

REG_F
ORCE_P

D

0

30

RTC
_C

NTL
_D

BOOST_
FO

RCE_P
U

1

29

RTC
_C

NTL
_D

BOOST_
FO

RCE_P
D

0

28

RTC
_C

NTL
_D

BIA
S_W

AK

4

27 25

RTC
_C

NTL
_D

BIA
S_S

LP

4

24 22

RTC
_C

NTL
_S

CK_D
CAP

0

21 14

RTC
_C

NTL
_D

IG
_V

REG_D
BIA

S_W
AK

4

13 11

RTC
_C

NTL
_D

IG
_V

REG_D
BIA

S_S
LP

4

10 8

(re
se

rve
d)

0 0 0 0 0 0 0 0

7 0

Reset

RTC_CNTL_VREG_FORCE_PU RTC voltage regulator - force power up. (R/W)

RTC_CNTL_VREG_FORCE_PD RTC voltage regulator - force power down (in this case power down

means decreasing the voltage to 0.8V or lower). (R/W)

RTC_CNTL_DBOOST_FORCE_PU RTC_DBOOST force power up. (R/W)

RTC_CNTL_DBOOST_FORCE_PD RTC_DBOOST force power down. (R/W)

RTC_CNTL_DBIAS_WAK RTC_DBIAS during wake-up. (R/W)

RTC_CNTL_DBIAS_SLP RTC_DBIAS during sleep. (R/W)

RTC_CNTL_SCK_DCAP Used to adjust the frequency of RTC slow clock. (R/W)

RTC_CNTL_DIG_VREG_DBIAS_WAK Digital voltage regulator DBIAS during wake-up. (R/W)

RTC_CNTL_DIG_VREG_DBIAS_SLP Digital voltage regulator DBIAS during sleep. (R/W)

Espressif Systems 707
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.27. RTC_CNTL_PWC_REG (0x0080)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

RTC
_C

NTL
_P

D_E
N

0

20

RTC
_C

NTL
_F

ORCE_P
U

0

19

RTC
_C

NTL
_F

ORCE_P
D

0

18

RTC
_C

NTL
_S

LO
W

M
EM

_P
D_E

N

0

17

RTC
_C

NTL
_S

LO
W

M
EM

_F
ORCE_P

U

1

16

RTC
_C

NTL
_S

LO
W

M
EM

_F
ORCE_P

D

0

15

RTC
_C

NTL
_F

ASTM
EM

_P
D_E

N

0

14

RTC
_C

NTL
_F

ASTM
EM

_F
ORCE_P

U

1

13

RTC
_C

NTL
_F

ASTM
EM

_F
ORCE_P

D

0

12

RTC
_C

NTL
_S

LO
W

M
EM

_F
ORCE_L

PU

1

11

RTC
_C

NTL
_S

LO
W

M
EM

_F
ORCE_L

PD

0

10

RTC
_C

NTL
_S

LO
W

M
EM

_F
OLW

_C
PU

0

9

RTC
_C

NTL
_F

ASTM
EM

_F
ORCE_L

PU

1

8

RTC
_C

NTL
_F

ASTM
EM

_F
ORCE_L

PD

0

7

RTC
_C

NTL
_F

ASTM
EM

_F
OLW

_C
PU

0

6

RTC
_C

NTL
_F

ORCE_N
OIS

O

1

5

RTC
_C

NTL
_F

ORCE_IS
O

0

4

RTC
_C

NTL
_S

LO
W

M
EM

_F
ORCE_IS

O

0

3

RTC
_C

NTL
_S

LO
W

M
EM

_F
ORCE_N

OIS
O

1

2

RTC
_C

NTL
_F

ASTM
EM

_F
ORCE_IS

O

0

1

RTC
_C

NTL
_F

ASTM
EM

_F
ORCE_N

OIS
O

1

0

Reset

RTC_CNTL_PD_EN Enable power down rtc_peri in sleep. (R/W)

RTC_CNTL_FORCE_PU rtc_peri force power up. (R/W)

RTC_CNTL_FORCE_PD rtc_peri force power down. (R/W)

RTC_CNTL_SLOWMEM_PD_EN Enable power down RTC memory in sleep. (R/W)

RTC_CNTL_SLOWMEM_FORCE_PU RTC memory force power up. (R/W)

RTC_CNTL_SLOWMEM_FORCE_PD RTC memory force power down. (R/W)

RTC_CNTL_FASTMEM_PD_EN Enable power down fast RTC memory in sleep. (R/W)

RTC_CNTL_FASTMEM_FORCE_PU Fast RTC memory force power up. (R/W)

RTC_CNTL_FASTMEM_FORCE_PD Fast RTC memory force power down. (R/W)

RTC_CNTL_SLOWMEM_FORCE_LPU RTC memory force power up in low-power mode. (R/W)

RTC_CNTL_SLOWMEM_FORCE_LPD RTC memory force power down in low-power mode. (R/W)

RTC_CNTL_SLOWMEM_FOLW_CPU 1: RTC memory low-power mode PD following CPU; 0: RTC

memory low-power mode PD following RTC state machine. (R/W)

RTC_CNTL_FASTMEM_FORCE_LPU Fast RTC memory force power up in low-power mode. (R/W)

RTC_CNTL_FASTMEM_FORCE_LPD Fast RTC memory force power down in low-power mode.

(R/W)

RTC_CNTL_FASTMEM_FOLW_CPU 1: Fast RTC memory low-power mode PD following CPU; 0:

fast RTC memory low-power mode PD following RTC state machine. (R/W)

RTC_CNTL_FORCE_NOISO rtc_peri force no isolation. (R/W)

RTC_CNTL_FORCE_ISO rtc_peri force isolation. (R/W)

RTC_CNTL_SLOWMEM_FORCE_ISO RTC memory force isolation. (R/W)

RTC_CNTL_SLOWMEM_FORCE_NOISO RTC memory force no isolation. (R/W)

RTC_CNTL_FASTMEM_FORCE_ISO Fast RTC memory force isolation. (R/W)

RTC_CNTL_FASTMEM_FORCE_NOISO Fast RTC memory force no isolation. (R/W)

Espressif Systems 708
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.28. RTC_CNTL_DIG_PWC_REG (0x0084)

RTC
_C

NTL
_D

G_W
RAP_P

D_E
N

x

31

RTC
_C

NTL
_W

IFI
_P

D_E
N

x

30

RTC
_C

NTL
_IN

TE
R_R

AM
4_

PD_E
N

x

29

RTC
_C

NTL
_IN

TE
R_R

AM
3_

PD_E
N

x

28

RTC
_C

NTL
_IN

TE
R_R

AM
2_

PD_E
N

x

27

RTC
_C

NTL
_IN

TE
R_R

AM
1_

PD_E
N

x

26

RTC
_C

NTL
_IN

TE
R_R

AM
0_

PD_E
N

x

25

RTC
_C

NTL
_R

OM
0_

PD_E
N

x

24

(re
se

rve
d)

0 0 0

23 21

RTC
_C

NTL
_D

G_W
RAP_F

ORCE_P
U

1

20

RTC
_C

NTL
_D

G_W
RAP_F

ORCE_P
D

0

19

RTC
_C

NTL
_W

IFI
_F

ORCE_P
U

1

18

RTC
_C

NTL
_W

IFI
_F

ORCE_P
D

0

17

RTC
_C

NTL
_IN

TE
R_R

AM
4_

FO
RCE_P

U

1

16

RTC
_C

NTL
_IN

TE
R_R

AM
4_

FO
RCE_P

D

0

15

RTC
_C

NTL
_IN

TE
R_R

AM
3_

FO
RCE_P

U

1

14

RTC
_C

NTL
_IN

TE
R_R

AM
3_

FO
RCE_P

D

0

13

RTC
_C

NTL
_IN

TE
R_R

AM
2_

FO
RCE_P

U

1

12

RTC
_C

NTL
_IN

TE
R_R

AM
2_

FO
RCE_P

D

0

11

RTC
_C

NTL
_IN

TE
R_R

AM
1_

FO
RCE_P

U

1

10

RTC
_C

NTL
_IN

TE
R_R

AM
1_

FO
RCE_P

D

0

9

RTC
_C

NTL
_IN

TE
R_R

AM
0_

FO
RCE_P

U

1

8

RTC
_C

NTL
_IN

TE
R_R

AM
0_

FO
RCE_P

D

0

7

RTC
_C

NTL
_R

OM
0_

FO
RCE_P

U

1

6

RTC
_C

NTL
_R

OM
0_

FO
RCE_P

D

0

5

RTC
_C

NTL
_L

SLP
_M

EM
_F

ORCE_P
U

1

4

RTC
_C

NTL
_L

SLP
_M

EM
_F

ORCE_P
D

0

3

(re
se

rve
d)

0 0 0

2 0

Reset

RTC_CNTL_DG_WRAP_PD_EN Enable power down digital core in sleep mode. (R/W)

RTC_CNTL_WIFI_PD_EN Enable power down Wi-Fi in sleep. (R/W)

RTC_CNTL_INTER_RAM4_PD_EN Enable power down internal SRAM 4 in sleep mode. (R/W)

RTC_CNTL_INTER_RAM3_PD_EN Enable power down internal SRAM 3 in sleep mode. (R/W)

RTC_CNTL_INTER_RAM2_PD_EN Enable power down internal SRAM 2 in sleep mode. (R/W)

RTC_CNTL_INTER_RAM1_PD_EN Enable power down internal SRAM 1 in sleep mode. (R/W)

RTC_CNTL_INTER_RAM0_PD_EN Enable power down internal SRAM 0 in sleep mode. (R/W)

RTC_CNTL_ROM0_PD_EN Enable power down ROM in sleep mode. (R/W)

RTC_CNTL_DG_WRAP_FORCE_PU Digital core force power up. (R/W)

RTC_CNTL_DG_WRAP_FORCE_PD Digital core force power down. (R/W)

RTC_CNTL_WIFI_FORCE_PU Wi-Fi force power up. (R/W)

RTC_CNTL_WIFI_FORCE_PD Wi-Fi force power down. (R/W)

RTC_CNTL_INTER_RAM4_FORCE_PU Internal SRAM 4 force power up. (R/W)

RTC_CNTL_INTER_RAM4_FORCE_PD Internal SRAM 4 force power down. (R/W)

RTC_CNTL_INTER_RAM3_FORCE_PU Internal SRAM 3 force power up. (R/W)

RTC_CNTL_INTER_RAM3_FORCE_PD Internal SRAM 3 force power down. (R/W)

RTC_CNTL_INTER_RAM2_FORCE_PU Internal SRAM 2 force power up. (R/W)

RTC_CNTL_INTER_RAM2_FORCE_PD Internal SRAM 2 force power down. (R/W)

RTC_CNTL_INTER_RAM1_FORCE_PU Internal SRAM 1 force power up. (R/W)

RTC_CNTL_INTER_RAM1_FORCE_PD Internal SRAM 1 force power down. (R/W)

RTC_CNTL_INTER_RAM0_FORCE_PU Internal SRAM 0 force power up. (R/W)

RTC_CNTL_INTER_RAM0_FORCE_PD Internal SRAM 0 force power down. (R/W)

RTC_CNTL_ROM0_FORCE_PU ROM force power up. (R/W)

Continued on the next page...

Espressif Systems 709
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.28. RTC_CNTL_DIG_PWC_REG (0x0084)

Continued from the previous page...

RTC_CNTL_ROM0_FORCE_PD ROM force power down. (R/W)

RTC_CNTL_LSLP_MEM_FORCE_PU Memories in digital core force power up in sleep mode. (R/W)

RTC_CNTL_LSLP_MEM_FORCE_PD Memories in digital core force power down in sleep mode.

(R/W)

Espressif Systems 710
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.29. RTC_CNTL_DIG_ISO_REG (0x0088)

RTC
_C

NTL
_D

G_W
RAP_F

ORCE_N
OIS

O

1

31

RTC
_C

NTL
_D

G_W
RAP_F

ORCE_IS
O

0

30

RTC
_C

NTL
_W

IFI
_F

ORCE_N
OIS

O

1

29

RTC
_C

NTL
_W

IFI
_F

ORCE_IS
O

0

28

RTC
_C

NTL
_IN

TE
R_R

AM
4_

FO
RCE_N

OIS
O

1

27

RTC
_C

NTL
_IN

TE
R_R

AM
4_

FO
RCE_IS

O

0

26

RTC
_C

NTL
_IN

TE
R_R

AM
3_

FO
RCE_N

OIS
O

1

25

RTC
_C

NTL
_IN

TE
R_R

AM
3_

FO
RCE_IS

O

0

24

RTC
_C

NTL
_IN

TE
R_R

AM
2_

FO
RCE_N

OIS
O

1

23

RTC
_C

NTL
_IN

TE
R_R

AM
2_

FO
RCE_IS

O

0

22

RTC
_C

NTL
_IN

TE
R_R

AM
1_

FO
RCE_N

OIS
O

1

21

RTC
_C

NTL
_IN

TE
R_R

AM
1_

FO
RCE_IS

O

0

20

RTC
_C

NTL
_IN

TE
R_R

AM
0_

FO
RCE_N

OIS
O

1

19

RTC
_C

NTL
_IN

TE
R_R

AM
0_

FO
RCE_IS

O

0

18

RTC
_C

NTL
_R

OM
0_

FO
RCE_N

OIS
O

1

17

RTC
_C

NTL
_R

OM
0_

FO
RCE_IS

O

0

16

RTC
_C

NTL
_D

G_P
AD_F

ORCE_H
OLD

0

15

RTC
_C

NTL
_D

G_P
AD_F

ORCE_U
NHOLD

1

14

RTC
_C

NTL
_D

G_P
AD_F

ORCE_IS
O

0

13

RTC
_C

NTL
_D

G_P
AD_F

ORCE_N
OIS

O

1

12

RTC
_C

NTL
_R

EG_R
TC

_C
NTL

_D
G_P

AD_A
UTO

HOLD
_E

N

0

11

RTC
_C

NTL
_C

LR
_R

EG_R
TC

_C
NTL

_D
G_P

AD_A
UTO

HOLD

0

10

RTC
_C

NTL
_D

G_P
AD_A

UTO
HOLD

0

9

(re
se

rve
d)

0 0 0 0 0 0 0 0 0

8 0

Reset

RTC_CNTL_DG_WRAP_FORCE_NOISO Digital core force no isolation. (R/W)

RTC_CNTL_DG_WRAP_FORCE_ISO Digital core force isolation. (R/W)

RTC_CNTL_WIFI_FORCE_NOISO Wi-Fi force no isolation. (R/W)

RTC_CNTL_WIFI_FORCE_ISO Wi-Fi force isolation. (R/W)

RTC_CNTL_INTER_RAM4_FORCE_NOISO Internal SRAM 4 force no isolation. (R/W)

RTC_CNTL_INTER_RAM4_FORCE_ISO Internal SRAM 4 force isolation. (R/W)

RTC_CNTL_INTER_RAM3_FORCE_NOISO Internal SRAM 3 force no isolation. (R/W)

RTC_CNTL_INTER_RAM3_FORCE_ISO Internal SRAM 3 force isolation. (R/W)

RTC_CNTL_INTER_RAM2_FORCE_NOISO Internal SRAM 2 force no isolation. (R/W)

RTC_CNTL_INTER_RAM2_FORCE_ISO Internal SRAM 2 force isolation. (R/W)

RTC_CNTL_INTER_RAM1_FORCE_NOISO Internal SRAM 1 force no isolation. (R/W)

RTC_CNTL_INTER_RAM1_FORCE_ISO Internal SRAM 1 force isolation. (R/W)

RTC_CNTL_INTER_RAM0_FORCE_NOISO Internal SRAM 0 force no isolation. (R/W)

RTC_CNTL_INTER_RAM0_FORCE_ISO Internal SRAM 0 force isolation. (R/W)

RTC_CNTL_ROM0_FORCE_NOISO ROM force no isolation. (R/W)

RTC_CNTL_ROM0_FORCE_ISO ROM force isolation. (R/W)

RTC_CNTL_DG_PAD_FORCE_HOLD Digital pad force hold. (R/W)

RTC_CNTL_DG_PAD_FORCE_UNHOLD Digital pad force un-hold. (R/W)

RTC_CNTL_DG_PAD_FORCE_ISO Digital pad force isolation. (R/W)

RTC_CNTL_DG_PAD_FORCE_NOISO Digital pad force no isolation. (R/W)

Continued on the next page...

Espressif Systems 711
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.29. RTC_CNTL_DIG_ISO_REG (0x0088)

Continued from the previous page...

RTC_CNTL_REG_RTC_CNTL_DG_PAD_AUTOHOLD_EN Digital pad enable auto-hold. (R/W)

RTC_CNTL_CLR_REG_RTC_CNTL_DG_PAD_AUTOHOLD Write-only register clears digital pad

auto-hold. (WO)

RTC_CNTL_DG_PAD_AUTOHOLD Read-only register indicates digital pad auto-hold status. (RO)

Register 31.30. RTC_CNTL_WDTCONFIG0_REG (0x008C)

RTC
_C

NTL
_W

DT_
EN

0

31

RTC
_C

NTL
_W

DT_
STG

0

0

30 28

RTC
_C

NTL
_W

DT_
STG

1

0

27 25

RTC
_C

NTL
_W

DT_
STG

2

0

24 22

RTC
_C

NTL
_W

DT_
STG

3

0

21 19

res
er

ve
d

0

18

res
er

ve
d

0

17

RTC
_C

NTL
_W

DT_
CPU_R

ESET_
LE

NGTH

1

16 14

RTC
_C

NTL
_W

DT_
SYS_R

ESET_
LE

NGTH

1

13 11

RTC
_C

NTL
_W

DT_
FL

ASHBOOT_
M

OD_E
N

1

10

RTC
_C

NTL
_W

DT_
PROCPU_R

ESET_
EN

0

9

RTC
_C

NTL
_W

DT_
APPCPU_R

ESET_
EN

0

8

RTC
_C

NTL
_W

DT_
PA

USE_IN
_S

LP

1

7

res
er

ve
d

0

6 0

Reset

RTC_CNTL_WDT_PAUSE_IN_SLP Pause RTC WDT in sleep. (R/W)

RTC_CNTL_WDT_APPCPU_RESET_EN RTC WDT reset APP_CPU enable. (R/W)

RTC_CNTL_WDT_PROCPU_RESET_EN RTC WDT reset PRO_CPU enable. (R/W)

RTC_CNTL_WDT_FLASHBOOT_MOD_EN Enable RTC WDT in flash boot. (R/W)

RTC_CNTL_WDT_SYS_RESET_LENGTH System reset counter length, unit: RTC_SLOW_CLK cy-

cle. The value can be 0 ~ 7. (R/W)

RTC_CNTL_WDT_CPU_RESET_LENGTH CPU reset counter length, unit: RTC_SLOW_CLK cycle.

The value can be 0 ~ 7. (R/W)

RTC_CNTL_WDT_STG3 1: interrupt stage enable, 2: CPU reset stage enable, 3: system reset stage

enable, 4: RTC reset stage enable. (R/W)

RTC_CNTL_WDT_STG2 1: interrupt stage enable, 2: CPU reset stage enable, 3: system reset stage

enable, 4: RTC reset stage enable. (R/W)

RTC_CNTL_WDT_STG1 1: interrupt stage enable, 2: CPU reset stage enable, 3: system reset stage

enable, 4: RTC reset stage enable. (R/W)

RTC_CNTL_WDT_STG0 1: interrupt stage enable, 2: CPU reset stage enable, 3: system reset stage

enable, 4: RTC reset stage enable. (R/W)

RTC_CNTL_WDT_EN Enable RTC WDT. (R/W)

Espressif Systems 712
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.31. RTC_CNTL_WDTCONFIGn_REG (n: 14) (0x008C+4*n)

0x000000FFF

31 0

Reset

RTC_CNTL_WDTCONFIGn_REG Hold cycles for WDT stage n. (R/W)

Register 31.32. RTC_CNTL_WDTFEED_REG (0x00A0)

RTC
_C

NTL
_W

DT_
FE

ED

0

31

(re
se

rve
d)

0 0

30 0

Reset

RTC_CNTL_WDT_FEED SW feeds WDT. (WO)

Register 31.33. RTC_CNTL_WDTWPROTECT_REG (0x00A4)

0x050D83AA1

31 0

Reset

RTC_CNTL_WDTWPROTECT_REG If RTC_CNTL_WDTWPROTECT is other than 0x50d83aa1,

then the RTC watchdog will be in a write-protected mode and RTC_CNTL_WDTCONFIGn_REG

will be locked for modifications. (R/W)

Espressif Systems 713
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.34. RTC_CNTL_SW_CPU_STALL_REG (0x00AC)

RTC
_C

NTL
_S

W
_S

TA
LL

_P
ROCPU_C

1

0 0 0 0 0 0

31 26

RTC
_C

NTL
_S

W
_S

TA
LL

_A
PPCPU_C

1

0 0 0 0 0 0

25 20

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0

Reset

RTC_CNTL_SW_STALL_PROCPU_C1 reg_rtc_cntl_sw_stall_procpu_c1[5:0],

reg_rtc_cntl_sw_stall_procpu_c0[1:0] == 0x86 (100001 10) will stall PRO_CPU, see also

RTC_CNTL_OPTIONS0_REG. (R/W)

RTC_CNTL_SW_STALL_APPCPU_C1 reg_rtc_cntl_sw_stall_appcpu_c1[5:0],

reg_rtc_cntl_sw_stall_appcpu_c0[1:0] == 0x86 (100001 10) will stall APP_CPU, see also

RTC_CNTL_OPTIONS0_REG. (R/W)

Register 31.35. RTC_CNTL_STOREn_REG (n: 47) (0x00B0+4*n)

x x

31 0

Reset

RTC_CNTL_STOREn_REG 32-bit general-purpose retention register. (R/W)

Espressif Systems 714
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.36. RTC_CNTL_HOLD_FORCE_REG (0x00C8)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

RTC
_C

NTL
_X

32
N_H

OLD
_F

ORCE

0

17

RTC
_C

NTL
_X

32
P_H

OLD
_F

ORCE

0

16

RTC
_C

NTL
_T

OUCH_P
AD7_

HOLD
_F

ORCE

0

15

RTC
_C

NTL
_T

OUCH_P
AD6_

HOLD
_F

ORCE

0

14

RTC
_C

NTL
_T

OUCH_P
AD5_

HOLD
_F

ORCE

0

13

RTC
_C

NTL
_T

OUCH_P
AD4_

HOLD
_F

ORCE

0

12

RTC
_C

NTL
_T

OUCH_P
AD3_

HOLD
_F

ORCE

0

11

RTC
_C

NTL
_T

OUCH_P
AD2_

HOLD
_F

ORCE

0

10

RTC
_C

NTL
_T

OUCH_P
AD1_

HOLD
_F

ORCE

0

9

RTC
_C

NTL
_T

OUCH_P
AD0_

HOLD
_F

ORCE

0

8

RTC
_C

NTL
_S

ENSE4_
HOLD

_F
ORCE

0

7

RTC
_C

NTL
_S

ENSE3_
HOLD

_F
ORCE

0

6

RTC
_C

NTL
_S

ENSE2_
HOLD

_F
ORCE

0

5

RTC
_C

NTL
_S

ENSE1_
HOLD

_F
ORCE

0

4

RTC
_C

NTL
_P

DAC2_
HOLD

_F
ORCE

0

3

RTC
_C

NTL
_P

DAC1_
HOLD

_F
ORCE

0

2

RTC
_C

NTL
_A

DC2_
HOLD

_F
ORCE

0

1

RTC
_C

NTL
_A

DC1_
HOLD

_F
ORCE

0

0

Reset

RTC_CNTL_X32N_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_X32P_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_TOUCH_PAD7_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_TOUCH_PAD6_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_TOUCH_PAD5_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_TOUCH_PAD4_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_TOUCH_PAD3_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_TOUCH_PAD2_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_TOUCH_PAD1_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_TOUCH_PAD0_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_SENSE4_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_SENSE3_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_SENSE2_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_SENSE1_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_PDAC2_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_PDAC1_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_ADC2_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

RTC_CNTL_ADC1_HOLD_FORCE Set to preserve pad’s state during hibernation. (R/W)

Espressif Systems 715
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.37. RTC_CNTL_EXT_WAKEUP1_REG (0x00CC)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

RTC
_C

NTL
_E

XT
_W

AKEUP1_
STA

TU
S_C

LR

0

18

RTC
_C

NTL
_E

XT
_W

AKEUP1_
SEL

0

17 0

Reset

RTC_CNTL_EXT_WAKEUP1_STATUS_CLR Clear external wakeup1 status. (WO)

RTC_CNTL_EXT_WAKEUP1_SEL Bitmap to select RTC pads for external wakeup1. (R/W)

Register 31.38. RTC_CNTL_EXT_WAKEUP1_STATUS_REG (0x00D0)

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

RTC
_C

NTL
_E

XT
_W

AKEUP1_
STA

TU
S

0

17 0

Reset

RTC_CNTL_EXT_WAKEUP1_STATUS External wakeup1 status. (RO)

Espressif Systems 716
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

31 Low-Power Management (RTC_CNTL)

Register 31.39. RTC_CNTL_BROWN_OUT_REG (0x00D4)

RTC
_C

NTL
_B

ROW
N_O

UT_
DET

0

31

RTC
_C

NTL
_B

ROW
N_O

UT_
ENA

0

30

RTC
_C

NTL
_D

BROW
N_O

UT_
TH

RES

0x2

29 27

RTC
_C

NTL
_B

ROW
N_O

UT_
RST_

ENA

0

26

RTC
_C

NTL
_B

ROW
N_O

UT_
RST_

W
AIT

0x3FF

25 16

RTC
_C

NTL
_B

ROW
N_O

UT_
PD_R

F_
ENA

0

15

RTC
_C

NTL
_B

ROW
N_O

UT_
CLO

SE_F
LA

SH_E
NA

0

14

(re
se

rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0

Reset

RTC_CNTL_BROWN_OUT_DET Brownout detect. (RO)

RTC_CNTL_BROWN_OUT_ENA Enables brownout. (R/W)

RTC_CNTL_DBROWN_OUT_THRES Brownout threshold. The brownout detector will reset the chip

when the supply voltage is approximately below this level. Note that there may be some variation

of brownout voltage level between each ESP32 chip. 0: 2.43 V ± 0.05; 1: 2.48 V ± 0.05; 2: 2.58

V ± 0.05; 3: 2.62 V ± 0.05; 4: 2.67 V ± 0.05; 5: 2.70 V ± 0.05; 6: 2.77 V ± 0.05; 7: 2.80 V ± 0.05.

(R/W)

RTC_CNTL_BROWN_OUT_RST_ENA Enables brownout reset. (R/W)

RTC_CNTL_BROWN_OUT_RST_WAIT Brownout reset wait cycles. (R/W)

RTC_CNTL_BROWN_OUT_PD_RF_ENA Enables power down RF when brownout happens. (R/W)

RTC_CNTL_BROWN_OUT_CLOSE_FLASH_ENA Sends suspend command to flash when

brownout happens. (R/W)

Espressif Systems 717
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Glossary

Glossary

Abbreviations for Peripherals

AES AES Accelerator

AHB Advanced High-performance Bus. For more information, please refer to its

specification.

APB Advanced Peripheral Bus. For more information, please refer to its specification.

DMA DMA Controller

DPORT Short for Data Port. The full name is Xtensa Local Memory Interface (XLMI) Port.

eFuse eFuse Controller

EMAC Ethernet MAC

I2C I2C Controller

I2S I2S Controller

LEDC LED_PWM Controller

MCPWM Motor Control PWM

MMU Memory Management Unit

MPU Memory Protection Unit

PCNT Pulse Count Controller

PERI Peripheral

PID Process Identifier

PMU Power Management Unit

RMT Remote Control Peripheral

RNG Random Number Generator

RSA RSA Accelerator

RTC Real Time Controller. A group of circuits in SoC that keeps working in any chip

mode and at any time.

SDMMC SD/MMC Host Controller

SHA SHA Accelerator

SPI SPI Controller

TIMG Timer Group

UART UART Controller

ULP Coprocessor Ultra-low-power Coprocessor

WDT Watchdog Timers

Abbreviations for Registers

ISO Isolation. When a module is power down, its output pins will be stuck in unknown

state (some middle voltage). ”ISO” registers will control to isolate its output pins

to be a determined value, so it will not affect the status of other working modules

which are not power down.

NMI Non-maskable interrupt.

REG Register.

R/W Read/write. Software can read and write to these bits.

RO Read-only. Software can only read these bits.

WO Write-only. Software can only write to these bits.

Espressif Systems 718
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://developer.arm.com/documentation/ihi0033/a?lang=en
https://developer.arm.com/documentation/ihi0024/b
https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Revision History

Revision History

Date Version Release notes

2023.04 v4.9

• Removed contents about hall sensor, including relevant registers, signals, etc, acc to

PCN20221202

• Renamed PLL_D2_CLK to PLL_F160M_CLK throughout the document

• Chapter 4 IO_MUX and GPIO Matrix (GPIO, IO_MUX): Added TWAI signals in Table

4-2

• Added descriptions about the break condition and updated the maximum length of

stop bits and related descriptions in Chapter 13 UART Controller (UART)

• Added the formula to calculate duty cycle resolution and updated Table Timers in

Chapter 14 LED PWM Controller (LEDC)

• Chapter 29 On-Chip Sensors and Analog Signal Processing:

– Added a note about limited applications of touch sensor in Section 29.2.2 Fea-

tures

– Removed internal signals vdd33, pa_pkdet1, pa_pkdet2

• Added description about “reject sleep” in Chapter 31 Low-Power Management

(RTC_CNTL)

2022.12 v4.8

Updated the following chapters:

• Updated section 3.2.4.2, added register summary and description section in Chapter

3 Reset and Clock

• Updated the description of MIICSRCLK and MIIBUSY field in Chapter 10 Ethernet

Media Access Controller (MAC)

• Added the descriptions of the UART_MEM_TX_STATUS_REG and

UART_MEM_RX_STATUS_REG registers in Chapter 13 UART Controller (UART)

• Updated some clock names in Chapter 25 Random Number Generator (RNG)

• Updated Table 29-2 in Chapter 29 On-Chip Sensors and Analog Signal Processing

• Updated some clock names in Chapter 31 Low-Power Management (RTC_CNTL),

and added description of RTC_CNTL_MAIN_STATE_IN_IDLE

• Renamed the RTC8M_CLK clock RC_FAST_CLK in Chapter 20 eFuse Controller

• Added clarification about relative address in the Registers sections of all chapters

Cont’d on next page

Espressif Systems 719
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/sites/default/files/pcn_downloads/PCN20221202%20Remove%20Hall%20Sensor%20from%20ESP32%20Series%20of%20Documentation.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Revision History

Cont’d from previous page

Date Version Release notes

2022.08 v4.7

• Updated Table 1-6 in Chapter 1 System and Memory

• Updated Chapter 4 IO_MUX and GPIO Matrix (GPIO, IO_MUX):

– Updated the description in Section 4.2.2

– Updated the description of GPIO_PINn_INT_ENA and IO_MUX_PIN_CTRL

• Added a note about in_link descriptor in Section 6.4 in Chapter 6 DMA Controller

(DMA)

• Updated clock names:

– RTC8M_CLK: renamed as RC_FAST_CLK

– RTC8M_D256_CLK: renamed as RC_FAST_DIV_CLK

– RTC_CLK: renamed as RC_SLOW_CLK

– SLOW_CLK: renamed as RTC_SLOW_CLK

– FAST_CLK: renamed as RTC_FAST_CLK

• Updated the description below Figure 17-2 in Chapter 17 Pulse Count Controller

(PCNT)

• Updated Section 18.3 in Chapter 18 Timer Group (TIMG)

• Added two notes in Chapter 29 On-Chip Sensors and Analog Signal Processing

2021.11 v4.6

Updated Table 1-6 in Chapter 1 System and Memory

Updated Table 2-1 in Chapter 2 Interrupt Matrix (INTERRUPT)

Updated Figure 3-1 in Chapter 3 Reset and Clock

Updated Table 4-2 and description of IO_MUX_PIN_CTRL in Chapter 4 IO_MUX and GPIO

Matrix (GPIO, IO_MUX)

Major updates to Chapter 5 DPort Registers

Added a note below Table 12-1 in Chapter 12 I2S Controller (I2S)

Updated Section 8.3.6 and description of register SLCHOST_CONF_REG in Chapter 8

SDIO Slave Controller

Updated description in Chapter 26 External Memory Encryption and Decryption (FLASH)

Updated Section 29.4.3 in Chapter 29 On-Chip Sensors and Analog Signal Processing

Provided address clarification for Section Registers in Chapter 4, Chapter 7, Chapter 12,

Chapter 15, Chapter 29, and Chapter 30

Added new terms to Glossary

Fixed typos

Cont’d on next page

Espressif Systems 720
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Revision History

Cont’d from previous page

Date Version Release notes

2021.07 v4.5

Added Section 10.6.4

Added a note below Table 4-4

Added the base address information of interrupt matrix registers in Chapter 5 DPort Regis-

ters and in Chapter 2 Interrupt Matrix (INTERRUPT)

Updated the description in Section 3.2.7

Updated pin function numbers starting from Function0 in Chapter 4 IO_MUX and GPIO

Matrix (GPIO, IO_MUX)

Updated Table 14-1 in Chapter 14 LED PWM Controller (LEDC)

Updated base address for Ethernet MAC to 0x3FF6_9000 in section 10.9

Updated the description of UART_SW_RTS and UART_RX_FLOW_THRHD fields in Chap-

ter 13 UART Controller (UART)

Updated the feature description in Chapter 21 Two-wire Automotive Interface (TWAI)

Updated description in Chapter 25 Random Number Generator (RNG)

Updated the description in Section 30.4.2

Fixed typos in Table 2-1 and in Section 6.4

2021.03 V4.4

Updated description to PWM_TIMER0_SYNC_REG ~ PWM_TIMER2_SYNC_REG regis-

ters in Chapter 16 Motor Control PWM (PWM)

Updated the description of register TIMGn_RTCCALICFG_REG and register

TIMGn_RTCCALICFG1_REG in Chapter 18 Timer Group (TIMG)

Updated the trademark symbol for Chapter 21 Two-wire Automotive Interface (TWAI)

Updated the description to RTC_CNTL_WDTCONFIG0_REG in Chapter 31: Low-Power

Management (RTC_CNTL)

Updated the description to EMACGMIIADDR_REG in Chapter 10: Ethernet Media Access

Controller (MAC)

Updated the access to UART_FIFO_REG in Table 13-1: UART Register Summary

Updated the description to IO_MUX_x_REG (x: GPIO0-GPIO39) and IO_MUX_x_REG (x:

GPIO0-GPIO39) in Chapter 4: IO_MUX and GPIO Matrix (GPIO, IO_MUX)

Updated the description of register RTC_CNTL_WDTCONFIG0_REG in Chapter 31 Low-

Power Management (RTC_CNTL)

Renamed Section: Documentation Conversions to Section: Glossary

Updated the notes below Table 4-3: IO_MUX Pad List

2020.09 V4.3

Added Chapter TWAI

Added section 25.4 Programming Procedure and updated some description in Chapter 25

Random Number Generator (RNG)

Added information about uart_download_dis in Chapter eFuse Controller

Updated the description of SPI_ADDR_REG and SPI_SLV_WR_STATUS_REG

Cont’d on next page

Espressif Systems 721
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Revision History

Cont’d from previous page

Date Version Release notes

2020.06 V4.2

Added Section: Documentation Conventions

Changes to Chapter System and Memory:

• Added a note about DPORT address and AHB address under Table 1-6

Changes to Chapter Reset and Clock:

• Updated Table 3-3 by adding PLL_CLK frequency of 480 MHz and CPU_CLK fre-

quency of 240 MHz

• Updated Table 3-5 by modifying the APB_CLK frequency to 80 MHz when the

CPU_CLK source is PLL_CLK

Changes to Chapter IO_MUX and GPIO Matrix:

• Fixed a typo in Section 4.4.2: For inputs, the SIG_IN_SEL register must be cleared

to route the input directly to the peripheral.

• Changed the reset values for MTCK, MTMS, GPIO27 in Table 4-3

• Updated description of register FUN_DRV

Changes to Chapter I²S:

• Updated Section 12.4.1.1

Changes to Chapter UART Controllers:

• Updated the description of registers UART_FIFO_REG and

UART_RX_TOUT_THRHD

Changes to Chapter LED_PWM:

• Added Table 14-1

Changes to Chapter MCPWM:

• Corrected the PWM period in Count-Up, Count-Down, and Count-Up-Down modes

Changes to Chapter PULSE_CNT:

• Added description of register PCNT_Un_STATUS_REG

Changes to Chapter eFuse Controller:

• Combined system parameters ”32pad” and ”chip_version” into one: pkg_version

• Updated description of registers EFUSE_RD_CHIP_VER_PKG and

EFUSE_CHIP_VER_PKG

Changes to Chapter Low-Power Management:

• Added description of register RTC_CNTL_WDTCONFIG0_REG

• Modified description of register RTC_CNTL_WDTCONFIGn_REG

Changes to Chapter ULP Coprocessor:

• Updated description in sections 30.4.13 and 30.4.14

• Fixed typos

Cont’d on next page

Espressif Systems 722
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Revision History

Cont’d from previous page

Date Version Release notes

2019.11 V4.1

Changes to Chapter IO_MUX and GPIO Matrix:

• Updated Table 4-4;

• Added field RTCIO_TOUCH_PADn_FUN_SEL in register RT-

CIO_TOUCH_PADn_REG;

Changes to Chapter SPI:

• Fixed incorrect SPI2/SPI3 addresses in Table 7.7;

Changes to Chapter I²C Controller:

• Removed I2C_SLAVE_TRAN_COMP_INT interrupt;

Changes to Chapter I²S:

• Added a note under Table 12-1;

Changes to Chapter UART Controllers:

• Fixed errors in the description of register UART_FORCE_XOFF and

UART_FORCE_XON;

• Fixed errors in the description of register ART_SWFC_CONF_REG;

Changes to Chapter Remote Control Peripheral:

• Updated Figure 15-1;

Changes to Chapter PULSE_CNT:

• Updated Figure 17-1;

• Fixed typos in the description of register PCNT_Un_CONF0_REG;

Changes to Chapter eFuse Controller:

• Added/updated eight system parameters and updated the relevant register descrip-

tion;

• Updated the configuration values in Table 20-4;

• Modified the bit width of system parameter flash_crypt_cnt to 7 bits;

Changes to Chapter PID/MPU/MMU:

• Added a note under Table 27-8;

Changes to Chapter On-Chip Sensors and Analog Signal Processing:

• Fixed typos in the description of registers SENS_SAR2_BIT_WIDTH and

SENS_SAR1_BIT_WIDTH;

Changes to Chapter ULP Coprocessor:

• Corrected the OpCode for REG_WR;

• Updated Section 30.6.2.4;

• Fixed typos in the description of registers RTC_I2C_RX_LSB_FIRST and

RTC_I2C_TX_LSB_FIRST;

• Removed the description of registers RTC_I2C_SLAVE_TRAN_COMP_INT_ENA and

RTC_I2C_SLAVE_TRAN_COMP_INT_ST;

Changes to Chapter Low-Power Management:

• Updated the default value and description of register

RTC_CNTL_DBROWN_OUT_THRES;

• Updated the description of register RTC_CNTL_BROWN_OUT_CLOSE_FLASH_ENA;

Added documentation feedback hyperlink.

Cont’d on next page

Espressif Systems 723
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/contact/documentation_feedback?docId=3642§ions=
https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Revision History

Cont’d from previous page

Date Version Release notes

2018.12 V4.0

Updated some register names in Chapter IO_MUX and GPIO Matrix to be consistent with

the header files;

Changes to Chapter 7 SPI:

• Updated Section 7.3;

• Updated Section 7.5.1;

• Updated Section 7.8;

Changes to Chapter 13 UART Controllers:

• Removed support for 4 STOP bits;

• Added a note at the end of section 13.3.2;

• Updated the description of register UART_DL0_EN;

Added a note at the end of section 31.3.10 in Chapter 31: Low-Power Management.

2018.10 V3.9 Updated Figure 11-3: I2C Sequence Chart, in Chapter 11: I2C Controller.

2018.09 V3.8
Updated the description of register TIMGn_Tx_ALARM_EN;

Added description of ULP wakeup time in section 30.5: ULP Program Execution.

2018.08 V3.7 Updated the description of register UART_RX_GAP_TOUT.

2018.08 V3.6
Updated the conditions of jumps to relative address in section 30.4.6;

Updated the description of register UART_ACTIVE_THRESHOLD.

2018.07 V3.5

Changes to chapter 15 RMT:

• Updated RAM start address in section 15.2.2: RMT RAM;

• Corrected several wrong addresses of RMT registers;

• Updated the description of register RMT_APB_CONF_REG.

Updated the description of registers UART_RX_TOUT_THRHD,

UART_RXFIFO_FULL_INT_CLR, UART_RXFIFO_FULL_INT_CLR.

2018.06 V3.4

Updated the images in Section 4.8: ESP32 I/O Pad Power Supplies;

Updated Section 11.3.3: I2C Bus Timing;

Added notes to Section 14.2.3: LED_PWM Channels;

Updated the ”Maximum count value” in Section 17.2.3: Pulse Counter Watchpoints;

Removed the description of the temperature sensor and LNA.

2018.05 V3.3
Updated the addresses of registers in the Register Summary Section and the Registers

Section of Chapter Low-Power Management.

2018.04 V3.2

Updated Figure 8-3 CMD53 Content;

Added six registers in Chapter Ethernet MAC:

• DMAOPERATION_MODE_REG;

• DMAIN_EN_REG,

• DMAMISSEDFR_REG,

• PMT_RWUFFR_REG,

• PMT_CSR_REG,

• EMACLPI_CSR_REG, and

• EMACLPITIMERSCONTROL_REG.

Cont’d on next page

Espressif Systems 724
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Revision History

Cont’d from previous page

Date Version Release notes

2018.04 V3.1

Updated Figure 15-1 RMT Architecture;

Added a note to Section 4.7;

Added the function description for the bits of the register in Section 4.46.

2018.03 V3.0

Updated the instruction layout diagram of ST in Section 30.4.2;

Added description of registers EMACADDR2HIGH_REG to EMACADDR7LOW_REG in

Section 10.9 and Section 10.10.

2018.02 V2.9
Updated Sections 4.2.2, 4.2.3, 4.3.2;

Added registers I2S_FIFO_WR_REG and I2S_FIFO_RD_REG in Section I2S Registers.

2018.01 V2.8 Added Chapter Ethernet MAC.

Added the description of system parameter BLK3_part_reserve in Chapter eFuse Con-

troller.

2017.12 V2.7

Added Subsection Cache in Section System and Memory;

Updated Section Timers and the naming of several registers in LED_PWM;

Updated the description of console_debug_disable in Chapter eFuse Controller.

2017.11 V2.6

Updated Chapter Remote Controller Peripheral:

• Updated Figure 15-1 RMT Architecture;

• Updated section RMT RAM;

• Updated section Transmitter;

• Updated the description of RMT_CHn_TX_THR_EVENT_INT.

Added notes in Section UART RAM and Register UART_CONF0_REG.

2017.11 V2.5

Updated the addresses for register SPI_CTRL_REG in Section SPI Register Summary;

Added Section Clock Phase Selection in Chapter SD/MMC Host Controller, and a descrip-

tion of register CLK_EDGE_SEL;

Major revision on Chapter I2C Controller.

2017.09 V2.4

Added the description of register SLC0HOST_TOKEN_RDATA in Chapter SDIO Slave;

Added notes in Section The Clock of I2S Module;

Added a note in Section GP-SPI Master Mode;

Added Chapter DPort Register;

Added Chapter DMA Controller.

2017.08 V2.3 Added Chapter Flash Encryption/Decryption.

2017.07 V2.2 Added Chapter Low-Power Management.

2017.07 V2.1

Updated the addresses of the GPIO configuration/data registers and the GPIO RTC function

configuration registers in Chapter IO_MUX and GPIO Matrix;

Added Chapter PID Controller.

2017.07 V2.0 Added Chapter SDIO Slave.

2017.06 V1.9
Updated Chapter IO_MUX and GPIO Matrix;

Added Chapter MCPWM.

2017.06 V1.8

Added register I2S_STATE_REG in Chapter I2S;

Updated Chapter IO_MUX and GPIO Matrix;

Added Chapter ULP Coprocessor.

2017.05 V1.7

Added Chapter On-Chip Sensors and Analog Signal Processing;

Added Section Audio PLL;

Updated Section eFuse Controller Register Summary;

Cont’d on next page

Espressif Systems 725
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

Revision History

Cont’d from previous page

Date Version Release notes

Updated Sections I2S PDM and LCD MODE;

Updated Section: Communication Format Supported by GP-SPI Slave.

2017.03 V1.6
Added Chapter SD/MMC Host Controller;

Added register IO_MUX_PIN_CTRL in Chapter IO_MUX and GPIO Matrix.

2017.03 V1.5 Added Chapter I2S.

2017.01 V1.4
Added Chapter SPI;

Added Chapter UART Controllers.

2016.12 V1.3

Added Chapter eFuse Controller;

Added Chapter RSA Accelerator;

Added Chapter Random Number Generator;

Updated Section I2C Controller Interrupt and Section I2C Controller Registers.

2016.11 V1.2

Added Chapter PID/MPU/MMU;

Updated Section IO_MUX and GPIO Matrix Register Summary;

Updated Section LED_PWM Register Summary.

2016.09 V1.1 Added Chapter I2C Controller.

2016.08 V1.0 Initial release.

Espressif Systems 726
Submit Documentation Feedback

ESP32 TRM (Version 4.9)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=3642§ions=&version=4.9

www.espressif.com

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY’S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO
WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-
INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information
in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any
intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a
registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property
of their respective owners, and are hereby acknowledged.

Copyright © 2023 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.

https://www.espressif.com/

	1 System and Memory
	1.1 Introduction
	1.2 Features
	1.3 Functional Description
	1.3.1 Address Mapping
	1.3.2 Embedded Memory
	1.3.3 External Memory
	1.3.4 Cache
	1.3.5 Peripherals

	2 Interrupt Matrix (INTERRUPT)
	2.1 Overview
	2.2 Features
	2.3 Functional Description
	2.3.1 Peripheral Interrupt Source
	2.3.2 CPU Interrupt
	2.3.3 Allocate Peripheral Interrupt Sources to Peripheral Interrupt on CPU
	2.3.4 CPU NMI Interrupt Mask
	2.3.5 Query Current Interrupt Status of Peripheral Interrupt Source

	2.4 Registers

	3 Reset and Clock
	3.1 System Reset
	3.1.1 Introduction
	3.1.2 Reset Source

	3.2 System Clock
	3.2.1 Introduction
	3.2.2 Clock Source
	3.2.3 CPU Clock
	3.2.4 Peripheral Clock
	3.2.5 Wi-Fi BT Clock
	3.2.6 RTC Clock
	3.2.7 Audio PLL

	3.3 Register Summary
	3.4 Registers

	4 IO_MUX and GPIO Matrix (GPIO, IO_MUX)
	4.1 Overview
	4.2 Peripheral Input via GPIO Matrix
	4.2.1 Summary
	4.2.2 Functional Description
	4.2.3 Simple GPIO Input

	4.3 Peripheral Output via GPIO Matrix
	4.3.1 Summary
	4.3.2 Functional Description
	4.3.3 Simple GPIO Output

	4.4 Direct I/O via IO_MUX
	4.4.1 Summary
	4.4.2 Functional Description

	4.5 RTC IO_MUX for Low Power and Analog I/O
	4.5.1 Summary
	4.5.2 Functional Description

	4.6 Light-sleep Mode Pin Functions
	4.7 Pad Hold Feature
	4.8 I/O Pad Power Supplies
	4.8.1 VDD_SDIO Power Domain

	4.9 Peripheral Signal List
	4.10 IO_MUX Pad List
	4.11 RTC_MUX Pin List
	4.12 Register Summary
	4.12.1 GPIO Matrix Register Summary
	4.12.2 IO MUX Register Summary
	4.12.3 RTC IO MUX Register Summary

	4.13 Registers
	4.13.1 GPIO Matrix Registers
	4.13.2 IO MUX Registers
	4.13.3 RTC IO MUX Registers

	5 DPort Registers
	5.1 Introduction
	5.2 Features
	5.3 Functional Description
	5.3.1 System and Memory Register
	5.3.2 Reset and Clock Registers
	5.3.3 Interrupt Matrix Register
	5.3.4 DMA Registers
	5.3.5 MPU/MMU Registers
	5.3.6 APP_CPU Controller Registers
	5.3.7 Peripheral Clock Gating and Reset

	5.4 Register Summary
	5.5 Registers

	6 DMA Controller (DMA)
	6.1 Overview
	6.2 Features
	6.3 Functional Description
	6.3.1 DMA Engine Architecture
	6.3.2 Linked List

	6.4 UART DMA (UDMA)
	6.5 SPI DMA Interface
	6.6 I2S DMA Interface

	7 SPI Controller (SPI)
	7.1 Overview
	7.2 SPI Features
	7.3 GP-SPI
	7.3.1 GP-SPI Four-line Full-duplex Communication
	7.3.2 GP-SPI Four-line Half-duplex Communication
	7.3.3 GP-SPI Three-line Half-duplex Communication
	7.3.4 GP-SPI Data Buffer

	7.4 GP-SPI Clock Control
	7.4.1 GP-SPI Clock Polarity (CPOL) and Clock Phase (CPHA)
	7.4.2 GP-SPI Timing

	7.5 Parallel QSPI
	7.5.1 Communication Format of Parallel QSPI

	7.6 GP-SPI Interrupt Hardware
	7.6.1 SPI Interrupts
	7.6.2 DMA Interrupts

	7.7 Register Summary
	7.8 Registers

	8 SDIO Slave Controller
	8.1 Overview
	8.2 Features
	8.3 Functional Description
	8.3.1 SDIO Slave Block Diagram
	8.3.2 Sending and Receiving Data on SDIO Bus
	8.3.3 Register Access
	8.3.4 DMA
	8.3.5 Packet-Sending/-Receiving Procedure
	8.3.6 SDIO Bus Timing
	8.3.7 Interrupt

	8.4 Register Summary
	8.5 SLC Registers
	8.6 SLC Host Registers
	8.7 HINF Registers

	9 SD/MMC Host Controller
	9.1 Overview
	9.2 Features
	9.3 SD/MMC External Interface Signals
	9.4 Functional Description
	9.4.1 SD/MMC Host Controller Architecture
	9.4.2 Command Path
	9.4.3 Data Path

	9.5 Software Restrictions for Proper CIU Operation
	9.6 RAM for Receiving and Sending Data
	9.6.1 Transmit RAM Module
	9.6.2 Receive RAM Module

	9.7 Descriptor Chain
	9.8 The Structure of a Linked List
	9.9 Initialization
	9.9.1 DMAC Initialization
	9.9.2 DMAC Transmission Initialization
	9.9.3 DMAC Reception Initialization

	9.10 Clock Phase Selection
	9.11 Interrupt
	9.12 Register Summary
	9.13 Registers

	10 Ethernet Media Access Controller (MAC)
	10.1 Overview
	10.2 EMAC_CORE
	10.2.1 Transmit Operation
	10.2.2 Receive Operation

	10.3 MAC Interrupt Controller
	10.4 MAC Address Filtering
	10.4.1 Unicast Destination Address Filtering
	10.4.2 Multicast Destination Address Filtering
	10.4.3 Broadcast Address Filtering
	10.4.4 Unicast Source Address Filtering
	10.4.5 Inverse Filtering Operation
	10.4.6 Good Transmitted Frames and Received Frames

	10.5 EMAC_MTL (MAC Transaction Layer)
	10.6 PHY Interface
	10.6.1 MII (Media Independent Interface)
	10.6.2 RMII (Reduced Media-Independent Interface)
	10.6.3 Station Management Agent (SMA) Interface
	10.6.4 RMII Timing

	10.7 Ethernet DMA Features
	10.8 Linked List Descriptors
	10.8.1 Transmit Descriptors
	10.8.2 Receive Descriptors

	10.9 Register Summary
	10.10 Registers

	11 I2C Controller (I2C)
	11.1 Overview
	11.2 Features
	11.3 Functional Description
	11.3.1 Introduction
	11.3.2 Architecture
	11.3.3 I2C Bus Timing
	11.3.4 I2C cmd Structure
	11.3.5 I2C Master Writes to Slave
	11.3.6 Master Reads from Slave
	11.3.7 Interrupts

	11.4 Register Summary
	11.5 Registers

	12 I2S Controller (I2S)
	12.1 Overview
	12.2 Features
	12.3 The Clock of I2S Module
	12.4 I2S Mode
	12.4.1 Supported Audio Standards
	12.4.2 Module Reset
	12.4.3 FIFO Operation
	12.4.4 Sending Data
	12.4.5 Receiving Data
	12.4.6 I2S Master/Slave Mode
	12.4.7 I2S PDM

	12.5 Camera-LCD Controller
	12.5.1 LCD Master Transmitting Mode
	12.5.2 Camera Slave Receiving Mode
	12.5.3 ADC/DAC mode

	12.6 I2S Interrupts
	12.6.1 FIFO Interrupts
	12.6.2 DMA Interrupts

	12.7 Register Summary
	12.8 Registers

	13 UART Controller (UART)
	13.1 Overview
	13.2 UART Features
	13.3 Functional Description
	13.3.1 Introduction
	13.3.2 UART Architecture
	13.3.3 UART RAM
	13.3.4 Baud Rate Detection
	13.3.5 UART Data Frame
	13.3.6 AT_CMD Character Structure
	13.3.7 Flow Control
	13.3.8 UART DMA
	13.3.9 UART Interrupts
	13.3.10 UHCI Interrupts

	13.4 Register Summary
	13.4.1 UART Register Summary
	13.4.2 UHCI Register Summary

	13.5 Registers
	13.5.1 UART Registers
	13.5.2 UHCI Registers

	14 LED PWM Controller (LEDC)
	14.1 Introduction
	14.2 Functional Description
	14.2.1 Architecture
	14.2.2 Timers
	14.2.3 Channels
	14.2.4 Interrupts

	14.3 Register Summary
	14.4 Registers

	15 Remote Control Peripheral (RMT)
	15.1 Introduction
	15.2 Functional Description
	15.2.1 RMT Architecture
	15.2.2 RMT RAM
	15.2.3 Clock
	15.2.4 Transmitter
	15.2.5 Receiver
	15.2.6 Interrupts

	15.3 Register Summary
	15.4 Registers

	16 Motor Control PWM (PWM)
	16.1 Introduction
	16.2 Features
	16.3 Submodules
	16.3.1 Overview
	16.3.2 PWM Timer Submodule
	16.3.3 PWM Operator Submodule
	16.3.4 Capture Submodule

	16.4 Register Summary
	16.5 Registers

	17 Pulse Count Controller (PCNT)
	17.1 Overview
	17.2 Functional Description
	17.2.1 Architecture
	17.2.2 Counter Channel Inputs
	17.2.3 Watchpoints
	17.2.4 Examples
	17.2.5 Interrupts

	17.3 Register Summary
	17.4 Registers

	18 Timer Group (TIMG)
	18.1 Introduction
	18.2 Functional Description
	18.2.1 16-bit Prescaler
	18.2.2 64-bit Time-base Counter
	18.2.3 Alarm Generation
	18.2.4 MWDT
	18.2.5 Interrupts

	18.3 Register Summary
	18.4 Registers

	19 Watchdog Timers (WDT)
	19.1 Introduction
	19.2 Features
	19.3 Functional Description
	19.3.1 Clock

	20 eFuse Controller
	20.1 Introduction
	20.2 Features
	20.3 Functional Description
	20.3.1 Structure
	20.3.2 Programming of System Parameters
	20.3.3 Software Reading of System Parameters
	20.3.4 The Use of System Parameters by Hardware Modules
	20.3.5 Interrupts

	20.4 Register Summary
	20.5 Registers

	21 Two-wire Automotive Interface (TWAI)
	21.1 Overview
	21.2 Features
	21.3 Functional Protocol
	21.3.1 TWAI Properties
	21.3.2 TWAI Messages
	21.3.3 TWAI Errors
	21.3.4 TWAI Bit Timing

	21.4 Architectural Overview
	21.4.1 Registers Block
	21.4.2 Bit Stream Processor
	21.4.3 Error Management Logic
	21.4.4 Bit Timing Logic
	21.4.5 Acceptance Filter
	21.4.6 Receive FIFO

	21.5 Functional Description
	21.5.1 Modes
	21.5.2 Bit Timing
	21.5.3 Interrupt Management
	21.5.4 Transmit and Receive Buffers
	21.5.5 Receive FIFO and Data Overruns
	21.5.6 Acceptance Filter
	21.5.7 Error Management
	21.5.8 Error Code Capture
	21.5.9 Arbitration Lost Capture

	21.6 Register Summary
	21.7 Registers

	22 AES Accelerator (AES)
	22.1 Introduction
	22.2 Features
	22.3 Functional Description
	22.3.1 AES Algorithm Operations
	22.3.2 Key, Plaintext and Ciphertext
	22.3.3 Endianness
	22.3.4 Encryption and Decryption Operations
	22.3.5 Speed

	22.4 Register Summary
	22.5 Registers

	23 SHA Accelerator (SHA)
	23.1 Introduction
	23.2 Features
	23.3 Functional Description
	23.3.1 Padding and Parsing the Message
	23.3.2 Message Digest
	23.3.3 Hash Operation
	23.3.4 Speed

	23.4 Register Summary
	23.5 Registers

	24 RSA Accelerator (RSA)
	24.1 Introduction
	24.2 Features
	24.3 Functional Description
	24.3.1 Initialization
	24.3.2 Large Number Modular Exponentiation
	24.3.3 Large Number Modular Multiplication
	24.3.4 Large Number Multiplication

	24.4 Register Summary
	24.5 Registers

	25 Random Number Generator (RNG)
	25.1 Introduction
	25.2 Feature
	25.3 Functional Description
	25.4 Programming Procedure
	25.5 Register Summary
	25.6 Register

	26 External Memory Encryption and Decryption (FLASH)
	26.1 Overview
	26.2 Features
	26.3 Functional Description
	26.3.1 Key Generator
	26.3.2 Flash Encryption Block
	26.3.3 Flash Decryption Block

	26.4 Register Summary
	26.5 Register

	27 Memory Management and Protection Units (MMU, MPU)
	27.1 Introduction
	27.2 Features
	27.3 Functional Description
	27.3.1 PID Controller
	27.3.2 MPU/MMU

	28 Process ID Controller (PID)
	28.1 Overview
	28.2 Features
	28.3 Functional Description
	28.3.1 Interrupt Identification
	28.3.2 Information Recording
	28.3.3 Proactive Process Switching

	28.4 Register Summary
	28.5 Registers

	29 On-Chip Sensors and Analog Signal Processing
	29.1 Introduction
	29.2 Capacitive Touch Sensor
	29.2.1 Introduction
	29.2.2 Features
	29.2.3 Available GPIOs
	29.2.4 Functional Description
	29.2.5 Touch FSM

	29.3 SAR ADC
	29.3.1 Introduction
	29.3.2 Features
	29.3.3 Outline of Function
	29.3.4 RTC SAR ADC Controllers
	29.3.5 DIG SAR ADC Controllers

	29.4 DAC
	29.4.1 Introduction
	29.4.2 Features
	29.4.3 Structure
	29.4.4 Cosine Waveform Generator
	29.4.5 DMA support

	29.5 Register Summary
	29.5.1 Sensors
	29.5.2 Advanced Peripheral Bus
	29.5.3 RTC I/O

	29.6 Registers
	29.6.1 Sensors
	29.6.2 Advanced Peripheral Bus
	29.6.3 RTC I/O

	30 ULP Coprocessor (ULP)
	30.1 Introduction
	30.2 Features
	30.3 Functional Description
	30.4 Instruction Set
	30.4.1 ALU - Perform Arithmetic/Logic Operations
	30.4.2 ST – Store Data in Memory
	30.4.3 LD – Load Data from Memory
	30.4.4 JUMP – Jump to an Absolute Address
	30.4.5 JUMPR – Jump to a Relative Offset (Conditional upon R0)
	30.4.6 JUMPS – Jump to a Relative Address (Conditional upon Stage Count Register)
	30.4.7 HALT – End the Program
	30.4.8 WAKE – Wake up the Chip
	30.4.9 Sleep – Set the ULP Timer's Wake-up Period
	30.4.10 WAIT – Wait for a Number of Cycles
	30.4.11 ADC – Take Measurement with ADC
	30.4.12 I2C_RD/I2C_WR – Read/Write I²C
	30.4.13 REG_RD – Read from Peripheral Register
	30.4.14 REG_WR – Write to Peripheral Register

	30.5 ULP Program Execution
	30.6 RTC_I2C Controller
	30.6.1 Configuring RTC_I2C
	30.6.2 Using RTC_I2C

	30.7 Register Summary
	30.7.1 SENS_ULP Address Space
	30.7.2 RTC_I2C Address Space

	30.8 Registers
	30.8.1 SENS_ULP Address Space
	30.8.2 RTC_I2C Address Space

	31 Low-Power Management (RTC_CNTL)
	31.1 Introduction
	31.2 Features
	31.3 Functional Description
	31.3.1 Overview
	31.3.2 Digital Core Voltage Regulator
	31.3.3 Low-Power Voltage Regulator
	31.3.4 Flash Voltage Regulator
	31.3.5 Brownout Detector
	31.3.6 RTC Module
	31.3.7 Low-Power Clocks
	31.3.8 Power-Gating Implementation
	31.3.9 Predefined Power Modes
	31.3.10 Wakeup Source
	31.3.11 Reject Sleep
	31.3.12 RTC Timer
	31.3.13 RTC Boot

	31.4 Register Summary
	31.5 Registers

	Glossary
	Abbreviations for Peripherals
	Abbreviations for Registers

	Revision History

